Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x)        (pmd_huge(_x) || pmd_trans_huge(_x))
48
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
50 {
51         /*
52          * This function also gets called when dealing with HYP page
53          * tables. As HYP doesn't have an associated struct kvm (and
54          * the HYP page tables are fairly static), we don't do
55          * anything there.
56          */
57         if (kvm)
58                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
59 }
60
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
62                                   int min, int max)
63 {
64         void *page;
65
66         BUG_ON(max > KVM_NR_MEM_OBJS);
67         if (cache->nobjs >= min)
68                 return 0;
69         while (cache->nobjs < max) {
70                 page = (void *)__get_free_page(PGALLOC_GFP);
71                 if (!page)
72                         return -ENOMEM;
73                 cache->objects[cache->nobjs++] = page;
74         }
75         return 0;
76 }
77
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
79 {
80         while (mc->nobjs)
81                 free_page((unsigned long)mc->objects[--mc->nobjs]);
82 }
83
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
85 {
86         void *p;
87
88         BUG_ON(!mc || !mc->nobjs);
89         p = mc->objects[--mc->nobjs];
90         return p;
91 }
92
93 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
94 {
95         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
96         pgd_clear(pgd);
97         kvm_tlb_flush_vmid_ipa(kvm, addr);
98         pud_free(NULL, pud_table);
99         put_page(virt_to_page(pgd));
100 }
101
102 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
103 {
104         pmd_t *pmd_table = pmd_offset(pud, 0);
105         VM_BUG_ON(pud_huge(*pud));
106         pud_clear(pud);
107         kvm_tlb_flush_vmid_ipa(kvm, addr);
108         pmd_free(NULL, pmd_table);
109         put_page(virt_to_page(pud));
110 }
111
112 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
113 {
114         pte_t *pte_table = pte_offset_kernel(pmd, 0);
115         VM_BUG_ON(kvm_pmd_huge(*pmd));
116         pmd_clear(pmd);
117         kvm_tlb_flush_vmid_ipa(kvm, addr);
118         pte_free_kernel(NULL, pte_table);
119         put_page(virt_to_page(pmd));
120 }
121
122 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
123                        phys_addr_t addr, phys_addr_t end)
124 {
125         phys_addr_t start_addr = addr;
126         pte_t *pte, *start_pte;
127
128         start_pte = pte = pte_offset_kernel(pmd, addr);
129         do {
130                 if (!pte_none(*pte)) {
131                         kvm_set_pte(pte, __pte(0));
132                         put_page(virt_to_page(pte));
133                         kvm_tlb_flush_vmid_ipa(kvm, addr);
134                 }
135         } while (pte++, addr += PAGE_SIZE, addr != end);
136
137         if (kvm_pte_table_empty(start_pte))
138                 clear_pmd_entry(kvm, pmd, start_addr);
139 }
140
141 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
142                        phys_addr_t addr, phys_addr_t end)
143 {
144         phys_addr_t next, start_addr = addr;
145         pmd_t *pmd, *start_pmd;
146
147         start_pmd = pmd = pmd_offset(pud, addr);
148         do {
149                 next = kvm_pmd_addr_end(addr, end);
150                 if (!pmd_none(*pmd)) {
151                         if (kvm_pmd_huge(*pmd)) {
152                                 pmd_clear(pmd);
153                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
154                                 put_page(virt_to_page(pmd));
155                         } else {
156                                 unmap_ptes(kvm, pmd, addr, next);
157                         }
158                 }
159         } while (pmd++, addr = next, addr != end);
160
161         if (kvm_pmd_table_empty(start_pmd))
162                 clear_pud_entry(kvm, pud, start_addr);
163 }
164
165 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
166                        phys_addr_t addr, phys_addr_t end)
167 {
168         phys_addr_t next, start_addr = addr;
169         pud_t *pud, *start_pud;
170
171         start_pud = pud = pud_offset(pgd, addr);
172         do {
173                 next = kvm_pud_addr_end(addr, end);
174                 if (!pud_none(*pud)) {
175                         if (pud_huge(*pud)) {
176                                 pud_clear(pud);
177                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
178                                 put_page(virt_to_page(pud));
179                         } else {
180                                 unmap_pmds(kvm, pud, addr, next);
181                         }
182                 }
183         } while (pud++, addr = next, addr != end);
184
185         if (kvm_pud_table_empty(start_pud))
186                 clear_pgd_entry(kvm, pgd, start_addr);
187 }
188
189
