Merge branch 'component' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[cascardo/linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_asm.h>
33 #include <asm/kvm_coproc.h>
34 #include <asm/kvm_emulate.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_mmu.h>
37
38 #include <trace/events/kvm.h>
39
40 #include "sys_regs.h"
41
42 #include "trace.h"
43
44 /*
45  * All of this file is extremly similar to the ARM coproc.c, but the
46  * types are different. My gut feeling is that it should be pretty
47  * easy to merge, but that would be an ABI breakage -- again. VFP
48  * would also need to be abstracted.
49  *
50  * For AArch32, we only take care of what is being trapped. Anything
51  * that has to do with init and userspace access has to go via the
52  * 64bit interface.
53  */
54
55 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
56 static u32 cache_levels;
57
58 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
59 #define CSSELR_MAX 12
60
61 /* Which cache CCSIDR represents depends on CSSELR value. */
62 static u32 get_ccsidr(u32 csselr)
63 {
64         u32 ccsidr;
65
66         /* Make sure noone else changes CSSELR during this! */
67         local_irq_disable();
68         /* Put value into CSSELR */
69         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
70         isb();
71         /* Read result out of CCSIDR */
72         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
73         local_irq_enable();
74
75         return ccsidr;
76 }
77
78 /*
79  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80  */
81 static bool access_dcsw(struct kvm_vcpu *vcpu,
82                         struct sys_reg_params *p,
83                         const struct sys_reg_desc *r)
84 {
85         if (!p->is_write)
86                 return read_from_write_only(vcpu, p);
87
88         kvm_set_way_flush(vcpu);
89         return true;
90 }
91
92 /*
93  * Generic accessor for VM registers. Only called as long as HCR_TVM
94  * is set. If the guest enables the MMU, we stop trapping the VM
95  * sys_regs and leave it in complete control of the caches.
96  */
97 static bool access_vm_reg(struct kvm_vcpu *vcpu,
98                           struct sys_reg_params *p,
99                           const struct sys_reg_desc *r)
100 {
101         bool was_enabled = vcpu_has_cache_enabled(vcpu);
102
103         BUG_ON(!p->is_write);
104
105         if (!p->is_aarch32) {
106                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
107         } else {
108                 if (!p->is_32bit)
109                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
110                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
111         }
112
113         kvm_toggle_cache(vcpu, was_enabled);
114         return true;
115 }
116
117 /*
118  * Trap handler for the GICv3 SGI generation system register.
119  * Forward the request to the VGIC emulation.
120  * The cp15_64 code makes sure this automatically works
121  * for both AArch64 and AArch32 accesses.
122  */
123 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
124                            struct sys_reg_params *p,
125                            const struct sys_reg_desc *r)
126 {
127         if (!p->is_write)
128                 return read_from_write_only(vcpu, p);
129
130         vgic_v3_dispatch_sgi(vcpu, p->regval);
131
132         return true;
133 }
134
135 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
136                         struct sys_reg_params *p,
137                         const struct sys_reg_desc *r)
138 {
139         if (p->is_write)
140                 return ignore_write(vcpu, p);
141         else
142                 return read_zero(vcpu, p);
143 }
144
145 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
146                            struct sys_reg_params *p,
147                            const struct sys_reg_desc *r)
148 {
149         if (p->is_write) {
150                 return ignore_write(vcpu, p);
151         } else {
152                 p->regval = (1 << 3);
153                 return true;
154         }
155 }
156
157 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
158                                    struct sys_reg_params *p,
159                                    const struct sys_reg_desc *r)
160 {
161         if (p->is_write) {
162                 return ignore_write(vcpu, p);
163         } else {
164                 u32 val;
165                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
166                 p->regval = val;
167                 return true;
168         }
169 }
170
171 /*
172  * We want to avoid world-switching all the DBG registers all the
173  * time:
174  * 
175  * - If we've touched any debug register, it is likely that we're
176  *   going to touch more of them. It then makes sense to disable the
177  *   traps and start doing the save/restore dance
178  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
179  *   then mandatory to save/restore the registers, as the guest
180  *   depends on them.
181  * 
182  * For this, we use a DIRTY bit, indicating the guest has modified the
183  * debug registers, used as follow:
184  *
185  * On guest entry:
186  * - If the dirty bit is set (because we're coming back from trapping),
187  *   disable the traps, save host registers, restore guest registers.
188  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
189  *   set the dirty bit, disable the traps, save host registers,
190  *   restore guest registers.
191  * - Otherwise, enable the traps
192  *
193  * On guest exit:
194  * - If the dirty bit is set, save guest registers, restore host
195  *   registers and clear the dirty bit. This ensure that the host can
196  *   now use the debug registers.
