Merge remote-tracking branches 'spi/fix/qup' and 'spi/fix/topcliff-pch' into spi...
[cascardo/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39
40 #include "mm.h"
41
42 /*
43  * The DMA API is built upon the notion of "buffer ownership".  A buffer
44  * is either exclusively owned by the CPU (and therefore may be accessed
45  * by it) or exclusively owned by the DMA device.  These helper functions
46  * represent the transitions between these two ownership states.
47  *
48  * Note, however, that on later ARMs, this notion does not work due to
49  * speculative prefetches.  We model our approach on the assumption that
50  * the CPU does do speculative prefetches, which means we clean caches
51  * before transfers and delay cache invalidation until transfer completion.
52  *
53  */
54 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55                 size_t, enum dma_data_direction);
56 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57                 size_t, enum dma_data_direction);
58
59 /**
60  * arm_dma_map_page - map a portion of a page for streaming DMA
61  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62  * @page: page that buffer resides in
63  * @offset: offset into page for start of buffer
64  * @size: size of buffer to map
65  * @dir: DMA transfer direction
66  *
67  * Ensure that any data held in the cache is appropriately discarded
68  * or written back.
69  *
70  * The device owns this memory once this call has completed.  The CPU
71  * can regain ownership by calling dma_unmap_page().
72  */
73 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74              unsigned long offset, size_t size, enum dma_data_direction dir,
75              struct dma_attrs *attrs)
76 {
77         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78                 __dma_page_cpu_to_dev(page, offset, size, dir);
79         return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80 }
81
82 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83              unsigned long offset, size_t size, enum dma_data_direction dir,
84              struct dma_attrs *attrs)
85 {
86         return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87 }
88
89 /**
90  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92  * @handle: DMA address of buffer
93  * @size: size of buffer (same as passed to dma_map_page)
94  * @dir: DMA transfer direction (same as passed to dma_map_page)
95  *
96  * Unmap a page streaming mode DMA translation.  The handle and size
97  * must match what was provided in the previous dma_map_page() call.
98  * All other usages are undefined.
99  *
100  * After this call, reads by the CPU to the buffer are guaranteed to see
101  * whatever the device wrote there.
102  */
103 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104                 size_t size, enum dma_data_direction dir,
105                 struct dma_attrs *attrs)
106 {
107         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108                 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109                                       handle & ~PAGE_MASK, size, dir);
110 }
111
112 static void arm_dma_sync_single_for_cpu(struct device *dev,
113                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 {
115         unsigned int offset = handle & (PAGE_SIZE - 1);
116         struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117         __dma_page_dev_to_cpu(page, offset, size, dir);
118 }
119
120 static void arm_dma_sync_single_for_device(struct device *dev,
121                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 {
123         unsigned int offset = handle & (PAGE_SIZE - 1);
124         struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125         __dma_page_cpu_to_dev(page, offset, size, dir);
126 }
127
128 struct dma_map_ops arm_dma_ops = {
129         .alloc                  = arm_dma_alloc,
130         .free                   = arm_dma_free,
131         .mmap                   = arm_dma_mmap,
132         .get_sgtable            = arm_dma_get_sgtable,
133         .map_page               = arm_dma_map_page,
134         .unmap_page             = arm_dma_unmap_page,
135         .map_sg                 = arm_dma_map_sg,
136         .unmap_sg               = arm_dma_unmap_sg,
137         .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
138         .sync_single_for_device = arm_dma_sync_single_for_device,
139         .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
140         .sync_sg_for_device     = arm_dma_sync_sg_for_device,
141         .set_dma_mask           = arm_dma_set_mask,
142 };
143 EXPORT_SYMBOL(arm_dma_ops);
144
145 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146         dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148                                   dma_addr_t handle, struct dma_attrs *attrs);
149
150 struct dma_map_ops arm_coherent_dma_ops = {
151         .alloc                  = arm_coherent_dma_alloc,
152         .free                   = arm_coherent_dma_free,
153         .mmap                   = arm_dma_mmap,
154         .get_sgtable            = arm_dma_get_sgtable,
155         .map_page               = arm_coherent_dma_map_page,
156         .map_sg                 = arm_dma_map_sg,
157         .set_dma_mask           = arm_dma_set_mask,
158 };
159 EXPORT_SYMBOL(arm_coherent_dma_ops);
160
161 static int __dma_supported(struct device *dev, u64 mask, bool warn)
162 {
163         unsigned long max_dma_pfn;
164
165         /*
166          * If the mask allows for more memory than we can address,
167          * and we actually have that much memory, then we must
168          * indicate that DMA to this device is not supported.
169          */
170         if (sizeof(mask) != sizeof(dma_addr_t) &&
171             mask > (dma_addr_t)~0 &&
172             dma_to_pfn(dev, ~0) < max_pfn) {
173                 if (warn) {
174                         dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175                                  mask);
176                         dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177                 }
178                 return 0;
179         }
180
181         max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183         /*
184          * Translate the device's DMA mask to a PFN limit.  This
185          * PFN number includes the page which we can DMA to.
186          */
187         if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188                 if (warn)
189                         dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190                                  mask,
191                                  dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192                                  max_dma_pfn + 1);
193                 return 0;
194         }
195
196         return 1;
197 }
198
199 static u64 get_coherent_dma_mask(struct device *dev)
200 {
201         u64 mask = (u64)DMA_BIT_MASK(32);
202
203         if (dev) {
204                 mask = dev->coherent_dma_mask;
205
206                 /*
207                  * Sanity check the DMA mask - it must be non-zero, and
208                  * must be able to be satisfied by a DMA allocation.
209                  */
210                 if (mask == 0) {
211                         dev_warn(dev, "coherent DMA mask is unset\n");
212                         return 0;
213                 }
214
215                 if (!__dma_supported(dev, mask, true))
216                         return 0;
217         }
218
219         return mask;
220 }
221
222 static void __dma_clear_buffer(struct page *page, size_t size)
223 {
224         /*
225          * Ensure that the allocated pages are zeroed, and that any data
226          * lurking in the kernel direct-mapped region is invalidated.
227          */
228         if (PageHighMem(page)) {
229                 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230                 phys_addr_t end = base + size;
231                 while (size > 0) {
232                         void *ptr = kmap_atomic(page);
233                         memset(ptr, 0, PAGE_SIZE);
234                         dmac_flush_range(ptr, ptr + PAGE_SIZE);
235                         kunmap_atomic(ptr);
236                         page++;
237                         size -= PAGE_SIZE;
238                 }
239                 outer_flush_range(base, end);
240         } else {
241                 void *ptr = page_address(page);
242                 memset(ptr, 0, size);
243                 dmac_flush_range(ptr, ptr + size);
244                 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245         }
246 }
247
248 /*
249  * Allocate a DMA buffer for 'dev' of size 'size' using the
250  * specified gfp mask.  Note that 'size' must be page aligned.
251  */
252 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253 {
254         unsigned long order = get_order(size);
255         struct page *page, *p, *e;
256
257         page = alloc_pages(gfp, order);
258         if (!page)
259                 return NULL;
260
261         /*
262          * Now split the huge page and free the excess pages
263          */
264         split_page(page, order);
265         for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266                 __free_page(p);
267
268         __dma_clear_buffer(page, size);
269
270         return page;
271 }
272
273 /*
274  * Free a DMA buffer.  'size' must be page aligned.
