netfilter: remove unnecessary goto statement for error recovery
[cascardo/linux.git] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28
29 #include <asm/pgtable.h>
30 #include <asm/traps.h>
31
32 #define REG_PC  15
33 #define REG_PSR 16
34 /*
35  * does not yet catch signals sent when the child dies.
36  * in exit.c or in signal.c.
37  */
38
39 #if 0
40 /*
41  * Breakpoint SWI instruction: SWI &9F0001
42  */
43 #define BREAKINST_ARM   0xef9f0001
44 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
45 #else
46 /*
47  * New breakpoints - use an undefined instruction.  The ARM architecture
48  * reference manual guarantees that the following instruction space
49  * will produce an undefined instruction exception on all CPUs:
50  *
51  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52  *  Thumb: 1101 1110 xxxx xxxx
53  */
54 #define BREAKINST_ARM   0xe7f001f0
55 #define BREAKINST_THUMB 0xde01
56 #endif
57
58 struct pt_regs_offset {
59         const char *name;
60         int offset;
61 };
62
63 #define REG_OFFSET_NAME(r) \
64         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67 static const struct pt_regs_offset regoffset_table[] = {
68         REG_OFFSET_NAME(r0),
69         REG_OFFSET_NAME(r1),
70         REG_OFFSET_NAME(r2),
71         REG_OFFSET_NAME(r3),
72         REG_OFFSET_NAME(r4),
73         REG_OFFSET_NAME(r5),
74         REG_OFFSET_NAME(r6),
75         REG_OFFSET_NAME(r7),
76         REG_OFFSET_NAME(r8),
77         REG_OFFSET_NAME(r9),
78         REG_OFFSET_NAME(r10),
79         REG_OFFSET_NAME(fp),
80         REG_OFFSET_NAME(ip),
81         REG_OFFSET_NAME(sp),
82         REG_OFFSET_NAME(lr),
83         REG_OFFSET_NAME(pc),
84         REG_OFFSET_NAME(cpsr),
85         REG_OFFSET_NAME(ORIG_r0),
86         REG_OFFSET_END,
87 };
88
89 /**
90  * regs_query_register_offset() - query register offset from its name
91  * @name:       the name of a register
92  *
93  * regs_query_register_offset() returns the offset of a register in struct
94  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
95  */
96 int regs_query_register_offset(const char *name)
97 {
98         const struct pt_regs_offset *roff;
99         for (roff = regoffset_table; roff->name != NULL; roff++)
100                 if (!strcmp(roff->name, name))
101                         return roff->offset;
102         return -EINVAL;
103 }
104
105 /**
106  * regs_query_register_name() - query register name from its offset
107  * @offset:     the offset of a register in struct pt_regs.
108  *
109  * regs_query_register_name() returns the name of a register from its
110  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111  */
112 const char *regs_query_register_name(unsigned int offset)
113 {
114         const struct pt_regs_offset *roff;
115         for (roff = regoffset_table; roff->name != NULL; roff++)
116                 if (roff->offset == offset)
117                         return roff->name;
118         return NULL;
119 }
120
121 /**
122  * regs_within_kernel_stack() - check the address in the stack
123  * @regs:      pt_regs which contains kernel stack pointer.
124  * @addr:      address which is checked.
125  *
126  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127  * If @addr is within the kernel stack, it returns true. If not, returns false.
128  */
129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130 {
131         return ((addr & ~(THREAD_SIZE - 1))  ==
132                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133 }
134
135 /**
136  * regs_get_kernel_stack_nth() - get Nth entry of the stack
137  * @regs:       pt_regs which contains kernel stack pointer.
138  * @n:          stack entry number.
139  *
140  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142  * this returns 0.
143  */
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145 {
146         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147         addr += n;
148         if (regs_within_kernel_stack(regs, (unsigned long)addr))
149                 return *addr;
150         else
151                 return 0;
152 }
153
154 /*
155  * this routine will get a word off of the processes privileged stack.
