Merge branches 'x86-build-for-linus', 'x86-cleanups-for-linus' and 'x86-debug-for...
[cascardo/linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_timer_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155         return VM_FAULT_SIGBUS;
156 }
157
158 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159                            struct kvm_memory_slot *dont)
160 {
161 }
162
163 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
164                             unsigned long npages)
165 {
166         return 0;
167 }
168
169 /**
170  * kvm_arch_destroy_vm - destroy the VM data structure
171  * @kvm:        pointer to the KVM struct
172  */
173 void kvm_arch_destroy_vm(struct kvm *kvm)
174 {
175         int i;
176
177         kvm_free_stage2_pgd(kvm);
178
179         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
180                 if (kvm->vcpus[i]) {
181                         kvm_arch_vcpu_free(kvm->vcpus[i]);
182                         kvm->vcpus[i] = NULL;
183                 }
184         }
185 }
186
187 int kvm_dev_ioctl_check_extension(long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_DEVICE_CTRL:
195         case KVM_CAP_USER_MEMORY:
196         case KVM_CAP_SYNC_MMU:
197         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
198         case KVM_CAP_ONE_REG:
199         case KVM_CAP_ARM_PSCI:
200         case KVM_CAP_ARM_PSCI_0_2:
201                 r = 1;
202                 break;
203         case KVM_CAP_COALESCED_MMIO:
204                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205                 break;
206         case KVM_CAP_ARM_SET_DEVICE_ADDR:
207                 r = 1;
208                 break;
209         case KVM_CAP_NR_VCPUS:
210                 r = num_online_cpus();
211                 break;
212         case KVM_CAP_MAX_VCPUS:
213                 r = KVM_MAX_VCPUS;
214                 break;
215         default:
216                 r = kvm_arch_dev_ioctl_check_extension(ext);
217                 break;
218         }
219         return r;
220 }
221
222 long kvm_arch_dev_ioctl(struct file *filp,
223                         unsigned int ioctl, unsigned long arg)
224 {
225         return -EINVAL;
226 }
227
228 void kvm_arch_memslots_updated(struct kvm *kvm)
229 {
230 }
231
232 int kvm_arch_prepare_memory_region(struct kvm *kvm,
233                                    struct kvm_memory_slot *memslot,
234                                    struct kvm_userspace_memory_region *mem,
235                                    enum kvm_mr_change change)
236 {
237         return 0;
238 }
239
240 void kvm_arch_commit_memory_region(struct kvm *kvm,
241                                    struct kvm_userspace_memory_region *mem,
242                                    const struct kvm_memory_slot *old,
243                                    enum kvm_mr_change change)
244 {
245 }
246
247 void kvm_arch_flush_shadow_all(struct kvm *kvm)
248 {
249 }
250
251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
252                                    struct kvm_memory_slot *slot)
253 {
254 }
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258         int err;
259         struct kvm_vcpu *vcpu;
260
261         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
262         if (!vcpu) {
263                 err = -ENOMEM;
264                 goto out;
265         }
266
267         err = kvm_vcpu_init(vcpu, kvm, id);
268         if (err)
269                 goto free_vcpu;
270
271         err = create_hyp_mappings(vcpu, vcpu + 1);
272         if (err)
273                 goto vcpu_uninit;
274
275         return vcpu;
276 vcpu_uninit:
277         kvm_vcpu_uninit(vcpu);
278 free_vcpu:
279         kmem_cache_free(kvm_vcpu_cache, vcpu);
280 out:
281         return ERR_PTR(err);
282 }
283
284 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285 {
286         return 0;
287 }
288
289 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
290 {
291         kvm_mmu_free_memory_caches(vcpu);
292         kvm_timer_vcpu_terminate(vcpu);
293         kmem_cache_free(kvm_vcpu_cache, vcpu);
294 }
295
296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_vcpu_free(vcpu);
299 }
300
301 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
302 {
303         return 0;
304 }
305
306 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
307 {
308         int ret;
309
310         /* Force users to call KVM_ARM_VCPU_INIT */
311         vcpu->arch.target = -1;
312
313         /* Set up VGIC */
314         ret = kvm_vgic_vcpu_init(vcpu);
315         if (ret)
316                 return ret;
317
318         /* Set up the timer */
319         kvm_timer_vcpu_init(vcpu);
320
321         return 0;
322 }
323
324 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
325 {
326 }
327
328 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
329 {
330         vcpu->cpu = cpu;
331         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
332
333         /*
334          * Check whether this vcpu requires the cache to be flushed on
335          * this physical CPU. This is a consequence of doing dcache
336          * operations by set/way on this vcpu. We do it here to be in
337          * a non-preemptible section.