190 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
191                         phys_addr_t start, u64 size)
192 {
193         pgd_t *pgd;
194         phys_addr_t addr = start, end = start + size;
195         phys_addr_t next;
196
197         pgd = pgdp + pgd_index(addr);
198         do {
199                 next = kvm_pgd_addr_end(addr, end);
200                 unmap_puds(kvm, pgd, addr, next);
201         } while (pgd++, addr = next, addr != end);
202 }
203
204 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
205                               phys_addr_t addr, phys_addr_t end)
206 {
207         pte_t *pte;
208
209         pte = pte_offset_kernel(pmd, addr);
210         do {
211                 if (!pte_none(*pte)) {
212                         hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
213                         kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
214                 }
215         } while (pte++, addr += PAGE_SIZE, addr != end);
216 }
217
218 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
219                               phys_addr_t addr, phys_addr_t end)
220 {
221         pmd_t *pmd;
222         phys_addr_t next;
223
224         pmd = pmd_offset(pud, addr);
225         do {
226                 next = kvm_pmd_addr_end(addr, end);
227                 if (!pmd_none(*pmd)) {
228                         if (kvm_pmd_huge(*pmd)) {
229                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
230                                 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
231                         } else {
232                                 stage2_flush_ptes(kvm, pmd, addr, next);
233                         }
234                 }
235         } while (pmd++, addr = next, addr != end);
236 }
237
238 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
239                               phys_addr_t addr, phys_addr_t end)
240 {
241         pud_t *pud;
242         phys_addr_t next;
243
244         pud = pud_offset(pgd, addr);
245         do {
246                 next = kvm_pud_addr_end(addr, end);
247                 if (!pud_none(*pud)) {
248                         if (pud_huge(*pud)) {
249                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
250                                 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
251                         } else {
252                                 stage2_flush_pmds(kvm, pud, addr, next);
253                         }
254                 }
255         } while (pud++, addr = next, addr != end);
256 }
257
258 static void stage2_flush_memslot(struct kvm *kvm,
259                                  struct kvm_memory_slot *memslot)
260 {
261         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
262         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
263         phys_addr_t next;
264         pgd_t *pgd;
265
266         pgd = kvm->arch.pgd + pgd_index(addr);
267         do {
268                 next = kvm_pgd_addr_end(addr, end);
269                 stage2_flush_puds(kvm, pgd, addr, next);
270         } while (pgd++, addr = next, addr != end);
271 }
272
273 /**
274  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
275  * @kvm: The struct kvm pointer
276  *
277  * Go through the stage 2 page tables and invalidate any cache lines
278  * backing memory already mapped to the VM.
279  */
280 void stage2_flush_vm(struct kvm *kvm)
281 {
282         struct kvm_memslots *slots;
283         struct kvm_memory_slot *memslot;
284         int idx;
285
286         idx = srcu_read_lock(&kvm->srcu);
287         spin_lock(&kvm->mmu_lock);
288
289         slots = kvm_memslots(kvm);
290         kvm_for_each_memslot(memslot, slots)
291                 stage2_flush_memslot(kvm, memslot);
292
293         spin_unlock(&kvm->mmu_lock);
294         srcu_read_unlock(&kvm->srcu, idx);
295 }
296
297 /**
298  * free_boot_hyp_pgd - free HYP boot page tables
299  *
300  * Free the HYP boot page tables. The bounce page is also freed.
301  */
302 void free_boot_hyp_pgd(void)
303 {
304         mutex_lock(&kvm_hyp_pgd_mutex);
305
306         if (boot_hyp_pgd) {
307                 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
308                 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309                 free_pages((unsigned long)boot_hyp_pgd, pgd_order);
310                 boot_hyp_pgd = NULL;
311         }
312
313         if (hyp_pgd)
314                 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
315
316         free_page((unsigned long)init_bounce_page);
317         init_bounce_page = NULL;
318
319         mutex_unlock(&kvm_hyp_pgd_mutex);
320 }
321
322 /**
323  * free_hyp_pgds - free Hyp-mode page tables
324  *
325  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
326  * therefore contains either mappings in the kernel memory area (above
327  * PAGE_OFFSET), or device mappings in the vmalloc range (from
328  * VMALLOC_START to VMALLOC_END).