156  * the offset is how far from the base addr as stored in the THREAD.
157  * this routine assumes that all the privileged stacks are in our
158  * data space.
159  */
160 static inline long get_user_reg(struct task_struct *task, int offset)
161 {
162         return task_pt_regs(task)->uregs[offset];
163 }
164
165 /*
166  * this routine will put a word on the processes privileged stack.
167  * the offset is how far from the base addr as stored in the THREAD.
168  * this routine assumes that all the privileged stacks are in our
169  * data space.
170  */
171 static inline int
172 put_user_reg(struct task_struct *task, int offset, long data)
173 {
174         struct pt_regs newregs, *regs = task_pt_regs(task);
175         int ret = -EINVAL;
176
177         newregs = *regs;
178         newregs.uregs[offset] = data;
179
180         if (valid_user_regs(&newregs)) {
181                 regs->uregs[offset] = data;
182                 ret = 0;
183         }
184
185         return ret;
186 }
187
188 /*
189  * Called by kernel/ptrace.c when detaching..
190  */
191 void ptrace_disable(struct task_struct *child)
192 {
193         /* Nothing to do. */
194 }
195
196 /*
197  * Handle hitting a breakpoint.
198  */
199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200 {
201         siginfo_t info;
202
203         info.si_signo = SIGTRAP;
204         info.si_errno = 0;
205         info.si_code  = TRAP_BRKPT;
206         info.si_addr  = (void __user *)instruction_pointer(regs);
207
208         force_sig_info(SIGTRAP, &info, tsk);
209 }
210
211 static int break_trap(struct pt_regs *regs, unsigned int instr)
212 {
213         ptrace_break(current, regs);
214         return 0;
215 }
216
217 static struct undef_hook arm_break_hook = {
218         .instr_mask     = 0x0fffffff,
219         .instr_val      = 0x07f001f0,
220         .cpsr_mask      = PSR_T_BIT,
221         .cpsr_val       = 0,
222         .fn             = break_trap,
223 };
224
225 static struct undef_hook thumb_break_hook = {
226         .instr_mask     = 0xffff,
227         .instr_val      = 0xde01,
228         .cpsr_mask      = PSR_T_BIT,
229         .cpsr_val       = PSR_T_BIT,
230         .fn             = break_trap,
231 };
232
233 static struct undef_hook thumb2_break_hook = {
234         .instr_mask     = 0xffffffff,
235         .instr_val      = 0xf7f0a000,
236         .cpsr_mask      = PSR_T_BIT,
237         .cpsr_val       = PSR_T_BIT,
238         .fn             = break_trap,
239 };
240
241 static int __init ptrace_break_init(void)
242 {
243         register_undef_hook(&arm_break_hook);
244         register_undef_hook(&thumb_break_hook);
245         register_undef_hook(&thumb2_break_hook);
246         return 0;
247 }
248
249 core_initcall(ptrace_break_init);
250
251 /*
252  * Read the word at offset "off" into the "struct user".  We
253  * actually access the pt_regs stored on the kernel stack.
254  */
255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256                             unsigned long __user *ret)
257 {
258         unsigned long tmp;
259
260         if (off & 3)
261                 return -EIO;
262
263         tmp = 0;
264         if (off == PT_TEXT_ADDR)
265                 tmp = tsk->mm->start_code;
266         else if (off == PT_DATA_ADDR)
267                 tmp = tsk->mm->start_data;
268         else if (off == PT_TEXT_END_ADDR)
269                 tmp = tsk->mm->end_code;
270         else if (off < sizeof(struct pt_regs))
271                 tmp = get_user_reg(tsk, off >> 2);
272         else if (off >= sizeof(struct user))
273                 return -EIO;
274
275         return put_user(tmp, ret);
276 }
277
278 /*
279  * Write the word at offset "off" into "struct user".  We
280  * actually access the pt_regs stored on the kernel stack.