338          */
339         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
340                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
341
342         kvm_arm_set_running_vcpu(vcpu);
343 }
344
345 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
346 {
347         /*
348          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
349          * if the vcpu is no longer assigned to a cpu.  This is used for the
350          * optimized make_all_cpus_request path.
351          */
352         vcpu->cpu = -1;
353
354         kvm_arm_set_running_vcpu(NULL);
355 }
356
357 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
358                                         struct kvm_guest_debug *dbg)
359 {
360         return -EINVAL;
361 }
362
363
364 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
365                                     struct kvm_mp_state *mp_state)
366 {
367         return -EINVAL;
368 }
369
370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371                                     struct kvm_mp_state *mp_state)
372 {
373         return -EINVAL;
374 }
375
376 /**
377  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
378  * @v:          The VCPU pointer
379  *
380  * If the guest CPU is not waiting for interrupts or an interrupt line is
381  * asserted, the CPU is by definition runnable.
382  */
383 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
384 {
385         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
386 }
387
388 /* Just ensure a guest exit from a particular CPU */
389 static void exit_vm_noop(void *info)
390 {
391 }
392
393 void force_vm_exit(const cpumask_t *mask)
394 {
395         smp_call_function_many(mask, exit_vm_noop, NULL, true);
396 }
397
398 /**
399  * need_new_vmid_gen - check that the VMID is still valid
400  * @kvm: The VM's VMID to checkt
401  *
402  * return true if there is a new generation of VMIDs being used
403  *
404  * The hardware supports only 256 values with the value zero reserved for the
405  * host, so we check if an assigned value belongs to a previous generation,
406  * which which requires us to assign a new value. If we're the first to use a
407  * VMID for the new generation, we must flush necessary caches and TLBs on all
408  * CPUs.
409  */
410 static bool need_new_vmid_gen(struct kvm *kvm)
411 {
412         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
413 }
414
415 /**
416  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
417  * @kvm The guest that we are about to run
418  *
419  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
420  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
421  * caches and TLBs.
422  */
423 static void update_vttbr(struct kvm *kvm)
424 {
425         phys_addr_t pgd_phys;
426         u64 vmid;
427
428         if (!need_new_vmid_gen(kvm))
429                 return;
430
431         spin_lock(&kvm_vmid_lock);
432
433         /*
434          * We need to re-check the vmid_gen here to ensure that if another vcpu
435          * already allocated a valid vmid for this vm, then this vcpu should
436          * use the same vmid.
437          */
438         if (!need_new_vmid_gen(kvm)) {
439                 spin_unlock(&kvm_vmid_lock);
440                 return;
441         }
442
443         /* First user of a new VMID generation? */
444         if (unlikely(kvm_next_vmid == 0)) {
445                 atomic64_inc(&kvm_vmid_gen);
446                 kvm_next_vmid = 1;
447
448                 /*
449                  * On SMP we know no other CPUs can use this CPU's or each
450                  * other's VMID after force_vm_exit returns since the
451                  * kvm_vmid_lock blocks them from reentry to the guest.
452                  */
453                 force_vm_exit(cpu_all_mask);
454                 /*
455                  * Now broadcast TLB + ICACHE invalidation over the inner
456                  * shareable domain to make sure all data structures are
457                  * clean.
458                  */
459                 kvm_call_hyp(__kvm_flush_vm_context);
460         }
461
462         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
463         kvm->arch.vmid = kvm_next_vmid;
464         kvm_next_vmid++;
465
466         /* update vttbr to be used with the new vmid */
467         pgd_phys = virt_to_phys(kvm->arch.pgd);
468         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
469         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
470         kvm->arch.vttbr |= vmid;
471
472         spin_unlock(&kvm_vmid_lock);
473 }
474
475 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
476 {
477         int ret;
478
479         if (likely(vcpu->arch.has_run_once))
480                 return 0;
481
482         vcpu->arch.has_run_once = true;
483
484         /*
485          * Initialize the VGIC before running a vcpu the first time on
486          * this VM.