275  */
276 static void __dma_free_buffer(struct page *page, size_t size)
277 {
278         struct page *e = page + (size >> PAGE_SHIFT);
279
280         while (page < e) {
281                 __free_page(page);
282                 page++;
283         }
284 }
285
286 #ifdef CONFIG_MMU
287
288 static void *__alloc_from_contiguous(struct device *dev, size_t size,
289                                      pgprot_t prot, struct page **ret_page,
290                                      const void *caller);
291
292 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293                                  pgprot_t prot, struct page **ret_page,
294                                  const void *caller);
295
296 static void *
297 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298         const void *caller)
299 {
300         struct vm_struct *area;
301         unsigned long addr;
302
303         /*
304          * DMA allocation can be mapped to user space, so lets
305          * set VM_USERMAP flags too.
306          */
307         area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308                                   caller);
309         if (!area)
310                 return NULL;
311         addr = (unsigned long)area->addr;
312         area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313
314         if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315                 vunmap((void *)addr);
316                 return NULL;
317         }
318         return (void *)addr;
319 }
320
321 static void __dma_free_remap(void *cpu_addr, size_t size)
322 {
323         unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324         struct vm_struct *area = find_vm_area(cpu_addr);
325         if (!area || (area->flags & flags) != flags) {
326                 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327                 return;
328         }
329         unmap_kernel_range((unsigned long)cpu_addr, size);
330         vunmap(cpu_addr);
331 }
332
333 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
334
335 struct dma_pool {
336         size_t size;
337         spinlock_t lock;
338         unsigned long *bitmap;
339         unsigned long nr_pages;
340         void *vaddr;
341         struct page **pages;
342 };
343
344 static struct dma_pool atomic_pool = {
345         .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346 };
347
348 static int __init early_coherent_pool(char *p)
349 {
350         atomic_pool.size = memparse(p, &p);
351         return 0;
352 }
353 early_param("coherent_pool", early_coherent_pool);
354
355 void __init init_dma_coherent_pool_size(unsigned long size)
356 {
357         /*
358          * Catch any attempt to set the pool size too late.
359          */
360         BUG_ON(atomic_pool.vaddr);
361
362         /*
363          * Set architecture specific coherent pool size only if
364          * it has not been changed by kernel command line parameter.
365          */
366         if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367                 atomic_pool.size = size;
368 }
369
370 /*
371  * Initialise the coherent pool for atomic allocations.
372  */
373 static int __init atomic_pool_init(void)
374 {
375         struct dma_pool *pool = &atomic_pool;
376         pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377         gfp_t gfp = GFP_KERNEL | GFP_DMA;
378         unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379         unsigned long *bitmap;
380         struct page *page;
381         struct page **pages;
382         void *ptr;
383         int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384
385         bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386         if (!bitmap)
387                 goto no_bitmap;
388
389         pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390         if (!pages)
391                 goto no_pages;
392
393         if (IS_ENABLED(CONFIG_DMA_CMA))
394                 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395                                               atomic_pool_init);
396         else
397                 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398                                            atomic_pool_init);
399         if (ptr) {
400                 int i;
401
402                 for (i = 0; i < nr_pages; i++)
403                         pages[i] = page + i;
404
405                 spin_lock_init(&pool->lock);
406                 pool->vaddr = ptr;
407                 pool->pages = pages;
408                 pool->bitmap = bitmap;
409                 pool->nr_pages = nr_pages;
410                 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411                        (unsigned)pool->size / 1024);
412                 return 0;
413         }
414
415         kfree(pages);
416 no_pages:
417         kfree(bitmap);
418 no_bitmap:
419         pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420                (unsigned)pool->size / 1024);
421         return -ENOMEM;
422 }
423 /*
424  * CMA is activated by core_initcall, so we must be called after it.
425  */
426 postcore_initcall(atomic_pool_init);
427
428 struct dma_contig_early_reserve {
429         phys_addr_t base;
430         unsigned long size;
431 };
432
433 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435 static int dma_mmu_remap_num __initdata;
436
437 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438 {
439         dma_mmu_remap[dma_mmu_remap_num].base = base;
440         dma_mmu_remap[dma_mmu_remap_num].size = size;
441         dma_mmu_remap_num++;
442 }
443
444 void __init dma_contiguous_remap(void)
445 {
446         int i;
447         for (i = 0; i < dma_mmu_remap_num; i++) {
448                 phys_addr_t start = dma_mmu_remap[i].base;
449                 phys_addr_t end = start + dma_mmu_remap[i].size;
450                 struct map_desc map;
451                 unsigned long addr;
452
453                 if (end > arm_lowmem_limit)
454                         end = arm_lowmem_limit;
455                 if (start >= end)
456                         continue;
457
458                 map.pfn = __phys_to_pfn(start);
459                 map.virtual = __phys_to_virt(start);
460                 map.length = end - start;
461                 map.type = MT_MEMORY_DMA_READY;
462
463                 /*
464                  * Clear previous low-memory mapping
465                  */
466                 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467                      addr += PMD_SIZE)
468                         pmd_clear(pmd_off_k(addr));
469
470                 iotable_init(&map, 1);
471         }
472 }
473
474 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475                             void *data)
476 {
477         struct page *page = virt_to_page(addr);
478         pgprot_t prot = *(pgprot_t *)data;
479
480         set_pte_ext(pte, mk_pte(page, prot), 0);
481         return 0;
482 }
483
484 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485 {
486         unsigned long start = (unsigned long) page_address(page);
487         unsigned end = start + size;
488
489         apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490         flush_tlb_kernel_range(start, end);
491 }
492
493 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494                                  pgprot_t prot, struct page **ret_page,
495                                  const void *caller)
496 {
497         struct page *page;
498         void *ptr;
499         page = __dma_alloc_buffer(dev, size, gfp);
500         if (!page)
501                 return NULL;
502
503         ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504         if (!ptr) {
505                 __dma_free_buffer(page, size);
506                 return NULL;
507         }
508
509         *ret_page = page;
510         return ptr;
511 }
512
513 static void *__alloc_from_pool(size_t size, struct page **ret_page)
514 {
515         struct dma_pool *pool = &atomic_pool;
516         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517         unsigned int pageno;
518         unsigned long flags;
519         void *ptr = NULL;
520         unsigned long align_mask;
521
522         if (!pool->vaddr) {
523                 WARN(1, "coherent pool not initialised!\n");
524                 return NULL;
525         }
526
527         /*
528          * Align the region allocation - allocations from pool are rather
529          * small, so align them to their order in pages, minimum is a page
530          * size. This helps reduce fragmentation of the DMA space.