281  */
282 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
283                              unsigned long val)
284 {
285         if (off & 3 || off >= sizeof(struct user))
286                 return -EIO;
287
288         if (off >= sizeof(struct pt_regs))
289                 return 0;
290
291         return put_user_reg(tsk, off >> 2, val);
292 }
293
294 #ifdef CONFIG_IWMMXT
295
296 /*
297  * Get the child iWMMXt state.
298  */
299 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
300 {
301         struct thread_info *thread = task_thread_info(tsk);
302
303         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
304                 return -ENODATA;
305         iwmmxt_task_disable(thread);  /* force it to ram */
306         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
307                 ? -EFAULT : 0;
308 }
309
310 /*
311  * Set the child iWMMXt state.
312  */
313 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
314 {
315         struct thread_info *thread = task_thread_info(tsk);
316
317         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
318                 return -EACCES;
319         iwmmxt_task_release(thread);  /* force a reload */
320         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
321                 ? -EFAULT : 0;
322 }
323
324 #endif
325
326 #ifdef CONFIG_CRUNCH
327 /*
328  * Get the child Crunch state.
329  */
330 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
331 {
332         struct thread_info *thread = task_thread_info(tsk);
333
334         crunch_task_disable(thread);  /* force it to ram */
335         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
336                 ? -EFAULT : 0;
337 }
338
339 /*
340  * Set the child Crunch state.
341  */
342 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
343 {
344         struct thread_info *thread = task_thread_info(tsk);
345
346         crunch_task_release(thread);  /* force a reload */
347         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
348                 ? -EFAULT : 0;
349 }
350 #endif
351
352 #ifdef CONFIG_HAVE_HW_BREAKPOINT
353 /*
354  * Convert a virtual register number into an index for a thread_info
355  * breakpoint array. Breakpoints are identified using positive numbers
356  * whilst watchpoints are negative. The registers are laid out as pairs
357  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
358  * Register 0 is reserved for describing resource information.
359  */
360 static int ptrace_hbp_num_to_idx(long num)
361 {
362         if (num < 0)
363                 num = (ARM_MAX_BRP << 1) - num;
364         return (num - 1) >> 1;
365 }
366
367 /*
368  * Returns the virtual register number for the address of the
369  * breakpoint at index idx.
370  */
371 static long ptrace_hbp_idx_to_num(int idx)
372 {
373         long mid = ARM_MAX_BRP << 1;
374         long num = (idx << 1) + 1;
375         return num > mid ? mid - num : num;
376 }
377
378 /*
379  * Handle hitting a HW-breakpoint.
380  */
381 static void ptrace_hbptriggered(struct perf_event *bp,
382                                      struct perf_sample_data *data,
383                                      struct pt_regs *regs)
384 {
385         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
386         long num;
387         int i;
388         siginfo_t info;
389
390         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
391                 if (current->thread.debug.hbp[i] == bp)
392                         break;
393
394         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
395
396         info.si_signo   = SIGTRAP;
397         info.si_errno   = (int)num;
398         info.si_code    = TRAP_HWBKPT;
399         info.si_addr    = (void __user *)(bkpt->trigger);
400
401         force_sig_info(SIGTRAP, &info, current);
402 }
403
404 /*
405  * Set ptrace breakpoint pointers to zero for this task.
406  * This is required in order to prevent child processes from unregistering
407  * breakpoints held by their parent.
408  */
409 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
410 {
411         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
412 }
413
414 /*
415  * Unregister breakpoints from this task and reset the pointers in
416  * the thread_struct.