487          */
488         if (unlikely(!vgic_initialized(vcpu->kvm))) {
489                 ret = kvm_vgic_init(vcpu->kvm);
490                 if (ret)
491                         return ret;
492         }
493
494         return 0;
495 }
496
497 static void vcpu_pause(struct kvm_vcpu *vcpu)
498 {
499         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500
501         wait_event_interruptible(*wq, !vcpu->arch.pause);
502 }
503
504 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
505 {
506         return vcpu->arch.target >= 0;
507 }
508
509 /**
510  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
511  * @vcpu:       The VCPU pointer
512  * @run:        The kvm_run structure pointer used for userspace state exchange
513  *
514  * This function is called through the VCPU_RUN ioctl called from user space. It
515  * will execute VM code in a loop until the time slice for the process is used
516  * or some emulation is needed from user space in which case the function will
517  * return with return value 0 and with the kvm_run structure filled in with the
518  * required data for the requested emulation.
519  */
520 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
521 {
522         int ret;
523         sigset_t sigsaved;
524
525         if (unlikely(!kvm_vcpu_initialized(vcpu)))
526                 return -ENOEXEC;
527
528         ret = kvm_vcpu_first_run_init(vcpu);
529         if (ret)
530                 return ret;
531
532         if (run->exit_reason == KVM_EXIT_MMIO) {
533                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
534                 if (ret)
535                         return ret;
536         }
537
538         if (vcpu->sigset_active)
539                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
540
541         ret = 1;
542         run->exit_reason = KVM_EXIT_UNKNOWN;
543         while (ret > 0) {
544                 /*
545                  * Check conditions before entering the guest
546                  */
547                 cond_resched();
548
549                 update_vttbr(vcpu->kvm);
550
551                 if (vcpu->arch.pause)
552                         vcpu_pause(vcpu);
553
554                 kvm_vgic_flush_hwstate(vcpu);
555                 kvm_timer_flush_hwstate(vcpu);
556
557                 local_irq_disable();
558
559                 /*
560                  * Re-check atomic conditions
561                  */
562                 if (signal_pending(current)) {
563                         ret = -EINTR;
564                         run->exit_reason = KVM_EXIT_INTR;
565                 }
566
567                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
568                         local_irq_enable();
569                         kvm_timer_sync_hwstate(vcpu);
570                         kvm_vgic_sync_hwstate(vcpu);
571                         continue;
572                 }
573
574                 /**************************************************************
575                  * Enter the guest
576                  */
577                 trace_kvm_entry(*vcpu_pc(vcpu));
578                 kvm_guest_enter();
579                 vcpu->mode = IN_GUEST_MODE;
580
581                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
582
583                 vcpu->mode = OUTSIDE_GUEST_MODE;
584                 vcpu->arch.last_pcpu = smp_processor_id();
585                 kvm_guest_exit();
586                 trace_kvm_exit(*vcpu_pc(vcpu));
587                 /*
588                  * We may have taken a host interrupt in HYP mode (ie
589                  * while executing the guest). This interrupt is still
590                  * pending, as we haven't serviced it yet!
591                  *
592                  * We're now back in SVC mode, with interrupts
593                  * disabled.  Enabling the interrupts now will have
594                  * the effect of taking the interrupt again, in SVC
595                  * mode this time.