531          */
532         align_mask = (1 << get_order(size)) - 1;
533
534         spin_lock_irqsave(&pool->lock, flags);
535         pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536                                             0, count, align_mask);
537         if (pageno < pool->nr_pages) {
538                 bitmap_set(pool->bitmap, pageno, count);
539                 ptr = pool->vaddr + PAGE_SIZE * pageno;
540                 *ret_page = pool->pages[pageno];
541         } else {
542                 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543                             "Please increase it with coherent_pool= kernel parameter!\n",
544                             (unsigned)pool->size / 1024);
545         }
546         spin_unlock_irqrestore(&pool->lock, flags);
547
548         return ptr;
549 }
550
551 static bool __in_atomic_pool(void *start, size_t size)
552 {
553         struct dma_pool *pool = &atomic_pool;
554         void *end = start + size;
555         void *pool_start = pool->vaddr;
556         void *pool_end = pool->vaddr + pool->size;
557
558         if (start < pool_start || start >= pool_end)
559                 return false;
560
561         if (end <= pool_end)
562                 return true;
563
564         WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565              start, end - 1, pool_start, pool_end - 1);
566
567         return false;
568 }
569
570 static int __free_from_pool(void *start, size_t size)
571 {
572         struct dma_pool *pool = &atomic_pool;
573         unsigned long pageno, count;
574         unsigned long flags;
575
576         if (!__in_atomic_pool(start, size))
577                 return 0;
578
579         pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580         count = size >> PAGE_SHIFT;
581
582         spin_lock_irqsave(&pool->lock, flags);
583         bitmap_clear(pool->bitmap, pageno, count);
584         spin_unlock_irqrestore(&pool->lock, flags);
585
586         return 1;
587 }
588
589 static void *__alloc_from_contiguous(struct device *dev, size_t size,
590                                      pgprot_t prot, struct page **ret_page,
591                                      const void *caller)
592 {
593         unsigned long order = get_order(size);
594         size_t count = size >> PAGE_SHIFT;
595         struct page *page;
596         void *ptr;
597
598         page = dma_alloc_from_contiguous(dev, count, order);
599         if (!page)
600                 return NULL;
601
602         __dma_clear_buffer(page, size);
603
604         if (PageHighMem(page)) {
605                 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606                 if (!ptr) {
607                         dma_release_from_contiguous(dev, page, count);
608                         return NULL;
609                 }
610         } else {
611                 __dma_remap(page, size, prot);
612                 ptr = page_address(page);
613         }
614         *ret_page = page;
615         return ptr;
616 }
617
618 static void __free_from_contiguous(struct device *dev, struct page *page,
619                                    void *cpu_addr, size_t size)
620 {
621         if (PageHighMem(page))
622                 __dma_free_remap(cpu_addr, size);
623         else
624                 __dma_remap(page, size, PAGE_KERNEL);
625         dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627
628 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629 {
630         prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631                             pgprot_writecombine(prot) :
632                             pgprot_dmacoherent(prot);
633         return prot;
634 }
635
636 #define nommu() 0
637
638 #else   /* !CONFIG_MMU */
639
640 #define nommu() 1
641
642 #define __get_dma_pgprot(attrs, prot)   __pgprot(0)
643 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)      NULL
644 #define __alloc_from_pool(size, ret_page)                       NULL
645 #define __alloc_from_contiguous(dev, size, prot, ret, c)        NULL
646 #define __free_from_pool(cpu_addr, size)                        0
647 #define __free_from_contiguous(dev, page, cpu_addr, size)       do { } while (0)
648 #define __dma_free_remap(cpu_addr, size)                        do { } while (0)
649
650 #endif  /* CONFIG_MMU */
651
652 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653                                    struct page **ret_page)
654 {
655         struct page *page;
656         page = __dma_alloc_buffer(dev, size, gfp);
657         if (!page)
658                 return NULL;
659
660         *ret_page = page;
661         return page_address(page);
662 }
663
664
665
666 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667                          gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668 {
669         u64 mask = get_coherent_dma_mask(dev);
670         struct page *page = NULL;
671         void *addr;
672
673 #ifdef CONFIG_DMA_API_DEBUG
674         u64 limit = (mask + 1) & ~mask;
675         if (limit && size >= limit) {
676                 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677                         size, mask);
678                 return NULL;
679         }
680 #endif
681
682         if (!mask)
683                 return NULL;
684
685         if (mask < 0xffffffffULL)
686                 gfp |= GFP_DMA;
687
688         /*
689          * Following is a work-around (a.k.a. hack) to prevent pages
690          * with __GFP_COMP being passed to split_page() which cannot
691          * handle them.  The real problem is that this flag probably
692          * should be 0 on ARM as it is not supported on this
693          * platform; see CONFIG_HUGETLBFS.
694          */
695         gfp &= ~(__GFP_COMP);
696
697         *handle = DMA_ERROR_CODE;
698         size = PAGE_ALIGN(size);
699
700         if (is_coherent || nommu())
701                 addr = __alloc_simple_buffer(dev, size, gfp, &page);
702         else if (!(gfp & __GFP_WAIT))
703                 addr = __alloc_from_pool(size, &page);
704         else if (!IS_ENABLED(CONFIG_DMA_CMA))
705                 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706         else
707                 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708
709         if (addr)
710                 *handle = pfn_to_dma(dev, page_to_pfn(page));
711
712         return addr;
713 }
714
715 /*
716  * Allocate DMA-coherent memory space and return both the kernel remapped
717  * virtual and bus address for that space.
718  */
719 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720                     gfp_t gfp, struct dma_attrs *attrs)
721 {
722         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723         void *memory;
724
725         if (dma_alloc_from_coherent(dev, size, handle, &memory))
726                 return memory;
727
728         return __dma_alloc(dev, size, handle, gfp, prot, false,
729                            __builtin_return_address(0));
730 }
731
732 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733         dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734 {
735         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736         void *memory;
737
738         if (dma_alloc_from_coherent(dev, size, handle, &memory))
739                 return memory;
740
741         return __dma_alloc(dev, size, handle, gfp, prot, true,
742                            __builtin_return_address(0));
743 }
744
745 /*
746  * Create userspace mapping for the DMA-coherent memory.
747  */
748 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749                  void *cpu_addr, dma_addr_t dma_addr, size_t size,
750                  struct dma_attrs *attrs)
751 {
752         int ret = -ENXIO;
753 #ifdef CONFIG_MMU
754         unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756         unsigned long pfn = dma_to_pfn(dev, dma_addr);
757         unsigned long off = vma->vm_pgoff;
758
759         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
761         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762                 return ret;
763
764         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765                 ret = remap_pfn_range(vma, vma->vm_start,
766                                       pfn + off,
767                                       vma->vm_end - vma->vm_start,
768                                       vma->vm_page_prot);
769         }
770 #endif  /* CONFIG_MMU */
771
772         return ret;
773 }
774
775 /*
776  * Free a buffer as defined by the above mapping.