417  */
418 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
419 {
420         int i;
421         struct thread_struct *t = &tsk->thread;
422
423         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
424                 if (t->debug.hbp[i]) {
425                         unregister_hw_breakpoint(t->debug.hbp[i]);
426                         t->debug.hbp[i] = NULL;
427                 }
428         }
429 }
430
431 static u32 ptrace_get_hbp_resource_info(void)
432 {
433         u8 num_brps, num_wrps, debug_arch, wp_len;
434         u32 reg = 0;
435
436         num_brps        = hw_breakpoint_slots(TYPE_INST);
437         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
438         debug_arch      = arch_get_debug_arch();
439         wp_len          = arch_get_max_wp_len();
440
441         reg             |= debug_arch;
442         reg             <<= 8;
443         reg             |= wp_len;
444         reg             <<= 8;
445         reg             |= num_wrps;
446         reg             <<= 8;
447         reg             |= num_brps;
448
449         return reg;
450 }
451
452 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
453 {
454         struct perf_event_attr attr;
455
456         ptrace_breakpoint_init(&attr);
457
458         /* Initialise fields to sane defaults. */
459         attr.bp_addr    = 0;
460         attr.bp_len     = HW_BREAKPOINT_LEN_4;
461         attr.bp_type    = type;
462         attr.disabled   = 1;
463
464         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
465                                            tsk);
466 }
467
468 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
469                              unsigned long  __user *data)
470 {
471         u32 reg;
472         int idx, ret = 0;
473         struct perf_event *bp;
474         struct arch_hw_breakpoint_ctrl arch_ctrl;
475
476         if (num == 0) {
477                 reg = ptrace_get_hbp_resource_info();
478         } else {
479                 idx = ptrace_hbp_num_to_idx(num);
480                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
481                         ret = -EINVAL;
482                         goto out;
483                 }
484
485                 bp = tsk->thread.debug.hbp[idx];
486                 if (!bp) {
487                         reg = 0;
488                         goto put;
489                 }
490
491                 arch_ctrl = counter_arch_bp(bp)->ctrl;
492
493                 /*
494                  * Fix up the len because we may have adjusted it
495                  * to compensate for an unaligned address.
496                  */
497                 while (!(arch_ctrl.len & 0x1))
498                         arch_ctrl.len >>= 1;
499
500                 if (num & 0x1)
501                         reg = bp->attr.bp_addr;
502                 else
503                         reg = encode_ctrl_reg(arch_ctrl);
504         }
505
506 put:
507         if (put_user(reg, data))
508                 ret = -EFAULT;
509
510 out:
511         return ret;
512 }
513
514 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
515                              unsigned long __user *data)
516 {
517         int idx, gen_len, gen_type, implied_type, ret = 0;
518         u32 user_val;
519         struct perf_event *bp;
520         struct arch_hw_breakpoint_ctrl ctrl;
521         struct perf_event_attr attr;
522
523         if (num == 0)
524                 goto out;
525         else if (num < 0)
526                 implied_type = HW_BREAKPOINT_RW;
527         else
528                 implied_type = HW_BREAKPOINT_X;
529
530         idx = ptrace_hbp_num_to_idx(num);
531         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
532                 ret = -EINVAL;
533                 goto out;
534         }
535
536         if (get_user(user_val, data)) {
537                 ret = -EFAULT;
538                 goto out;
539         }
540
541         bp = tsk->thread.debug.hbp[idx];
542         if (!bp) {
543                 bp = ptrace_hbp_create(tsk, implied_type);
544                 if (IS_ERR(bp)) {
545                         ret = PTR_ERR(bp);
546                         goto out;
547                 }
548                 tsk->thread.debug.hbp[idx] = bp;
549         }
550
551         attr = bp->attr;
552
553         if (num & 0x1) {
554                 /* Address */
555                 attr.bp_addr    = user_val;
556         } else {
557                 /* Control */
558                 decode_ctrl_reg(user_val, &ctrl);
559                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
560                 if (ret)
561                         goto out;
562
563                 if ((gen_type & implied_type) != gen_type) {
564                         ret = -EINVAL;
565                         goto out;
566                 }
567
568                 attr.bp_len     = gen_len;