596                  */
597                 local_irq_enable();
598
599                 /*
600                  * Back from guest
601                  *************************************************************/
602
603                 kvm_timer_sync_hwstate(vcpu);
604                 kvm_vgic_sync_hwstate(vcpu);
605
606                 ret = handle_exit(vcpu, run, ret);
607         }
608
609         if (vcpu->sigset_active)
610                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
611         return ret;
612 }
613
614 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
615 {
616         int bit_index;
617         bool set;
618         unsigned long *ptr;
619
620         if (number == KVM_ARM_IRQ_CPU_IRQ)
621                 bit_index = __ffs(HCR_VI);
622         else /* KVM_ARM_IRQ_CPU_FIQ */
623                 bit_index = __ffs(HCR_VF);
624
625         ptr = (unsigned long *)&vcpu->arch.irq_lines;
626         if (level)
627                 set = test_and_set_bit(bit_index, ptr);
628         else
629                 set = test_and_clear_bit(bit_index, ptr);
630
631         /*
632          * If we didn't change anything, no need to wake up or kick other CPUs
633          */
634         if (set == level)
635                 return 0;
636
637         /*
638          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
639          * trigger a world-switch round on the running physical CPU to set the
640          * virtual IRQ/FIQ fields in the HCR appropriately.
641          */
642         kvm_vcpu_kick(vcpu);
643
644         return 0;
645 }
646
647 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
648                           bool line_status)
649 {
650         u32 irq = irq_level->irq;
651         unsigned int irq_type, vcpu_idx, irq_num;
652         int nrcpus = atomic_read(&kvm->online_vcpus);
653         struct kvm_vcpu *vcpu = NULL;
654         bool level = irq_level->level;
655
656         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
657         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
658         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
659
660         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
661
662         switch (irq_type) {
663         case KVM_ARM_IRQ_TYPE_CPU:
664                 if (irqchip_in_kernel(kvm))
665                         return -ENXIO;
666
667                 if (vcpu_idx >= nrcpus)
668                         return -EINVAL;
669
670                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
671                 if (!vcpu)
672                         return -EINVAL;
673
674                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
675                         return -EINVAL;
676
677                 return vcpu_interrupt_line(vcpu, irq_num, level);
678         case KVM_ARM_IRQ_TYPE_PPI:
679                 if (!irqchip_in_kernel(kvm))
680                         return -ENXIO;
681
682                 if (vcpu_idx >= nrcpus)
683                         return -EINVAL;
684
685                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
686                 if (!vcpu)
687                         return -EINVAL;
688
689                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
690                         return -EINVAL;
691
692                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
693         case KVM_ARM_IRQ_TYPE_SPI:
694                 if (!irqchip_in_kernel(kvm))
695                         return -ENXIO;
696
697                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
698                     irq_num > KVM_ARM_IRQ_GIC_MAX)
699                         return -EINVAL;
700
701                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
702         }
703
704         return -EINVAL;
705 }
706
707 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
708                                          struct kvm_vcpu_init *init)
709 {
710         int ret;
711
712         ret = kvm_vcpu_set_target(vcpu, init);
713         if (ret)
714                 return ret;
715
716         /*
717          * Handle the "start in power-off" case by marking the VCPU as paused.
718          */
719         if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
720                 vcpu->arch.pause = true;
721
722         return 0;
723 }
724
725 long kvm_arch_vcpu_ioctl(struct file *filp,
726                          unsigned int ioctl, unsigned long arg)
727 {
728         struct kvm_vcpu *vcpu = filp->private_data;
729         void __user *argp = (void __user *)arg;
730
731         switch (ioctl) {
732         case KVM_ARM_VCPU_INIT: {
733                 struct kvm_vcpu_init init;
734
735                 if (copy_from_user(&init, argp, sizeof(init)))
736                         return -EFAULT;
737
738                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
739         }
740         case KVM_SET_ONE_REG:
741         case KVM_GET_ONE_REG: {
742                 struct kvm_one_reg reg;
743
744                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
745                         return -ENOEXEC;
746
747                 if (copy_from_user(&reg, argp, sizeof(reg)))
748                         return -EFAULT;
749                 if (ioctl == KVM_SET_ONE_REG)
750                         return kvm_arm_set_reg(vcpu, &reg);
751                 else
752                         return kvm_arm_get_reg(vcpu, &reg);