197  */
198 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
199                             struct sys_reg_params *p,
200                             const struct sys_reg_desc *r)
201 {
202         if (p->is_write) {
203                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
204                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
205         } else {
206                 p->regval = vcpu_sys_reg(vcpu, r->reg);
207         }
208
209         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
210
211         return true;
212 }
213
214 /*
215  * reg_to_dbg/dbg_to_reg
216  *
217  * A 32 bit write to a debug register leave top bits alone
218  * A 32 bit read from a debug register only returns the bottom bits
219  *
220  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
221  * hyp.S code switches between host and guest values in future.
222  */
223 static void reg_to_dbg(struct kvm_vcpu *vcpu,
224                        struct sys_reg_params *p,
225                        u64 *dbg_reg)
226 {
227         u64 val = p->regval;
228
229         if (p->is_32bit) {
230                 val &= 0xffffffffUL;
231                 val |= ((*dbg_reg >> 32) << 32);
232         }
233
234         *dbg_reg = val;
235         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
236 }
237
238 static void dbg_to_reg(struct kvm_vcpu *vcpu,
239                        struct sys_reg_params *p,
240                        u64 *dbg_reg)
241 {
242         p->regval = *dbg_reg;
243         if (p->is_32bit)
244                 p->regval &= 0xffffffffUL;
245 }
246
247 static bool trap_bvr(struct kvm_vcpu *vcpu,
248                      struct sys_reg_params *p,
249                      const struct sys_reg_desc *rd)
250 {
251         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
252
253         if (p->is_write)
254                 reg_to_dbg(vcpu, p, dbg_reg);
255         else
256                 dbg_to_reg(vcpu, p, dbg_reg);
257
258         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
259
260         return true;
261 }
262
263 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
264                 const struct kvm_one_reg *reg, void __user *uaddr)
265 {
266         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
267
268         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
269                 return -EFAULT;
270         return 0;
271 }
272
273 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274         const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
279                 return -EFAULT;
280         return 0;
281 }
282
283 static void reset_bvr(struct kvm_vcpu *vcpu,
284                       const struct sys_reg_desc *rd)
285 {
286         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
287 }
288
289 static bool trap_bcr(struct kvm_vcpu *vcpu,
290                      struct sys_reg_params *p,
291                      const struct sys_reg_desc *rd)
292 {
293         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
294
295         if (p->is_write)
296                 reg_to_dbg(vcpu, p, dbg_reg);
297         else
298                 dbg_to_reg(vcpu, p, dbg_reg);
299
300         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
301
302         return true;
303 }
304
305 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
306                 const struct kvm_one_reg *reg, void __user *uaddr)
307 {
308         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
309
310         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
311                 return -EFAULT;
312
313         return 0;
314 }
315
316 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317         const struct kvm_one_reg *reg, void __user *uaddr)
318 {
319         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
320
321         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
322                 return -EFAULT;
323         return 0;
324 }
325
326 static void reset_bcr(struct kvm_vcpu *vcpu,
327                       const struct sys_reg_desc *rd)
328 {
329         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
330 }
331
332 static bool trap_wvr(struct kvm_vcpu *vcpu,
333                      struct sys_reg_params *p,
334                      const struct sys_reg_desc *rd)
335 {
336         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
337
338         if (p->is_write)
339                 reg_to_dbg(vcpu, p, dbg_reg);
340         else
341                 dbg_to_reg(vcpu, p, dbg_reg);
342
343         trace_trap_reg(__func__, rd->reg, p->is_write,
344                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
345
346         return true;
347 }
348
349 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
350                 const struct kvm_one_reg *reg, void __user *uaddr)
351 {
352         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
353
354         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
355                 return -EFAULT;
356         return 0;
357 }
358
359 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360         const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
365                 return -EFAULT;
366         return 0;
367 }
368
369 static void reset_wvr(struct kvm_vcpu *vcpu,
370                       const struct sys_reg_desc *rd)
371 {
372         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
373 }
374
375 static bool trap_wcr(struct kvm_vcpu *vcpu,
376                      struct sys_reg_params *p,
377                      const struct sys_reg_desc *rd)
378 {
379         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
380
381         if (p->is_write)
382                 reg_to_dbg(vcpu, p, dbg_reg);
383         else
384                 dbg_to_reg(vcpu, p, dbg_reg);
385
386         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
387
388         return true;
389 }
390
391 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
392                 const struct kvm_one_reg *reg, void __user *uaddr)
393 {
394         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
395
396         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
397                 return -EFAULT;
398         return 0;
399 }
400
401 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402         const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
407                 return -EFAULT;
408         return 0;
409 }
410
411 static void reset_wcr(struct kvm_vcpu *vcpu,
412                       const struct sys_reg_desc *rd)
413 {
414         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
415 }
416
417 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
418 {
419         u64 amair;
420
421         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
422         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
423 }
424
425 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
426 {
427         u64 mpidr;
428
429         /*
430          * Map the vcpu_id into the first three affinity level fields of
431          * the MPIDR. We limit the number of VCPUs in level 0 due to a
432          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
433          * of the GICv3 to be able to address each CPU directly when
434          * sending IPIs.