777  */
778 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779                            dma_addr_t handle, struct dma_attrs *attrs,
780                            bool is_coherent)
781 {
782         struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783
784         if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785                 return;
786
787         size = PAGE_ALIGN(size);
788
789         if (is_coherent || nommu()) {
790                 __dma_free_buffer(page, size);
791         } else if (__free_from_pool(cpu_addr, size)) {
792                 return;
793         } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794                 __dma_free_remap(cpu_addr, size);
795                 __dma_free_buffer(page, size);
796         } else {
797                 /*
798                  * Non-atomic allocations cannot be freed with IRQs disabled
799                  */
800                 WARN_ON(irqs_disabled());
801                 __free_from_contiguous(dev, page, cpu_addr, size);
802         }
803 }
804
805 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806                   dma_addr_t handle, struct dma_attrs *attrs)
807 {
808         __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809 }
810
811 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812                                   dma_addr_t handle, struct dma_attrs *attrs)
813 {
814         __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815 }
816
817 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818                  void *cpu_addr, dma_addr_t handle, size_t size,
819                  struct dma_attrs *attrs)
820 {
821         struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822         int ret;
823
824         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825         if (unlikely(ret))
826                 return ret;
827
828         sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829         return 0;
830 }
831
832 static void dma_cache_maint_page(struct page *page, unsigned long offset,
833         size_t size, enum dma_data_direction dir,
834         void (*op)(const void *, size_t, int))
835 {
836         unsigned long pfn;
837         size_t left = size;
838
839         pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840         offset %= PAGE_SIZE;
841
842         /*
843          * A single sg entry may refer to multiple physically contiguous
844          * pages.  But we still need to process highmem pages individually.
845          * If highmem is not configured then the bulk of this loop gets
846          * optimized out.
847          */
848         do {
849                 size_t len = left;
850                 void *vaddr;
851
852                 page = pfn_to_page(pfn);
853
854                 if (PageHighMem(page)) {
855                         if (len + offset > PAGE_SIZE)
856                                 len = PAGE_SIZE - offset;
857
858                         if (cache_is_vipt_nonaliasing()) {
859                                 vaddr = kmap_atomic(page);
860                                 op(vaddr + offset, len, dir);
861                                 kunmap_atomic(vaddr);
862                         } else {
863                                 vaddr = kmap_high_get(page);
864                                 if (vaddr) {
865                                         op(vaddr + offset, len, dir);
866                                         kunmap_high(page);
867                                 }
868                         }
869                 } else {
870                         vaddr = page_address(page) + offset;
871                         op(vaddr, len, dir);
872                 }
873                 offset = 0;
874                 pfn++;
875                 left -= len;
876         } while (left);
877 }
878
879 /*
880  * Make an area consistent for devices.
881  * Note: Drivers should NOT use this function directly, as it will break
882  * platforms with CONFIG_DMABOUNCE.
883  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884  */
885 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886         size_t size, enum dma_data_direction dir)
887 {
888         unsigned long paddr;
889
890         dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891
892         paddr = page_to_phys(page) + off;
893         if (dir == DMA_FROM_DEVICE) {
894                 outer_inv_range(paddr, paddr + size);
895         } else {
896                 outer_clean_range(paddr, paddr + size);
897         }
898         /* FIXME: non-speculating: flush on bidirectional mappings? */
899 }
900
901 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902         size_t size, enum dma_data_direction dir)
903 {
904         unsigned long paddr = page_to_phys(page) + off;
905
906         /* FIXME: non-speculating: not required */
907         /* don't bother invalidating if DMA to device */
908         if (dir != DMA_TO_DEVICE)
909                 outer_inv_range(paddr, paddr + size);
910
911         dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912
913         /*
914          * Mark the D-cache clean for these pages to avoid extra flushing.
915          */
916         if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917                 unsigned long pfn;
918                 size_t left = size;
919
920                 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921                 off %= PAGE_SIZE;
922                 if (off) {
923                         pfn++;
924                         left -= PAGE_SIZE - off;
925                 }
926                 while (left >= PAGE_SIZE) {
927                         page = pfn_to_page(pfn++);
928                         set_bit(PG_dcache_clean, &page->flags);
929                         left -= PAGE_SIZE;
930                 }
931         }
932 }
933
934 /**
935  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937  * @sg: list of buffers
938  * @nents: number of buffers to map
939  * @dir: DMA transfer direction
940  *
941  * Map a set of buffers described by scatterlist in streaming mode for DMA.
942  * This is the scatter-gather version of the dma_map_single interface.
943  * Here the scatter gather list elements are each tagged with the
944  * appropriate dma address and length.  They are obtained via
945  * sg_dma_{address,length}.
946  *
947  * Device ownership issues as mentioned for dma_map_single are the same
948  * here.
949  */
950 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951                 enum dma_data_direction dir, struct dma_attrs *attrs)
952 {
953         struct dma_map_ops *ops = get_dma_ops(dev);
954         struct scatterlist *s;
955         int i, j;
956
957         for_each_sg(sg, s, nents, i) {
958 #ifdef CONFIG_NEED_SG_DMA_LENGTH
959                 s->dma_length = s->length;
960 #endif
961                 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962                                                 s->length, dir, attrs);
963                 if (dma_mapping_error(dev, s->dma_address))
964                         goto bad_mapping;
965         }
966         return nents;
967
968  bad_mapping:
969         for_each_sg(sg, s, i, j)
970                 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971         return 0;
972 }
973
974 /**
975  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977  * @sg: list of buffers
978  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980  *
981  * Unmap a set of streaming mode DMA translations.  Again, CPU access
982  * rules concerning calls here are the same as for dma_unmap_single().
983  */
984 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985                 enum dma_data_direction dir, struct dma_attrs *attrs)
986 {
987         struct dma_map_ops *ops = get_dma_ops(dev);
988         struct scatterlist *s;
989
990         int i;
991
992         for_each_sg(sg, s, nents, i)
993                 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994 }
995
996 /**
997  * arm_dma_sync_sg_for_cpu
998  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999  * @sg: list of buffers
1000  * @nents: number of buffers to map (returned from dma_map_sg)
1001  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002  */
1003 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004                         int nents, enum dma_data_direction dir)
1005 {
1006         struct dma_map_ops *ops = get_dma_ops(dev);
1007         struct scatterlist *s;
1008         int i;
1009
1010         for_each_sg(sg, s, nents, i)
1011                 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012                                          dir);
1013 }
1014
1015 /**
1016  * arm_dma_sync_sg_for_device
1017  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018  * @sg: list of buffers
1019  * @nents: number of buffers to map (returned from dma_map_sg)
1020  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021  */
1022 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023                         int nents, enum dma_data_direction dir)
1024 {
1025         struct dma_map_ops *ops = get_dma_ops(dev);
1026         struct scatterlist *s;
1027         int i;
1028
1029         for_each_sg(sg, s, nents, i)
1030                 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031                                             dir);
1032 }
1033
1034 /*
1035  * Return whether the given device DMA address mask can be supported
1036  * properly.  For example, if your device can only drive the low 24-bits
1037  * during bus mastering, then you would pass 0x00ffffff as the mask
1038  * to this function.