753         }
754         case KVM_GET_REG_LIST: {
755                 struct kvm_reg_list __user *user_list = argp;
756                 struct kvm_reg_list reg_list;
757                 unsigned n;
758
759                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
760                         return -ENOEXEC;
761
762                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
763                         return -EFAULT;
764                 n = reg_list.n;
765                 reg_list.n = kvm_arm_num_regs(vcpu);
766                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
767                         return -EFAULT;
768                 if (n < reg_list.n)
769                         return -E2BIG;
770                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
771         }
772         default:
773                 return -EINVAL;
774         }
775 }
776
777 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
778 {
779         return -EINVAL;
780 }
781
782 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
783                                         struct kvm_arm_device_addr *dev_addr)
784 {
785         unsigned long dev_id, type;
786
787         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
788                 KVM_ARM_DEVICE_ID_SHIFT;
789         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
790                 KVM_ARM_DEVICE_TYPE_SHIFT;
791
792         switch (dev_id) {
793         case KVM_ARM_DEVICE_VGIC_V2:
794                 if (!vgic_present)
795                         return -ENXIO;
796                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
797         default:
798                 return -ENODEV;
799         }
800 }
801
802 long kvm_arch_vm_ioctl(struct file *filp,
803                        unsigned int ioctl, unsigned long arg)
804 {
805         struct kvm *kvm = filp->private_data;
806         void __user *argp = (void __user *)arg;
807
808         switch (ioctl) {
809         case KVM_CREATE_IRQCHIP: {
810                 if (vgic_present)
811                         return kvm_vgic_create(kvm);
812                 else
813                         return -ENXIO;
814         }
815         case KVM_ARM_SET_DEVICE_ADDR: {
816                 struct kvm_arm_device_addr dev_addr;
817
818                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
819                         return -EFAULT;
820                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
821         }
822         case KVM_ARM_PREFERRED_TARGET: {
823                 int err;
824                 struct kvm_vcpu_init init;
825
826                 err = kvm_vcpu_preferred_target(&init);
827                 if (err)
828                         return err;
829
830                 if (copy_to_user(argp, &init, sizeof(init)))
831                         return -EFAULT;
832
833                 return 0;
834         }
835         default:
836                 return -EINVAL;
837         }
838 }
839
840 static void cpu_init_hyp_mode(void *dummy)
841 {
842         phys_addr_t boot_pgd_ptr;
843         phys_addr_t pgd_ptr;
844         unsigned long hyp_stack_ptr;
845         unsigned long stack_page;
846         unsigned long vector_ptr;
847
848         /* Switch from the HYP stub to our own HYP init vector */
849         __hyp_set_vectors(kvm_get_idmap_vector());
850
851         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
852         pgd_ptr = kvm_mmu_get_httbr();
853         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
854         hyp_stack_ptr = stack_page + PAGE_SIZE;
855         vector_ptr = (unsigned long)__kvm_hyp_vector;
856
857         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
858 }
859
860 static int hyp_init_cpu_notify(struct notifier_block *self,
861                                unsigned long action, void *cpu)
862 {
863         switch (action) {
864         case CPU_STARTING:
865         case CPU_STARTING_FROZEN:
866                 cpu_init_hyp_mode(NULL);
867                 break;
868         }
869
870         return NOTIFY_OK;
871 }
872
873 static struct notifier_block hyp_init_cpu_nb = {
874         .notifier_call = hyp_init_cpu_notify,
875 };
876
877 #ifdef CONFIG_CPU_PM
878 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
879                                     unsigned long cmd,
880                                     void *v)
881 {
882         if (cmd == CPU_PM_EXIT &&
883             __hyp_get_vectors() == hyp_default_vectors) {
884                 cpu_init_hyp_mode(NULL);
885                 return NOTIFY_OK;
886         }
887
888         return NOTIFY_DONE;
889 }
890
891 static struct notifier_block hyp_init_cpu_pm_nb = {
892         .notifier_call = hyp_init_cpu_pm_notifier,
893 };
894
895 static void __init hyp_cpu_pm_init(void)
896 {
897         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
898 }
899 #else
900 static inline void hyp_cpu_pm_init(void)
901 {
902 }
903 #endif
904
905 /**
906  * Inits Hyp-mode on all online CPUs
907  */
908 static int init_hyp_mode(void)
909 {
910         int cpu;
911         int err = 0;
912
913         /*
914          * Allocate Hyp PGD and setup Hyp identity mapping
915          */
916         err = kvm_mmu_init();
917         if (err)
918                 goto out_err;
919
920         /*
921          * It is probably enough to obtain the default on one
922          * CPU. It's unlikely to be different on the others.