569                 attr.bp_type    = gen_type;
570                 attr.disabled   = !ctrl.enabled;
571         }
572
573         ret = modify_user_hw_breakpoint(bp, &attr);
574 out:
575         return ret;
576 }
577 #endif
578
579 /* regset get/set implementations */
580
581 static int gpr_get(struct task_struct *target,
582                    const struct user_regset *regset,
583                    unsigned int pos, unsigned int count,
584                    void *kbuf, void __user *ubuf)
585 {
586         struct pt_regs *regs = task_pt_regs(target);
587
588         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
589                                    regs,
590                                    0, sizeof(*regs));
591 }
592
593 static int gpr_set(struct task_struct *target,
594                    const struct user_regset *regset,
595                    unsigned int pos, unsigned int count,
596                    const void *kbuf, const void __user *ubuf)
597 {
598         int ret;
599         struct pt_regs newregs;
600
601         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
602                                  &newregs,
603                                  0, sizeof(newregs));
604         if (ret)
605                 return ret;
606
607         if (!valid_user_regs(&newregs))
608                 return -EINVAL;
609
610         *task_pt_regs(target) = newregs;
611         return 0;
612 }
613
614 static int fpa_get(struct task_struct *target,
615                    const struct user_regset *regset,
616                    unsigned int pos, unsigned int count,
617                    void *kbuf, void __user *ubuf)
618 {
619         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
620                                    &task_thread_info(target)->fpstate,
621                                    0, sizeof(struct user_fp));
622 }
623
624 static int fpa_set(struct task_struct *target,
625                    const struct user_regset *regset,
626                    unsigned int pos, unsigned int count,
627                    const void *kbuf, const void __user *ubuf)
628 {
629         struct thread_info *thread = task_thread_info(target);
630
631         thread->used_cp[1] = thread->used_cp[2] = 1;
632
633         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
634                 &thread->fpstate,
635                 0, sizeof(struct user_fp));
636 }
637
638 #ifdef CONFIG_VFP
639 /*
640  * VFP register get/set implementations.
641  *
642  * With respect to the kernel, struct user_fp is divided into three chunks:
643  * 16 or 32 real VFP registers (d0-d15 or d0-31)
644  *      These are transferred to/from the real registers in the task's
645  *      vfp_hard_struct.  The number of registers depends on the kernel
646  *      configuration.
647  *
648  * 16 or 0 fake VFP registers (d16-d31 or empty)
649  *      i.e., the user_vfp structure has space for 32 registers even if
650  *      the kernel doesn't have them all.
651  *
652  *      vfp_get() reads this chunk as zero where applicable
653  *      vfp_set() ignores this chunk
654  *
655  * 1 word for the FPSCR
656  *
657  * The bounds-checking logic built into user_regset_copyout and friends
658  * means that we can make a simple sequence of calls to map the relevant data
659  * to/from the specified slice of the user regset structure.
660  */
661 static int vfp_get(struct task_struct *target,
662                    const struct user_regset *regset,
663                    unsigned int pos, unsigned int count,
664                    void *kbuf, void __user *ubuf)
665 {
666         int ret;
667         struct thread_info *thread = task_thread_info(target);
668         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
669         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
670         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
671
672         vfp_sync_hwstate(thread);
673
674         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
675                                   &vfp->fpregs,
676                                   user_fpregs_offset,
677                                   user_fpregs_offset + sizeof(vfp->fpregs));
678         if (ret)
679                 return ret;
680
681         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
682                                        user_fpregs_offset + sizeof(vfp->fpregs),
683                                        user_fpscr_offset);
684         if (ret)
685                 return ret;
686
687         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
688                                    &vfp->fpscr,
689                                    user_fpscr_offset,
690                                    user_fpscr_offset + sizeof(vfp->fpscr));
691 }
692
693 /*
694  * For vfp_set() a read-modify-write is done on the VFP registers,
695  * in order to avoid writing back a half-modified set of registers on
696  * failure.