329  *
330  * boot_hyp_pgd should only map two pages for the init code.
331  */
332 void free_hyp_pgds(void)
333 {
334         unsigned long addr;
335
336         free_boot_hyp_pgd();
337
338         mutex_lock(&kvm_hyp_pgd_mutex);
339
340         if (hyp_pgd) {
341                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
345
346                 free_pages((unsigned long)hyp_pgd, pgd_order);
347                 hyp_pgd = NULL;
348         }
349
350         mutex_unlock(&kvm_hyp_pgd_mutex);
351 }
352
353 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354                                     unsigned long end, unsigned long pfn,
355                                     pgprot_t prot)
356 {
357         pte_t *pte;
358         unsigned long addr;
359
360         addr = start;
361         do {
362                 pte = pte_offset_kernel(pmd, addr);
363                 kvm_set_pte(pte, pfn_pte(pfn, prot));
364                 get_page(virt_to_page(pte));
365                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
366                 pfn++;
367         } while (addr += PAGE_SIZE, addr != end);
368 }
369
370 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371                                    unsigned long end, unsigned long pfn,
372                                    pgprot_t prot)
373 {
374         pmd_t *pmd;
375         pte_t *pte;
376         unsigned long addr, next;
377
378         addr = start;
379         do {
380                 pmd = pmd_offset(pud, addr);
381
382                 BUG_ON(pmd_sect(*pmd));
383
384                 if (pmd_none(*pmd)) {
385                         pte = pte_alloc_one_kernel(NULL, addr);
386                         if (!pte) {
387                                 kvm_err("Cannot allocate Hyp pte\n");
388                                 return -ENOMEM;
389                         }
390                         pmd_populate_kernel(NULL, pmd, pte);
391                         get_page(virt_to_page(pmd));
392                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
393                 }
394
395                 next = pmd_addr_end(addr, end);
396
397                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
398                 pfn += (next - addr) >> PAGE_SHIFT;
399         } while (addr = next, addr != end);
400
401         return 0;
402 }
403
404 static int __create_hyp_mappings(pgd_t *pgdp,
405                                  unsigned long start, unsigned long end,
406                                  unsigned long pfn, pgprot_t prot)
407 {
408         pgd_t *pgd;
409         pud_t *pud;
410         pmd_t *pmd;
411         unsigned long addr, next;
412         int err = 0;
413
414         mutex_lock(&kvm_hyp_pgd_mutex);
415         addr = start & PAGE_MASK;
416         end = PAGE_ALIGN(end);
417         do {
418                 pgd = pgdp + pgd_index(addr);
419                 pud = pud_offset(pgd, addr);
420
421                 if (pud_none_or_clear_bad(pud)) {
422                         pmd = pmd_alloc_one(NULL, addr);
423                         if (!pmd) {
424                                 kvm_err("Cannot allocate Hyp pmd\n");
425                                 err = -ENOMEM;
426                                 goto out;
427                         }
428                         pud_populate(NULL, pud, pmd);
429                         get_page(virt_to_page(pud));
430                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
431                 }
432
433                 next = pgd_addr_end(addr, end);
434                 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
435                 if (err)
436                         goto out;
437                 pfn += (next - addr) >> PAGE_SHIFT;
438         } while (addr = next, addr != end);
439 out:
440         mutex_unlock(&kvm_hyp_pgd_mutex);
441         return err;
442 }
443
444 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
445 {
446         if (!is_vmalloc_addr(kaddr)) {
447                 BUG_ON(!virt_addr_valid(kaddr));
448                 return __pa(kaddr);
449         } else {
450                 return page_to_phys(vmalloc_to_page(kaddr)) +
451                        offset_in_page(kaddr);
452         }
453 }
454
455 /**
456  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
457  * @from:       The virtual kernel start address of the range
458  * @to:         The virtual kernel end address of the range (exclusive)
459  *
460  * The same virtual address as the kernel virtual address is also used
461  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
462  * physical pages.