923          */
924         hyp_default_vectors = __hyp_get_vectors();
925
926         /*
927          * Allocate stack pages for Hypervisor-mode
928          */
929         for_each_possible_cpu(cpu) {
930                 unsigned long stack_page;
931
932                 stack_page = __get_free_page(GFP_KERNEL);
933                 if (!stack_page) {
934                         err = -ENOMEM;
935                         goto out_free_stack_pages;
936                 }
937
938                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
939         }
940
941         /*
942          * Map the Hyp-code called directly from the host
943          */
944         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
945         if (err) {
946                 kvm_err("Cannot map world-switch code\n");
947                 goto out_free_mappings;
948         }
949
950         /*
951          * Map the Hyp stack pages
952          */
953         for_each_possible_cpu(cpu) {
954                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
955                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
956
957                 if (err) {
958                         kvm_err("Cannot map hyp stack\n");
959                         goto out_free_mappings;
960                 }
961         }
962
963         /*
964          * Map the host CPU structures
965          */
966         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
967         if (!kvm_host_cpu_state) {
968                 err = -ENOMEM;
969                 kvm_err("Cannot allocate host CPU state\n");
970                 goto out_free_mappings;
971         }
972
973         for_each_possible_cpu(cpu) {
974                 kvm_cpu_context_t *cpu_ctxt;
975
976                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
977                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
978
979                 if (err) {
980                         kvm_err("Cannot map host CPU state: %d\n", err);
981                         goto out_free_context;
982                 }
983         }
984
985         /*
986          * Execute the init code on each CPU.
987          */
988         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
989
990         /*
991          * Init HYP view of VGIC
992          */
993         err = kvm_vgic_hyp_init();
994         if (err)
995                 goto out_free_context;
996
997 #ifdef CONFIG_KVM_ARM_VGIC
998                 vgic_present = true;
999 #endif
1000
1001         /*
1002          * Init HYP architected timer support
1003          */
1004         err = kvm_timer_hyp_init();
1005         if (err)
1006                 goto out_free_mappings;
1007
1008 #ifndef CONFIG_HOTPLUG_CPU
1009         free_boot_hyp_pgd();
1010 #endif
1011
1012         kvm_perf_init();
1013
1014         kvm_info("Hyp mode initialized successfully\n");
1015
1016         return 0;
1017 out_free_context:
1018         free_percpu(kvm_host_cpu_state);
1019 out_free_mappings:
1020         free_hyp_pgds();
1021 out_free_stack_pages:
1022         for_each_possible_cpu(cpu)
1023                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1024 out_err:
1025         kvm_err("error initializing Hyp mode: %d\n", err);
1026         return err;
1027 }
1028
1029 static void check_kvm_target_cpu(void *ret)
1030 {
1031         *(int *)ret = kvm_target_cpu();
1032 }
1033
1034 /**
1035  * Initialize Hyp-mode and memory mappings on all CPUs.
1036  */
1037 int kvm_arch_init(void *opaque)
1038 {
1039         int err;
1040         int ret, cpu;
1041
1042         if (!is_hyp_mode_available()) {
1043                 kvm_err("HYP mode not available\n");
1044                 return -ENODEV;
1045         }
1046
1047         for_each_online_cpu(cpu) {
1048                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1049                 if (ret < 0) {
1050                         kvm_err("Error, CPU %d not supported!\n", cpu);
1051                         return -ENODEV;
1052                 }
1053         }
1054
1055         cpu_notifier_register_begin();
1056
1057         err = init_hyp_mode();
1058         if (err)
1059                 goto out_err;
1060
1061         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1062         if (err) {
1063                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1064                 goto out_err;
1065         }
1066
1067         cpu_notifier_register_done();
1068
1069         hyp_cpu_pm_init();
1070
1071         kvm_coproc_table_init();
1072         return 0;
1073 out_err:
1074         cpu_notifier_register_done();
1075         return err;
1076 }
1077
1078 /* NOP: Compiling as a module not supported */
1079 void kvm_arch_exit(void)
1080 {
1081         kvm_perf_teardown();
1082 }
1083
1084 static int arm_init(void)
1085 {
1086         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1087         return rc;
1088 }
1089
1090 module_init(arm_init);