697  */
698 static int vfp_set(struct task_struct *target,
699                           const struct user_regset *regset,
700                           unsigned int pos, unsigned int count,
701                           const void *kbuf, const void __user *ubuf)
702 {
703         int ret;
704         struct thread_info *thread = task_thread_info(target);
705         struct vfp_hard_struct new_vfp;
706         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
707         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
708
709         vfp_sync_hwstate(thread);
710         new_vfp = thread->vfpstate.hard;
711
712         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
713                                   &new_vfp.fpregs,
714                                   user_fpregs_offset,
715                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
716         if (ret)
717                 return ret;
718
719         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
720                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
721                                 user_fpscr_offset);
722         if (ret)
723                 return ret;
724
725         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
726                                  &new_vfp.fpscr,
727                                  user_fpscr_offset,
728                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
729         if (ret)
730                 return ret;
731
732         vfp_flush_hwstate(thread);
733         thread->vfpstate.hard = new_vfp;
734
735         return 0;
736 }
737 #endif /* CONFIG_VFP */
738
739 enum arm_regset {
740         REGSET_GPR,
741         REGSET_FPR,
742 #ifdef CONFIG_VFP
743         REGSET_VFP,
744 #endif
745 };
746
747 static const struct user_regset arm_regsets[] = {
748         [REGSET_GPR] = {
749                 .core_note_type = NT_PRSTATUS,
750                 .n = ELF_NGREG,
751                 .size = sizeof(u32),
752                 .align = sizeof(u32),
753                 .get = gpr_get,
754                 .set = gpr_set
755         },
756         [REGSET_FPR] = {
757                 /*
758                  * For the FPA regs in fpstate, the real fields are a mixture
759                  * of sizes, so pretend that the registers are word-sized:
760                  */
761                 .core_note_type = NT_PRFPREG,
762                 .n = sizeof(struct user_fp) / sizeof(u32),
763                 .size = sizeof(u32),
764                 .align = sizeof(u32),
765                 .get = fpa_get,
766                 .set = fpa_set
767         },
768 #ifdef CONFIG_VFP
769         [REGSET_VFP] = {
770                 /*
771                  * Pretend that the VFP regs are word-sized, since the FPSCR is
772                  * a single word dangling at the end of struct user_vfp:
773                  */
774                 .core_note_type = NT_ARM_VFP,
775                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
776                 .size = sizeof(u32),
777                 .align = sizeof(u32),
778                 .get = vfp_get,
779                 .set = vfp_set
780         },
781 #endif /* CONFIG_VFP */
782 };
783
784 static const struct user_regset_view user_arm_view = {
785         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
786         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787 };
788
789 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
790 {
791         return &user_arm_view;
792 }
793
794 long arch_ptrace(struct task_struct *child, long request,
795                  unsigned long addr, unsigned long data)
796 {
797         int ret;
798         unsigned long __user *datap = (unsigned long __user *) data;
799
800         switch (request) {
801                 case PTRACE_PEEKUSR:
802                         ret = ptrace_read_user(child, addr, datap);
803                         break;
804
805                 case PTRACE_POKEUSR:
806                         ret = ptrace_write_user(child, addr, data);
807                         break;
808
809                 case PTRACE_GETREGS:
810                         ret = copy_regset_to_user(child,
811                                                   &user_arm_view, REGSET_GPR,
812                                                   0, sizeof(struct pt_regs),
813                                                   datap);
814                         break;
815
816                 case PTRACE_SETREGS:
817                         ret = copy_regset_from_user(child,
818                                                     &user_arm_view, REGSET_GPR,
819                                                     0, sizeof(struct pt_regs),
820                                                     datap);
821                         break;
822
823                 case PTRACE_GETFPREGS:
824                         ret = copy_regset_to_user(child,
825                                                   &user_arm_view, REGSET_FPR,