435          */
436         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
437         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
438         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
439         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
440 }
441
442 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
443 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
444         /* DBGBVRn_EL1 */                                               \
445         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
446           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
447         /* DBGBCRn_EL1 */                                               \
448         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
449           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
450         /* DBGWVRn_EL1 */                                               \
451         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
452           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
453         /* DBGWCRn_EL1 */                                               \
454         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
455           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
456
457 /*
458  * Architected system registers.
459  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
460  *
461  * We could trap ID_DFR0 and tell the guest we don't support performance
462  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
463  * NAKed, so it will read the PMCR anyway.
464  *
465  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
466  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
467  * all PM registers, which doesn't crash the guest kernel at least.
468  *
469  * Debug handling: We do trap most, if not all debug related system
470  * registers. The implementation is good enough to ensure that a guest
471  * can use these with minimal performance degradation. The drawback is
472  * that we don't implement any of the external debug, none of the
473  * OSlock protocol. This should be revisited if we ever encounter a
474  * more demanding guest...
475  */
476 static const struct sys_reg_desc sys_reg_descs[] = {
477         /* DC ISW */
478         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
479           access_dcsw },
480         /* DC CSW */
481         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
482           access_dcsw },
483         /* DC CISW */
484         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
485           access_dcsw },
486
487         DBG_BCR_BVR_WCR_WVR_EL1(0),
488         DBG_BCR_BVR_WCR_WVR_EL1(1),
489         /* MDCCINT_EL1 */
490         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
491           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
492         /* MDSCR_EL1 */
493         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
494           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
495         DBG_BCR_BVR_WCR_WVR_EL1(2),
496         DBG_BCR_BVR_WCR_WVR_EL1(3),
497         DBG_BCR_BVR_WCR_WVR_EL1(4),
498         DBG_BCR_BVR_WCR_WVR_EL1(5),
499         DBG_BCR_BVR_WCR_WVR_EL1(6),
500         DBG_BCR_BVR_WCR_WVR_EL1(7),
501         DBG_BCR_BVR_WCR_WVR_EL1(8),
502         DBG_BCR_BVR_WCR_WVR_EL1(9),
503         DBG_BCR_BVR_WCR_WVR_EL1(10),
504         DBG_BCR_BVR_WCR_WVR_EL1(11),
505         DBG_BCR_BVR_WCR_WVR_EL1(12),
506         DBG_BCR_BVR_WCR_WVR_EL1(13),
507         DBG_BCR_BVR_WCR_WVR_EL1(14),
508         DBG_BCR_BVR_WCR_WVR_EL1(15),
509
510         /* MDRAR_EL1 */
511         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
512           trap_raz_wi },
513         /* OSLAR_EL1 */
514         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
515           trap_raz_wi },
516         /* OSLSR_EL1 */
517         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
518           trap_oslsr_el1 },
519         /* OSDLR_EL1 */
520         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
521           trap_raz_wi },
522         /* DBGPRCR_EL1 */
523         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
524           trap_raz_wi },
525         /* DBGCLAIMSET_EL1 */
526         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
527           trap_raz_wi },
528         /* DBGCLAIMCLR_EL1 */
529         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
530           trap_raz_wi },
531         /* DBGAUTHSTATUS_EL1 */
532         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
533           trap_dbgauthstatus_el1 },
534
535         /* MDCCSR_EL1 */
536         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
537           trap_raz_wi },
538         /* DBGDTR_EL0 */
539         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
540           trap_raz_wi },
541         /* DBGDTR[TR]X_EL0 */
542         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
543           trap_raz_wi },
544
545         /* DBGVCR32_EL2 */
546         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
547           NULL, reset_val, DBGVCR32_EL2, 0 },
548
549         /* MPIDR_EL1 */
550         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
551           NULL, reset_mpidr, MPIDR_EL1 },
552         /* SCTLR_EL1 */
553         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
554           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
555         /* CPACR_EL1 */
556         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
557           NULL, reset_val, CPACR_EL1, 0 },
558         /* TTBR0_EL1 */
559         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
560           access_vm_reg, reset_unknown, TTBR0_EL1 },
561         /* TTBR1_EL1 */
562         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
563           access_vm_reg, reset_unknown, TTBR1_EL1 },
564         /* TCR_EL1 */
565         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
566           access_vm_reg, reset_val, TCR_EL1, 0 },
567
568         /* AFSR0_EL1 */
569         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
570           access_vm_reg, reset_unknown, AFSR0_EL1 },
571         /* AFSR1_EL1 */
572         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
573           access_vm_reg, reset_unknown, AFSR1_EL1 },
574         /* ESR_EL1 */