1039  */
1040 int dma_supported(struct device *dev, u64 mask)
1041 {
1042         return __dma_supported(dev, mask, false);
1043 }
1044 EXPORT_SYMBOL(dma_supported);
1045
1046 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047 {
1048         if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049                 return -EIO;
1050
1051         *dev->dma_mask = dma_mask;
1052
1053         return 0;
1054 }
1055
1056 #define PREALLOC_DMA_DEBUG_ENTRIES      4096
1057
1058 static int __init dma_debug_do_init(void)
1059 {
1060         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061         return 0;
1062 }
1063 fs_initcall(dma_debug_do_init);
1064
1065 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067 /* IOMMU */
1068
1069 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072                                       size_t size)
1073 {
1074         unsigned int order = get_order(size);
1075         unsigned int align = 0;
1076         unsigned int count, start;
1077         unsigned long flags;
1078         dma_addr_t iova;
1079         int i;
1080
1081         if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082                 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084         count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085         align = (1 << order) - 1;
1086
1087         spin_lock_irqsave(&mapping->lock, flags);
1088         for (i = 0; i < mapping->nr_bitmaps; i++) {
1089                 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090                                 mapping->bits, 0, count, align);
1091
1092                 if (start > mapping->bits)
1093                         continue;
1094
1095                 bitmap_set(mapping->bitmaps[i], start, count);
1096                 break;
1097         }
1098
1099         /*
1100          * No unused range found. Try to extend the existing mapping
1101          * and perform a second attempt to reserve an IO virtual
1102          * address range of size bytes.
1103          */
1104         if (i == mapping->nr_bitmaps) {
1105                 if (extend_iommu_mapping(mapping)) {
1106                         spin_unlock_irqrestore(&mapping->lock, flags);
1107                         return DMA_ERROR_CODE;
1108                 }
1109
1110                 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111                                 mapping->bits, 0, count, align);
1112
1113                 if (start > mapping->bits) {
1114                         spin_unlock_irqrestore(&mapping->lock, flags);
1115                         return DMA_ERROR_CODE;
1116                 }
1117
1118                 bitmap_set(mapping->bitmaps[i], start, count);
1119         }
1120         spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122         iova = mapping->base + (mapping->size * i);
1123         iova += start << PAGE_SHIFT;
1124
1125         return iova;
1126 }
1127
1128 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129                                dma_addr_t addr, size_t size)
1130 {
1131         unsigned int start, count;
1132         unsigned long flags;
1133         dma_addr_t bitmap_base;
1134         u32 bitmap_index;
1135
1136         if (!size)
1137                 return;
1138
1139         bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140         BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142         bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144         start = (addr - bitmap_base) >> PAGE_SHIFT;
1145
1146         if (addr + size > bitmap_base + mapping->size) {
1147                 /*
1148                  * The address range to be freed reaches into the iova
1149                  * range of the next bitmap. This should not happen as
1150                  * we don't allow this in __alloc_iova (at the
1151                  * moment).
1152                  */
1153                 BUG();
1154         } else
1155                 count = size >> PAGE_SHIFT;
1156
1157         spin_lock_irqsave(&mapping->lock, flags);
1158         bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159         spin_unlock_irqrestore(&mapping->lock, flags);
1160 }
1161
1162 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163                                           gfp_t gfp, struct dma_attrs *attrs)
1164 {
1165         struct page **pages;
1166         int count = size >> PAGE_SHIFT;
1167         int array_size = count * sizeof(struct page *);
1168         int i = 0;
1169
1170         if (array_size <= PAGE_SIZE)
1171                 pages = kzalloc(array_size, gfp);
1172         else
1173                 pages = vzalloc(array_size);
1174         if (!pages)
1175                 return NULL;
1176
1177         if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178         {
1179                 unsigned long order = get_order(size);
1180                 struct page *page;
1181
1182                 page = dma_alloc_from_contiguous(dev, count, order);
1183                 if (!page)
1184                         goto error;
1185
1186                 __dma_clear_buffer(page, size);
1187
1188                 for (i = 0; i < count; i++)
1189                         pages[i] = page + i;
1190
1191                 return pages;
1192         }
1193
1194         /*
1195          * IOMMU can map any pages, so himem can also be used here
1196          */
1197         gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199         while (count) {
1200                 int j, order = __fls(count);
1201
1202                 pages[i] = alloc_pages(gfp, order);
1203                 while (!pages[i] && order)
1204                         pages[i] = alloc_pages(gfp, --order);
1205                 if (!pages[i])
1206                         goto error;
1207
1208                 if (order) {
1209                         split_page(pages[i], order);
1210                         j = 1 << order;
1211                         while (--j)
1212                                 pages[i + j] = pages[i] + j;
1213                 }
1214
1215                 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216                 i += 1 << order;
1217                 count -= 1 << order;
1218         }
1219
1220         return pages;
1221 error:
1222         while (i--)
1223                 if (pages[i])
1224                         __free_pages(pages[i], 0);
1225         if (array_size <= PAGE_SIZE)
1226                 kfree(pages);
1227         else
1228                 vfree(pages);
1229         return NULL;
1230 }
1231
1232 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233                                size_t size, struct dma_attrs *attrs)
1234 {
1235         int count = size >> PAGE_SHIFT;
1236         int array_size = count * sizeof(struct page *);
1237         int i;
1238
1239         if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240                 dma_release_from_contiguous(dev, pages[0], count);
1241         } else {
1242                 for (i = 0; i < count; i++)
1243                         if (pages[i])
1244                                 __free_pages(pages[i], 0);
1245         }
1246
1247         if (array_size <= PAGE_SIZE)
1248                 kfree(pages);
1249         else
1250                 vfree(pages);
1251         return 0;
1252 }
1253
1254 /*
1255  * Create a CPU mapping for a specified pages
1256  */
1257 static void *
1258 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259                     const void *caller)
1260 {
1261         unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262         struct vm_struct *area;
1263         unsigned long p;
1264
1265         area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266                                   caller);
1267         if (!area)
1268                 return NULL;
1269
1270         area->pages = pages;
1271         area->nr_pages = nr_pages;
1272         p = (unsigned long)area->addr;
1273
1274         for (i = 0; i < nr_pages; i++) {
1275                 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276                 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277                         goto err;
1278                 p += PAGE_SIZE;
1279         }
1280         return area->addr;
1281 err:
1282         unmap_kernel_range((unsigned long)area->addr, size);
1283         vunmap(area->addr);
1284         return NULL;
1285 }
1286
1287 /*
1288  * Create a mapping in device IO address space for specified pages
1289  */
1290 static dma_addr_t
1291 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292 {
1293         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295         dma_addr_t dma_addr, iova;
1296         int i, ret = DMA_ERROR_CODE;
1297
1298         dma_addr = __alloc_iova(mapping, size);
1299         if (dma_addr == DMA_ERROR_CODE)
1300                 return dma_addr;
1301
1302         iova = dma_addr;
1303         for (i = 0; i < count; ) {
1304                 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305                 phys_addr_t phys = page_to_phys(pages[i]);
1306                 unsigned int len, j;
1307
1308                 for (j = i + 1; j < count; j++, next_pfn++)
1309                         if (page_to_pfn(pages[j]) != next_pfn)
1310                                 break;
1311
1312                 len = (j - i) << PAGE_SHIFT;
1313                 ret = iommu_map(mapping->domain, iova, phys, len,
1314                                 IOMMU_READ|IOMMU_WRITE);
1315                 if (ret < 0)
1316                         goto fail;
1317                 iova += len;
1318                 i = j;
1319         }
1320         return dma_addr;
1321 fail:
1322         iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323         __free_iova(mapping, dma_addr, size);
1324         return DMA_ERROR_CODE;
1325 }
1326
1327 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328 {
1329         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331         /*
1332          * add optional in-page offset from iova to size and align
1333          * result to page size
1334          */
1335         size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336         iova &= PAGE_MASK;
1337
1338         iommu_unmap(mapping->domain, iova, size);
1339         __free_iova(mapping, iova, size);
1340         return 0;
1341 }
1342