463  */
464 int create_hyp_mappings(void *from, void *to)
465 {
466         phys_addr_t phys_addr;
467         unsigned long virt_addr;
468         unsigned long start = KERN_TO_HYP((unsigned long)from);
469         unsigned long end = KERN_TO_HYP((unsigned long)to);
470
471         start = start & PAGE_MASK;
472         end = PAGE_ALIGN(end);
473
474         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
475                 int err;
476
477                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
478                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
479                                             virt_addr + PAGE_SIZE,
480                                             __phys_to_pfn(phys_addr),
481                                             PAGE_HYP);
482                 if (err)
483                         return err;
484         }
485
486         return 0;
487 }
488
489 /**
490  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
491  * @from:       The kernel start VA of the range
492  * @to:         The kernel end VA of the range (exclusive)
493  * @phys_addr:  The physical start address which gets mapped
494  *
495  * The resulting HYP VA is the same as the kernel VA, modulo
496  * HYP_PAGE_OFFSET.
497  */
498 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
499 {
500         unsigned long start = KERN_TO_HYP((unsigned long)from);
501         unsigned long end = KERN_TO_HYP((unsigned long)to);
502
503         /* Check for a valid kernel IO mapping */
504         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
505                 return -EINVAL;
506
507         return __create_hyp_mappings(hyp_pgd, start, end,
508                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
509 }
510
511 /**
512  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
513  * @kvm:        The KVM struct pointer for the VM.
514  *
515  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
516  * support either full 40-bit input addresses or limited to 32-bit input
517  * addresses). Clears the allocated pages.
518  *
519  * Note we don't need locking here as this is only called when the VM is
520  * created, which can only be done once.
521  */
522 int kvm_alloc_stage2_pgd(struct kvm *kvm)
523 {
524         pgd_t *pgd;
525
526         if (kvm->arch.pgd != NULL) {
527                 kvm_err("kvm_arch already initialized?\n");
528                 return -EINVAL;
529         }
530
531         pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
532         if (!pgd)
533                 return -ENOMEM;
534
535         memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
536         kvm_clean_pgd(pgd);
537         kvm->arch.pgd = pgd;
538
539         return 0;
540 }
541
542 /**
543  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
544  * @kvm:   The VM pointer
545  * @start: The intermediate physical base address of the range to unmap
546  * @size:  The size of the area to unmap
547  *
548  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
549  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
550  * destroying the VM), otherwise another faulting VCPU may come in and mess
551  * with things behind our backs.
552  */
553 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
554 {
555         unmap_range(kvm, kvm->arch.pgd, start, size);
556 }
557
558 /**
559  * kvm_free_stage2_pgd - free all stage-2 tables
560  * @kvm:        The KVM struct pointer for the VM.
561  *
562  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
563  * underlying level-2 and level-3 tables before freeing the actual level-1 table
564  * and setting the struct pointer to NULL.
565  *
566  * Note we don't need locking here as this is only called when the VM is
567  * destroyed, which can only be done once.
568  */
569 void kvm_free_stage2_pgd(struct kvm *kvm)
570 {
571         if (kvm->arch.pgd == NULL)
572                 return;
573
574         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
575         free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
576         kvm->arch.pgd = NULL;
577 }
578
579 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
580                              phys_addr_t addr)
581 {
582         pgd_t *pgd;
583         pud_t *pud;
584         pmd_t *pmd;
585
586         pgd = kvm->arch.pgd + pgd_index(addr);
587         pud = pud_offset(pgd, addr);
588         if (pud_none(*pud)) {
589                 if (!cache)
590                         return NULL;
591                 pmd = mmu_memory_cache_alloc(cache);
592                 pud_populate(NULL, pud, pmd);
593                 get_page(virt_to_page(pud));
594         }
595
596         return pmd_offset(pud, addr);
597 }
598
599 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
600                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
601 {
602         pmd_t *pmd, old_pmd;
603
604         pmd = stage2_get_pmd(kvm, cache, addr);
605         VM_BUG_ON(!pmd);
606
607         /*
608          * Mapping in huge pages should only happen through a fault.  If a
609          * page is merged into a transparent huge page, the individual
610          * subpages of that huge page should be unmapped through MMU
611          * notifiers before we get here.
612          *
613          * Merging of CompoundPages is not supported; they should become
614          * splitting first, unmapped, merged, and mapped back in on-demand.