826                                                   0, sizeof(union fp_state),
827                                                   datap);
828                         break;
829
830                 case PTRACE_SETFPREGS:
831                         ret = copy_regset_from_user(child,
832                                                     &user_arm_view, REGSET_FPR,
833                                                     0, sizeof(union fp_state),
834                                                     datap);
835                         break;
836
837 #ifdef CONFIG_IWMMXT
838                 case PTRACE_GETWMMXREGS:
839                         ret = ptrace_getwmmxregs(child, datap);
840                         break;
841
842                 case PTRACE_SETWMMXREGS:
843                         ret = ptrace_setwmmxregs(child, datap);
844                         break;
845 #endif
846
847                 case PTRACE_GET_THREAD_AREA:
848                         ret = put_user(task_thread_info(child)->tp_value,
849                                        datap);
850                         break;
851
852                 case PTRACE_SET_SYSCALL:
853                         task_thread_info(child)->syscall = data;
854                         ret = 0;
855                         break;
856
857 #ifdef CONFIG_CRUNCH
858                 case PTRACE_GETCRUNCHREGS:
859                         ret = ptrace_getcrunchregs(child, datap);
860                         break;
861
862                 case PTRACE_SETCRUNCHREGS:
863                         ret = ptrace_setcrunchregs(child, datap);
864                         break;
865 #endif
866
867 #ifdef CONFIG_VFP
868                 case PTRACE_GETVFPREGS:
869                         ret = copy_regset_to_user(child,
870                                                   &user_arm_view, REGSET_VFP,
871                                                   0, ARM_VFPREGS_SIZE,
872                                                   datap);
873                         break;
874
875                 case PTRACE_SETVFPREGS:
876                         ret = copy_regset_from_user(child,
877                                                     &user_arm_view, REGSET_VFP,
878                                                     0, ARM_VFPREGS_SIZE,
879                                                     datap);
880                         break;
881 #endif
882
883 #ifdef CONFIG_HAVE_HW_BREAKPOINT
884                 case PTRACE_GETHBPREGS:
885                         if (ptrace_get_breakpoints(child) < 0)
886                                 return -ESRCH;
887
888                         ret = ptrace_gethbpregs(child, addr,
889                                                 (unsigned long __user *)data);
890                         ptrace_put_breakpoints(child);
891                         break;
892                 case PTRACE_SETHBPREGS:
893                         if (ptrace_get_breakpoints(child) < 0)
894                                 return -ESRCH;
895
896                         ret = ptrace_sethbpregs(child, addr,
897                                                 (unsigned long __user *)data);
898                         ptrace_put_breakpoints(child);
899                         break;
900 #endif
901
902                 default:
903                         ret = ptrace_request(child, request, addr, data);
904                         break;
905         }
906
907         return ret;
908 }
909
910 enum ptrace_syscall_dir {
911         PTRACE_SYSCALL_ENTER = 0,
912         PTRACE_SYSCALL_EXIT,
913 };
914
915 static int ptrace_syscall_trace(struct pt_regs *regs, int scno,
916                                 enum ptrace_syscall_dir dir)
917 {
918         unsigned long ip;
919
920         if (!test_thread_flag(TIF_SYSCALL_TRACE))
921                 return scno;
922
923         current_thread_info()->syscall = scno;
924
925         /*
926          * IP is used to denote syscall entry/exit:
927          * IP = 0 -> entry, =1 -> exit
928          */
929         ip = regs->ARM_ip;
930         regs->ARM_ip = dir;
931
932         if (dir == PTRACE_SYSCALL_EXIT)
933                 tracehook_report_syscall_exit(regs, 0);
934         else if (tracehook_report_syscall_entry(regs))
935                 current_thread_info()->syscall = -1;
936
937         regs->ARM_ip = ip;
938         return current_thread_info()->syscall;
939 }
940
941 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
942 {
943         int ret = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_ENTER);
944         audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, regs->ARM_r1,
945                             regs->ARM_r2, regs->ARM_r3);
946         return ret;
947 }
948
949 asmlinkage int syscall_trace_exit(struct pt_regs *regs, int scno)
950 {
951         int ret = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_EXIT);
952         audit_syscall_exit(regs);
953         return ret;
954 }