1343 static struct page **__atomic_get_pages(void *addr)
1344 {
1345         struct dma_pool *pool = &atomic_pool;
1346         struct page **pages = pool->pages;
1347         int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349         return pages + offs;
1350 }
1351
1352 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353 {
1354         struct vm_struct *area;
1355
1356         if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357                 return __atomic_get_pages(cpu_addr);
1358
1359         if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360                 return cpu_addr;
1361
1362         area = find_vm_area(cpu_addr);
1363         if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364                 return area->pages;
1365         return NULL;
1366 }
1367
1368 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369                                   dma_addr_t *handle)
1370 {
1371         struct page *page;
1372         void *addr;
1373
1374         addr = __alloc_from_pool(size, &page);
1375         if (!addr)
1376                 return NULL;
1377
1378         *handle = __iommu_create_mapping(dev, &page, size);
1379         if (*handle == DMA_ERROR_CODE)
1380                 goto err_mapping;
1381
1382         return addr;
1383
1384 err_mapping:
1385         __free_from_pool(addr, size);
1386         return NULL;
1387 }
1388
1389 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390                                 dma_addr_t handle, size_t size)
1391 {
1392         __iommu_remove_mapping(dev, handle, size);
1393         __free_from_pool(cpu_addr, size);
1394 }
1395
1396 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397             dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398 {
1399         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400         struct page **pages;
1401         void *addr = NULL;
1402
1403         *handle = DMA_ERROR_CODE;
1404         size = PAGE_ALIGN(size);
1405
1406         if (!(gfp & __GFP_WAIT))
1407                 return __iommu_alloc_atomic(dev, size, handle);
1408
1409         /*
1410          * Following is a work-around (a.k.a. hack) to prevent pages
1411          * with __GFP_COMP being passed to split_page() which cannot
1412          * handle them.  The real problem is that this flag probably
1413          * should be 0 on ARM as it is not supported on this
1414          * platform; see CONFIG_HUGETLBFS.
1415          */
1416         gfp &= ~(__GFP_COMP);
1417
1418         pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419         if (!pages)
1420                 return NULL;
1421
1422         *handle = __iommu_create_mapping(dev, pages, size);
1423         if (*handle == DMA_ERROR_CODE)
1424                 goto err_buffer;
1425
1426         if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427                 return pages;
1428
1429         addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430                                    __builtin_return_address(0));
1431         if (!addr)
1432                 goto err_mapping;
1433
1434         return addr;
1435
1436 err_mapping:
1437         __iommu_remove_mapping(dev, *handle, size);
1438 err_buffer:
1439         __iommu_free_buffer(dev, pages, size, attrs);
1440         return NULL;
1441 }
1442
1443 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444                     void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445                     struct dma_attrs *attrs)
1446 {
1447         unsigned long uaddr = vma->vm_start;
1448         unsigned long usize = vma->vm_end - vma->vm_start;
1449         struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450
1451         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452
1453         if (!pages)
1454                 return -ENXIO;
1455
1456         do {
1457                 int ret = vm_insert_page(vma, uaddr, *pages++);
1458                 if (ret) {
1459                         pr_err("Remapping memory failed: %d\n", ret);
1460                         return ret;
1461                 }
1462                 uaddr += PAGE_SIZE;
1463                 usize -= PAGE_SIZE;
1464         } while (usize > 0);
1465
1466         return 0;
1467 }
1468
1469 /*
1470  * free a page as defined by the above mapping.
1471  * Must not be called with IRQs disabled.
1472  */
1473 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474                           dma_addr_t handle, struct dma_attrs *attrs)
1475 {
1476         struct page **pages;
1477         size = PAGE_ALIGN(size);
1478
1479         if (__in_atomic_pool(cpu_addr, size)) {
1480                 __iommu_free_atomic(dev, cpu_addr, handle, size);
1481                 return;
1482         }
1483
1484         pages = __iommu_get_pages(cpu_addr, attrs);
1485         if (!pages) {
1486                 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487                 return;
1488         }
1489
1490         if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491                 unmap_kernel_range((unsigned long)cpu_addr, size);
1492                 vunmap(cpu_addr);
1493         }
1494
1495         __iommu_remove_mapping(dev, handle, size);
1496         __iommu_free_buffer(dev, pages, size, attrs);
1497 }
1498
1499 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500                                  void *cpu_addr, dma_addr_t dma_addr,
1501                                  size_t size, struct dma_attrs *attrs)
1502 {
1503         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504         struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506         if (!pages)
1507                 return -ENXIO;
1508
1509         return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510                                          GFP_KERNEL);
1511 }
1512
1513 static int __dma_direction_to_prot(enum dma_data_direction dir)
1514 {
1515         int prot;
1516
1517         switch (dir) {
1518         case DMA_BIDIRECTIONAL:
1519                 prot = IOMMU_READ | IOMMU_WRITE;
1520                 break;
1521         case DMA_TO_DEVICE:
1522                 prot = IOMMU_READ;
1523                 break;
1524         case DMA_FROM_DEVICE:
1525                 prot = IOMMU_WRITE;
1526                 break;
1527         default:
1528                 prot = 0;
1529         }
1530
1531         return prot;
1532 }
1533
1534 /*
1535  * Map a part of the scatter-gather list into contiguous io address space
1536  */
1537 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538                           size_t size, dma_addr_t *handle,
1539                           enum dma_data_direction dir, struct dma_attrs *attrs,
1540                           bool is_coherent)
1541 {
1542         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543         dma_addr_t iova, iova_base;
1544         int ret = 0;
1545         unsigned int count;
1546         struct scatterlist *s;
1547         int prot;
1548
1549         size = PAGE_ALIGN(size);
1550         *handle = DMA_ERROR_CODE;
1551
1552         iova_base = iova = __alloc_iova(mapping, size);
1553         if (iova == DMA_ERROR_CODE)
1554                 return -ENOMEM;
1555
1556         for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557                 phys_addr_t phys = page_to_phys(sg_page(s));
1558                 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560                 if (!is_coherent &&
1561                         !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562                         __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564                 prot = __dma_direction_to_prot(dir);
1565
1566                 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567                 if (ret < 0)
1568                         goto fail;
1569                 count += len >> PAGE_SHIFT;
1570                 iova += len;
1571         }
1572         *handle = iova_base;
1573
1574         return 0;
1575 fail:
1576         iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577         __free_iova(mapping, iova_base, size);
1578         return ret;
1579 }
1580
1581 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582                      enum dma_data_direction dir, struct dma_attrs *attrs,
1583                      bool is_coherent)
1584 {
1585         struct scatterlist *s = sg, *dma = sg, *start = sg;
1586         int i, count = 0;
1587         unsigned int offset = s->offset;
1588         unsigned int size = s->offset + s->length;
1589         unsigned int max = dma_get_max_seg_size(dev);
1590
1591         for (i = 1; i < nents; i++) {
1592                 s = sg_next(s);
1593
1594                 s->dma_address = DMA_ERROR_CODE;
1595                 s->dma_length = 0;
1596
1597                 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598                         if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599                             dir, attrs, is_coherent) < 0)
1600                                 goto bad_mapping;
1601
1602                         dma->dma_address += offset;
1603                         dma->dma_length = size - offset;
1604
1605                         size = offset = s->offset;
1606                         start = s;
1607                         dma = sg_next(dma);
1608                         count += 1;
1609                 }
1610                 size += s->length;
1611         }
1612         if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613                 is_coherent) < 0)
1614                 goto bad_mapping;
1615
1616         dma->dma_address += offset;
1617         dma->dma_length = size - offset;
1618
1619         return count+1;
1620
1621 bad_mapping:
1622         for_each_sg(sg, s, count, i)
1623                 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624         return 0;
1625 }
1626
1627 /**
1628  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629  * @dev: valid struct device pointer
1630  * @sg: list of buffers
1631  * @nents: number of buffers to map
1632  * @dir: DMA transfer direction
1633  *
1634  * Map a set of i/o coherent buffers described by scatterlist in streaming
1635  * mode for DMA. The scatter gather list elements are merged together (if
1636  * possible) and tagged with the appropriate dma address and length. They are
1637  * obtained via sg_dma_{address,length}.