615          */
616         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
617
618         old_pmd = *pmd;
619         kvm_set_pmd(pmd, *new_pmd);
620         if (pmd_present(old_pmd))
621                 kvm_tlb_flush_vmid_ipa(kvm, addr);
622         else
623                 get_page(virt_to_page(pmd));
624         return 0;
625 }
626
627 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
628                           phys_addr_t addr, const pte_t *new_pte, bool iomap)
629 {
630         pmd_t *pmd;
631         pte_t *pte, old_pte;
632
633         /* Create stage-2 page table mapping - Level 1 */
634         pmd = stage2_get_pmd(kvm, cache, addr);
635         if (!pmd) {
636                 /*
637                  * Ignore calls from kvm_set_spte_hva for unallocated
638                  * address ranges.
639                  */
640                 return 0;
641         }
642
643         /* Create stage-2 page mappings - Level 2 */
644         if (pmd_none(*pmd)) {
645                 if (!cache)
646                         return 0; /* ignore calls from kvm_set_spte_hva */
647                 pte = mmu_memory_cache_alloc(cache);
648                 kvm_clean_pte(pte);
649                 pmd_populate_kernel(NULL, pmd, pte);
650                 get_page(virt_to_page(pmd));
651         }
652
653         pte = pte_offset_kernel(pmd, addr);
654
655         if (iomap && pte_present(*pte))
656                 return -EFAULT;
657
658         /* Create 2nd stage page table mapping - Level 3 */
659         old_pte = *pte;
660         kvm_set_pte(pte, *new_pte);
661         if (pte_present(old_pte))
662                 kvm_tlb_flush_vmid_ipa(kvm, addr);
663         else
664                 get_page(virt_to_page(pte));
665
666         return 0;
667 }
668
669 /**
670  * kvm_phys_addr_ioremap - map a device range to guest IPA
671  *
672  * @kvm:        The KVM pointer
673  * @guest_ipa:  The IPA at which to insert the mapping
674  * @pa:         The physical address of the device
675  * @size:       The size of the mapping
676  */
677 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
678                           phys_addr_t pa, unsigned long size)
679 {
680         phys_addr_t addr, end;
681         int ret = 0;
682         unsigned long pfn;
683         struct kvm_mmu_memory_cache cache = { 0, };
684
685         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
686         pfn = __phys_to_pfn(pa);
687
688         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
689                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
690
691                 ret = mmu_topup_memory_cache(&cache, 2, 2);
692                 if (ret)
693                         goto out;
694                 spin_lock(&kvm->mmu_lock);
695                 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
696                 spin_unlock(&kvm->mmu_lock);
697                 if (ret)
698                         goto out;
699
700                 pfn++;
701         }
702
703 out:
704         mmu_free_memory_cache(&cache);
705         return ret;
706 }
707
708 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
709 {
710         pfn_t pfn = *pfnp;
711         gfn_t gfn = *ipap >> PAGE_SHIFT;
712
713         if (PageTransCompound(pfn_to_page(pfn))) {
714                 unsigned long mask;
715                 /*
716                  * The address we faulted on is backed by a transparent huge
717                  * page.  However, because we map the compound huge page and
718                  * not the individual tail page, we need to transfer the
719                  * refcount to the head page.  We have to be careful that the
720                  * THP doesn't start to split while we are adjusting the
721                  * refcounts.
722                  *
723                  * We are sure this doesn't happen, because mmu_notifier_retry
724                  * was successful and we are holding the mmu_lock, so if this
725                  * THP is trying to split, it will be blocked in the mmu
726                  * notifier before touching any of the pages, specifically
727                  * before being able to call __split_huge_page_refcount().
728                  *
729                  * We can therefore safely transfer the refcount from PG_tail
730                  * to PG_head and switch the pfn from a tail page to the head
731                  * page accordingly.
732                  */
733                 mask = PTRS_PER_PMD - 1;
734                 VM_BUG_ON((gfn & mask) != (pfn & mask));
735                 if (pfn & mask) {
736                         *ipap &= PMD_MASK;
737                         kvm_release_pfn_clean(pfn);
738                         pfn &= ~mask;
739                         kvm_get_pfn(pfn);
740                         *pfnp = pfn;
741                 }
742
743                 return true;
744         }
745
746         return false;
747 }
748
749 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
750 {
751         if (kvm_vcpu_trap_is_iabt(vcpu))
752                 return false;
753
754         return kvm_vcpu_dabt_iswrite(vcpu);
755 }
756
757 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
758                           struct kvm_memory_slot *memslot, unsigned long hva,
759                           unsigned long fault_status)
760 {
761         int ret;
762         bool write_fault, writable, hugetlb = false, force_pte = false;
763         unsigned long mmu_seq;
764         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
765         struct kvm *kvm = vcpu->kvm;
766         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
767         struct vm_area_struct *vma;
768         pfn_t pfn;
769         pgprot_t mem_type = PAGE_S2;
770
771         write_fault = kvm_is_write_fault(vcpu);
772         if (fault_status == FSC_PERM && !write_fault) {
773                 kvm_err("Unexpected L2 read permission error\n");
774                 return -EFAULT;
775         }
776
777         /* Let's check if we will get back a huge page backed by hugetlbfs */
778         down_read(&current->mm->mmap_sem);
779         vma = find_vma_intersection(current->mm, hva, hva + 1);
780         if (is_vm_hugetlb_page(vma)) {
781                 hugetlb = true;
782                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
783         } else {
784                 /*
785                  * Pages belonging to memslots that don't have the same
786                  * alignment for userspace and IPA cannot be mapped using
787                  * block descriptors even if the pages belong to a THP for
788                  * the process, because the stage-2 block descriptor will
789                  * cover more than a single THP and we loose atomicity for
790                  * unmapping, updates, and splits of the THP or other pages
791                  * in the stage-2 block range.
792                  */
793                 if ((memslot->userspace_addr & ~PMD_MASK) !=
794                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
795                         force_pte = true;
796         }
797         up_read(&current->mm->mmap_sem);
798
799         /* We need minimum second+third level pages */
800         ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
801         if (ret)
802                 return ret;
803
804         mmu_seq = vcpu->kvm->mmu_notifier_seq;
805         /*
806          * Ensure the read of mmu_notifier_seq happens before we call
807          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
808          * the page we just got a reference to gets unmapped before we have a
809          * chance to grab the mmu_lock, which ensure that if the page gets
810          * unmapped afterwards, the call to kvm_unmap_hva will take it away
811          * from us again properly. This smp_rmb() interacts with the smp_wmb()
812          * in kvm_mmu_notifier_invalidate_<page|range_end>.
813          */
814         smp_rmb();
815
816         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
817         if (is_error_pfn(pfn))
818                 return -EFAULT;
819
820         if (kvm_is_mmio_pfn(pfn))
821                 mem_type = PAGE_S2_DEVICE;
822
823         spin_lock(&kvm->mmu_lock);
824         if (mmu_notifier_retry(kvm, mmu_seq))
825                 goto out_unlock;
826         if (!hugetlb && !force_pte)
827                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
828
829         if (hugetlb) {
830                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
831                 new_pmd = pmd_mkhuge(new_pmd);
832                 if (writable) {
833                         kvm_set_s2pmd_writable(&new_pmd);
834                         kvm_set_pfn_dirty(pfn);
835                 }
836                 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
837                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
838         } else {
839                 pte_t new_pte = pfn_pte(pfn, mem_type);
840                 if (writable) {
841                         kvm_set_s2pte_writable(&new_pte);
842                         kvm_set_pfn_dirty(pfn);
843                 }
844                 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
845                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
846                                      mem_type == PAGE_S2_DEVICE);
847         }
848
849
850 out_unlock:
851         spin_unlock(&kvm->mmu_lock);
852         kvm_release_pfn_clean(pfn);
853         return ret;
854 }
855
856 /**
857  * kvm_handle_guest_abort - handles all 2nd stage aborts
858  * @vcpu:       the VCPU pointer
859  * @run:        the kvm_run structure
860  *
861  * Any abort that gets to the host is almost guaranteed to be caused by a
862  * missing second stage translation table entry, which can mean that either the
863  * guest simply needs more memory and we must allocate an appropriate page or it
864  * can mean that the guest tried to access I/O memory, which is emulated by user
865  * space. The distinction is based on the IPA causing the fault and whether this
866  * memory region has been registered as standard RAM by user space.