1638  */
1639 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640                 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641 {
1642         return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643 }
1644
1645 /**
1646  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647  * @dev: valid struct device pointer
1648  * @sg: list of buffers
1649  * @nents: number of buffers to map
1650  * @dir: DMA transfer direction
1651  *
1652  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653  * The scatter gather list elements are merged together (if possible) and
1654  * tagged with the appropriate dma address and length. They are obtained via
1655  * sg_dma_{address,length}.
1656  */
1657 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658                 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659 {
1660         return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661 }
1662
1663 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664                 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665                 bool is_coherent)
1666 {
1667         struct scatterlist *s;
1668         int i;
1669
1670         for_each_sg(sg, s, nents, i) {
1671                 if (sg_dma_len(s))
1672                         __iommu_remove_mapping(dev, sg_dma_address(s),
1673                                                sg_dma_len(s));
1674                 if (!is_coherent &&
1675                     !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676                         __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677                                               s->length, dir);
1678         }
1679 }
1680
1681 /**
1682  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683  * @dev: valid struct device pointer
1684  * @sg: list of buffers
1685  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687  *
1688  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1689  * rules concerning calls here are the same as for dma_unmap_single().
1690  */
1691 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692                 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693 {
1694         __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695 }
1696
1697 /**
1698  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699  * @dev: valid struct device pointer
1700  * @sg: list of buffers
1701  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703  *
1704  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1705  * rules concerning calls here are the same as for dma_unmap_single().
1706  */
1707 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708                         enum dma_data_direction dir, struct dma_attrs *attrs)
1709 {
1710         __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711 }
1712
1713 /**
1714  * arm_iommu_sync_sg_for_cpu
1715  * @dev: valid struct device pointer
1716  * @sg: list of buffers
1717  * @nents: number of buffers to map (returned from dma_map_sg)
1718  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719  */
1720 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721                         int nents, enum dma_data_direction dir)
1722 {
1723         struct scatterlist *s;
1724         int i;
1725
1726         for_each_sg(sg, s, nents, i)
1727                 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729 }
1730
1731 /**
1732  * arm_iommu_sync_sg_for_device
1733  * @dev: valid struct device pointer
1734  * @sg: list of buffers
1735  * @nents: number of buffers to map (returned from dma_map_sg)
1736  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737  */
1738 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739                         int nents, enum dma_data_direction dir)
1740 {
1741         struct scatterlist *s;
1742         int i;
1743
1744         for_each_sg(sg, s, nents, i)
1745                 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746 }
1747
1748
1749 /**
1750  * arm_coherent_iommu_map_page
1751  * @dev: valid struct device pointer
1752  * @page: page that buffer resides in
1753  * @offset: offset into page for start of buffer
1754  * @size: size of buffer to map
1755  * @dir: DMA transfer direction
1756  *
1757  * Coherent IOMMU aware version of arm_dma_map_page()
1758  */
1759 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760              unsigned long offset, size_t size, enum dma_data_direction dir,
1761              struct dma_attrs *attrs)
1762 {
1763         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764         dma_addr_t dma_addr;
1765         int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767         dma_addr = __alloc_iova(mapping, len);
1768         if (dma_addr == DMA_ERROR_CODE)
1769                 return dma_addr;
1770
1771         prot = __dma_direction_to_prot(dir);
1772
1773         ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774         if (ret < 0)
1775                 goto fail;
1776
1777         return dma_addr + offset;
1778 fail:
1779         __free_iova(mapping, dma_addr, len);
1780         return DMA_ERROR_CODE;
1781 }
1782
1783 /**
1784  * arm_iommu_map_page
1785  * @dev: valid struct device pointer
1786  * @page: page that buffer resides in
1787  * @offset: offset into page for start of buffer
1788  * @size: size of buffer to map
1789  * @dir: DMA transfer direction
1790  *
1791  * IOMMU aware version of arm_dma_map_page()
1792  */
1793 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794              unsigned long offset, size_t size, enum dma_data_direction dir,
1795              struct dma_attrs *attrs)
1796 {
1797         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798                 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800         return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801 }
1802
1803 /**
1804  * arm_coherent_iommu_unmap_page
1805  * @dev: valid struct device pointer
1806  * @handle: DMA address of buffer
1807  * @size: size of buffer (same as passed to dma_map_page)
1808  * @dir: DMA transfer direction (same as passed to dma_map_page)
1809  *
1810  * Coherent IOMMU aware version of arm_dma_unmap_page()
1811  */
1812 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813                 size_t size, enum dma_data_direction dir,
1814                 struct dma_attrs *attrs)
1815 {
1816         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817         dma_addr_t iova = handle & PAGE_MASK;
1818         int offset = handle & ~PAGE_MASK;
1819         int len = PAGE_ALIGN(size + offset);
1820
1821         if (!iova)
1822                 return;
1823
1824         iommu_unmap(mapping->domain, iova, len);
1825         __free_iova(mapping, iova, len);
1826 }
1827
1828 /**
1829  * arm_iommu_unmap_page
1830  * @dev: valid struct device pointer
1831  * @handle: DMA address of buffer
1832  * @size: size of buffer (same as passed to dma_map_page)
1833  * @dir: DMA transfer direction (same as passed to dma_map_page)
1834  *
1835  * IOMMU aware version of arm_dma_unmap_page()
1836  */
1837 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838                 size_t size, enum dma_data_direction dir,
1839                 struct dma_attrs *attrs)
1840 {
1841         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842         dma_addr_t iova = handle & PAGE_MASK;
1843         struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844         int offset = handle & ~PAGE_MASK;
1845         int len = PAGE_ALIGN(size + offset);
1846
1847         if (!iova)
1848                 return;
1849
1850         if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851                 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853         iommu_unmap(mapping->domain, iova, len);
1854         __free_iova(mapping, iova, len);
1855 }
1856