867  */
868 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
869 {
870         unsigned long fault_status;
871         phys_addr_t fault_ipa;
872         struct kvm_memory_slot *memslot;
873         unsigned long hva;
874         bool is_iabt, write_fault, writable;
875         gfn_t gfn;
876         int ret, idx;
877
878         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
879         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
880
881         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
882                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
883
884         /* Check the stage-2 fault is trans. fault or write fault */
885         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
886         if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
887                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
888                         kvm_vcpu_trap_get_class(vcpu),
889                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
890                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
891                 return -EFAULT;
892         }
893
894         idx = srcu_read_lock(&vcpu->kvm->srcu);
895
896         gfn = fault_ipa >> PAGE_SHIFT;
897         memslot = gfn_to_memslot(vcpu->kvm, gfn);
898         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
899         write_fault = kvm_is_write_fault(vcpu);
900         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
901                 if (is_iabt) {
902                         /* Prefetch Abort on I/O address */
903                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
904                         ret = 1;
905                         goto out_unlock;
906                 }
907
908                 /*
909                  * The IPA is reported as [MAX:12], so we need to
910                  * complement it with the bottom 12 bits from the
911                  * faulting VA. This is always 12 bits, irrespective
912                  * of the page size.
913                  */
914                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
915                 ret = io_mem_abort(vcpu, run, fault_ipa);
916                 goto out_unlock;
917         }
918
919         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
920         if (ret == 0)
921                 ret = 1;
922 out_unlock:
923         srcu_read_unlock(&vcpu->kvm->srcu, idx);
924         return ret;
925 }
926
927 static void handle_hva_to_gpa(struct kvm *kvm,
928                               unsigned long start,
929                               unsigned long end,
930                               void (*handler)(struct kvm *kvm,
931                                               gpa_t gpa, void *data),
932                               void *data)
933 {
934         struct kvm_memslots *slots;
935         struct kvm_memory_slot *memslot;
936
937         slots = kvm_memslots(kvm);
938
939         /* we only care about the pages that the guest sees */
940         kvm_for_each_memslot(memslot, slots) {
941                 unsigned long hva_start, hva_end;
942                 gfn_t gfn, gfn_end;
943
944                 hva_start = max(start, memslot->userspace_addr);
945                 hva_end = min(end, memslot->userspace_addr +
946                                         (memslot->npages << PAGE_SHIFT));
947                 if (hva_start >= hva_end)
948                         continue;
949
950                 /*
951                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
952                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
953                  */
954                 gfn = hva_to_gfn_memslot(hva_start, memslot);
955                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
956
957                 for (; gfn < gfn_end; ++gfn) {
958                         gpa_t gpa = gfn << PAGE_SHIFT;
959                         handler(kvm, gpa, data);
960                 }
961         }
962 }
963
964 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
965 {
966         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
967 }
968
969 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
970 {
971         unsigned long end = hva + PAGE_SIZE;
972
973         if (!kvm->arch.pgd)
974                 return 0;
975
976         trace_kvm_unmap_hva(hva);
977         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
978         return 0;
979 }
980
981 int kvm_unmap_hva_range(struct kvm *kvm,
982                         unsigned long start, unsigned long end)
983 {
984         if (!kvm->arch.pgd)
985                 return 0;
986
987         trace_kvm_unmap_hva_range(start, end);
988         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
989         return 0;
990 }
991
992 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
993 {
994         pte_t *pte = (pte_t *)data;
995
996         stage2_set_pte(kvm, NULL, gpa, pte, false);
997 }
998
999
1000 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1001 {
1002         unsigned long end = hva + PAGE_SIZE;
1003         pte_t stage2_pte;
1004
1005         if (!kvm->arch.pgd)
1006                 return;
1007
1008         trace_kvm_set_spte_hva(hva);
1009         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1010         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1011 }
1012
1013 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1014 {
1015         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1016 }
1017
1018 phys_addr_t kvm_mmu_get_httbr(void)
1019 {
1020         return virt_to_phys(hyp_pgd);
1021 }
1022
1023 phys_addr_t kvm_mmu_get_boot_httbr(void)
1024 {
1025         return virt_to_phys(boot_hyp_pgd);
1026 }
1027
1028 phys_addr_t kvm_get_idmap_vector(void)
1029 {
1030         return hyp_idmap_vector;
1031 }
1032
1033 int kvm_mmu_init(void)
1034 {
1035         int err;
1036
1037         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1038         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1039         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1040
1041         if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1042                 /*
1043                  * Our init code is crossing a page boundary. Allocate
1044                  * a bounce page, copy the code over and use that.
1045                  */
1046                 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1047                 phys_addr_t phys_base;
1048
1049                 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1050                 if (!init_bounce_page) {
1051                         kvm_err("Couldn't allocate HYP init bounce page\n");
1052                         err = -ENOMEM;
1053                         goto out;
1054                 }
1055
1056                 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1057                 /*
1058                  * Warning: the code we just copied to the bounce page
1059                  * must be flushed to the point of coherency.
1060                  * Otherwise, the data may be sitting in L2, and HYP
1061                  * mode won't be able to observe it as it runs with
1062                  * caches off at that point.
1063                  */
1064                 kvm_flush_dcache_to_poc(init_bounce_page, len);
1065
1066                 phys_base = kvm_virt_to_phys(init_bounce_page);
1067                 hyp_idmap_vector += phys_base - hyp_idmap_start;
1068                 hyp_idmap_start = phys_base;
1069                 hyp_idmap_end = phys_base + len;
1070
1071                 kvm_info("Using HYP init bounce page @%lx\n",
1072                          (unsigned long)phys_base);
1073         }
1074
1075         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1076         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1077
1078         if (!hyp_pgd || !boot_hyp_pgd) {
1079                 kvm_err("Hyp mode PGD not allocated\n");
1080                 err = -ENOMEM;
1081                 goto out;
1082         }
1083
1084         /* Create the idmap in the boot page tables */
1085         err =   __create_hyp_mappings(boot_hyp_pgd,
1086                                       hyp_idmap_start, hyp_idmap_end,
1087                                       __phys_to_pfn(hyp_idmap_start),
1088                                       PAGE_HYP);
1089
1090         if (err) {
1091                 kvm_err("Failed to idmap %lx-%lx\n",
1092                         hyp_idmap_start, hyp_idmap_end);
1093                 goto out;
1094         }
1095
1096         /* Map the very same page at the trampoline VA */
1097         err =   __create_hyp_mappings(boot_hyp_pgd,
1098                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1099                                       __phys_to_pfn(hyp_idmap_start),
1100                                       PAGE_HYP);
1101         if (err) {
1102                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1103                         TRAMPOLINE_VA);
1104                 goto out;
1105         }
1106
1107         /* Map the same page again into the runtime page tables */
1108         err =   __create_hyp_mappings(hyp_pgd,
1109                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1110                                       __phys_to_pfn(hyp_idmap_start),
1111                                       PAGE_HYP);
1112         if (err) {
1113                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1114                         TRAMPOLINE_VA);
1115                 goto out;
1116         }
1117
1118         return 0;
1119 out:
1120         free_hyp_pgds();
1121         return err;
1122 }
1123
1124 void kvm_arch_commit_memory_region(struct kvm *kvm,
1125                                    struct kvm_userspace_memory_region *mem,
1126                                    const struct kvm_memory_slot *old,
1127                                    enum kvm_mr_change change)
1128 {
1129         gpa_t gpa = old->base_gfn << PAGE_SHIFT;
1130         phys_addr_t size = old->npages << PAGE_SHIFT;
1131         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1132                 spin_lock(&kvm->mmu_lock);
1133                 unmap_stage2_range(kvm, gpa, size);
1134                 spin_unlock(&kvm->mmu_lock);
1135         }
1136 }
1137
1138 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1139                                    struct kvm_memory_slot *memslot,
1140                                    struct kvm_userspace_memory_region *mem,
1141                                    enum kvm_mr_change change)
1142 {
1143         return 0;
1144 }
1145
1146 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1147                            struct kvm_memory_slot *dont)
1148 {
1149 }
1150
1151 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1152                             unsigned long npages)
1153 {
1154         return 0;
1155 }
1156
1157 void kvm_arch_memslots_updated(struct kvm *kvm)
1158 {
1159 }
1160
1161 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1162 {
1163 }
1164
1165 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1166                                    struct kvm_memory_slot *slot)
1167 {
1168 }