1857 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859 {
1860         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861         dma_addr_t iova = handle & PAGE_MASK;
1862         struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863         unsigned int offset = handle & ~PAGE_MASK;
1864
1865         if (!iova)
1866                 return;
1867
1868         __dma_page_dev_to_cpu(page, offset, size, dir);
1869 }
1870
1871 static void arm_iommu_sync_single_for_device(struct device *dev,
1872                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873 {
1874         struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875         dma_addr_t iova = handle & PAGE_MASK;
1876         struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877         unsigned int offset = handle & ~PAGE_MASK;
1878
1879         if (!iova)
1880                 return;
1881
1882         __dma_page_cpu_to_dev(page, offset, size, dir);
1883 }
1884
1885 struct dma_map_ops iommu_ops = {
1886         .alloc          = arm_iommu_alloc_attrs,
1887         .free           = arm_iommu_free_attrs,
1888         .mmap           = arm_iommu_mmap_attrs,
1889         .get_sgtable    = arm_iommu_get_sgtable,
1890
1891         .map_page               = arm_iommu_map_page,
1892         .unmap_page             = arm_iommu_unmap_page,
1893         .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1894         .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896         .map_sg                 = arm_iommu_map_sg,
1897         .unmap_sg               = arm_iommu_unmap_sg,
1898         .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1899         .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1900
1901         .set_dma_mask           = arm_dma_set_mask,
1902 };
1903
1904 struct dma_map_ops iommu_coherent_ops = {
1905         .alloc          = arm_iommu_alloc_attrs,
1906         .free           = arm_iommu_free_attrs,
1907         .mmap           = arm_iommu_mmap_attrs,
1908         .get_sgtable    = arm_iommu_get_sgtable,
1909
1910         .map_page       = arm_coherent_iommu_map_page,
1911         .unmap_page     = arm_coherent_iommu_unmap_page,
1912
1913         .map_sg         = arm_coherent_iommu_map_sg,
1914         .unmap_sg       = arm_coherent_iommu_unmap_sg,
1915
1916         .set_dma_mask   = arm_dma_set_mask,
1917 };
1918
1919 /**
1920  * arm_iommu_create_mapping
1921  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922  * @base: start address of the valid IO address space
1923  * @size: maximum size of the valid IO address space
1924  *
1925  * Creates a mapping structure which holds information about used/unused
1926  * IO address ranges, which is required to perform memory allocation and
1927  * mapping with IOMMU aware functions.
1928  *
1929  * The client device need to be attached to the mapping with
1930  * arm_iommu_attach_device function.
1931  */
1932 struct dma_iommu_mapping *
1933 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934 {
1935         unsigned int bits = size >> PAGE_SHIFT;
1936         unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937         struct dma_iommu_mapping *mapping;
1938         int extensions = 1;
1939         int err = -ENOMEM;
1940
1941         if (!bitmap_size)
1942                 return ERR_PTR(-EINVAL);
1943
1944         if (bitmap_size > PAGE_SIZE) {
1945                 extensions = bitmap_size / PAGE_SIZE;
1946                 bitmap_size = PAGE_SIZE;
1947         }
1948
1949         mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950         if (!mapping)
1951                 goto err;
1952
1953         mapping->bitmap_size = bitmap_size;
1954         mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955                                 GFP_KERNEL);
1956         if (!mapping->bitmaps)
1957                 goto err2;
1958
1959         mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960         if (!mapping->bitmaps[0])
1961                 goto err3;
1962
1963         mapping->nr_bitmaps = 1;
1964         mapping->extensions = extensions;
1965         mapping->base = base;
1966         mapping->bits = BITS_PER_BYTE * bitmap_size;
1967         mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969         spin_lock_init(&mapping->lock);
1970
1971         mapping->domain = iommu_domain_alloc(bus);
1972         if (!mapping->domain)
1973                 goto err4;
1974
1975         kref_init(&mapping->kref);
1976         return mapping;
1977 err4:
1978         kfree(mapping->bitmaps[0]);
1979 err3:
1980         kfree(mapping->bitmaps);
1981 err2:
1982         kfree(mapping);
1983 err:
1984         return ERR_PTR(err);
1985 }
1986 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988 static void release_iommu_mapping(struct kref *kref)
1989 {
1990         int i;
1991         struct dma_iommu_mapping *mapping =
1992                 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994         iommu_domain_free(mapping->domain);
1995         for (i = 0; i < mapping->nr_bitmaps; i++)
1996                 kfree(mapping->bitmaps[i]);
1997         kfree(mapping->bitmaps);
1998         kfree(mapping);
1999 }
2000
2001 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002 {
2003         int next_bitmap;
2004
2005         if (mapping->nr_bitmaps > mapping->extensions)
2006                 return -EINVAL;
2007
2008         next_bitmap = mapping->nr_bitmaps;
2009         mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010                                                 GFP_ATOMIC);
2011         if (!mapping->bitmaps[next_bitmap])
2012                 return -ENOMEM;
2013
2014         mapping->nr_bitmaps++;
2015
2016         return 0;
2017 }
2018
2019 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020 {
2021         if (mapping)
2022                 kref_put(&mapping->kref, release_iommu_mapping);
2023 }
2024 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
2026 /**
2027  * arm_iommu_attach_device
2028  * @dev: valid struct device pointer
2029  * @mapping: io address space mapping structure (returned from
2030  *      arm_iommu_create_mapping)
2031  *
2032  * Attaches specified io address space mapping to the provided device,
2033  * this replaces the dma operations (dma_map_ops pointer) with the
2034  * IOMMU aware version. More than one client might be attached to
2035  * the same io address space mapping.
2036  */
2037 int arm_iommu_attach_device(struct device *dev,
2038                             struct dma_iommu_mapping *mapping)
2039 {
2040         int err;
2041
2042         err = iommu_attach_device(mapping->domain, dev);
2043         if (err)
2044                 return err;
2045
2046         kref_get(&mapping->kref);
2047         dev->archdata.mapping = mapping;
2048         set_dma_ops(dev, &iommu_ops);
2049
2050         pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051         return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055 /**
2056  * arm_iommu_detach_device
2057  * @dev: valid struct device pointer
2058  *
2059  * Detaches the provided device from a previously attached map.
2060  * This voids the dma operations (dma_map_ops pointer)
2061  */
2062 void arm_iommu_detach_device(struct device *dev)
2063 {
2064         struct dma_iommu_mapping *mapping;
2065
2066         mapping = to_dma_iommu_mapping(dev);
2067         if (!mapping) {
2068                 dev_warn(dev, "Not attached\n");
2069                 return;
2070         }
2071
2072         iommu_detach_device(mapping->domain, dev);
2073         kref_put(&mapping->kref, release_iommu_mapping);
2074         dev->archdata.mapping = NULL;
2075         set_dma_ops(dev, NULL);
2076
2077         pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078 }
2079 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081 #endif