575         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
576           access_vm_reg, reset_unknown, ESR_EL1 },
577         /* FAR_EL1 */
578         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
579           access_vm_reg, reset_unknown, FAR_EL1 },
580         /* PAR_EL1 */
581         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
582           NULL, reset_unknown, PAR_EL1 },
583
584         /* PMINTENSET_EL1 */
585         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
586           trap_raz_wi },
587         /* PMINTENCLR_EL1 */
588         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
589           trap_raz_wi },
590
591         /* MAIR_EL1 */
592         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
593           access_vm_reg, reset_unknown, MAIR_EL1 },
594         /* AMAIR_EL1 */
595         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
596           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
597
598         /* VBAR_EL1 */
599         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
600           NULL, reset_val, VBAR_EL1, 0 },
601
602         /* ICC_SGI1R_EL1 */
603         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
604           access_gic_sgi },
605         /* ICC_SRE_EL1 */
606         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
607           trap_raz_wi },
608
609         /* CONTEXTIDR_EL1 */
610         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
611           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
612         /* TPIDR_EL1 */
613         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
614           NULL, reset_unknown, TPIDR_EL1 },
615
616         /* CNTKCTL_EL1 */
617         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
618           NULL, reset_val, CNTKCTL_EL1, 0},
619
620         /* CSSELR_EL1 */
621         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
622           NULL, reset_unknown, CSSELR_EL1 },
623
624         /* PMCR_EL0 */
625         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
626           trap_raz_wi },
627         /* PMCNTENSET_EL0 */
628         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
629           trap_raz_wi },
630         /* PMCNTENCLR_EL0 */
631         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
632           trap_raz_wi },
633         /* PMOVSCLR_EL0 */
634         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
635           trap_raz_wi },
636         /* PMSWINC_EL0 */
637         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
638           trap_raz_wi },
639         /* PMSELR_EL0 */
640         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
641           trap_raz_wi },
642         /* PMCEID0_EL0 */
643         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
644           trap_raz_wi },
645         /* PMCEID1_EL0 */
646         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
647           trap_raz_wi },
648         /* PMCCNTR_EL0 */
649         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
650           trap_raz_wi },
651         /* PMXEVTYPER_EL0 */
652         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
653           trap_raz_wi },
654         /* PMXEVCNTR_EL0 */
655         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
656           trap_raz_wi },
657         /* PMUSERENR_EL0 */
658         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
659           trap_raz_wi },
660         /* PMOVSSET_EL0 */
661         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
662           trap_raz_wi },
663
664         /* TPIDR_EL0 */
665         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
666           NULL, reset_unknown, TPIDR_EL0 },
667         /* TPIDRRO_EL0 */
668         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
669           NULL, reset_unknown, TPIDRRO_EL0 },
670
671         /* DACR32_EL2 */
672         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
673           NULL, reset_unknown, DACR32_EL2 },
674         /* IFSR32_EL2 */
675         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
676           NULL, reset_unknown, IFSR32_EL2 },
677         /* FPEXC32_EL2 */
678         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
679           NULL, reset_val, FPEXC32_EL2, 0x70 },
680 };
681
682 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
683                         struct sys_reg_params *p,
684                         const struct sys_reg_desc *r)
685 {
686         if (p->is_write) {
687                 return ignore_write(vcpu, p);
688         } else {
689                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
690                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
691                 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
692
693                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
694                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
695                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
696                              | (6 << 16) | (el3 << 14) | (el3 << 12));
697                 return true;
698         }
699 }
700
701 static bool trap_debug32(struct kvm_vcpu *vcpu,
702                          struct sys_reg_params *p,
703                          const struct sys_reg_desc *r)
704 {
705         if (p->is_write) {
706                 vcpu_cp14(vcpu, r->reg) = p->regval;
707                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
708         } else {
709                 p->regval = vcpu_cp14(vcpu, r->reg);
710         }
711
712         return true;
713 }
714
715 /* AArch32 debug register mappings
716  *
717  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
718  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
719  *
720  * All control registers and watchpoint value registers are mapped to
721  * the lower 32 bits of their AArch64 equivalents. We share the trap
722  * handlers with the above AArch64 code which checks what mode the
723  * system is in.
724  */
725
726 static bool trap_xvr(struct kvm_vcpu *vcpu,
727                      struct sys_reg_params *p,
728                      const struct sys_reg_desc *rd)
729 {
730         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
731
732         if (p->is_write) {
733                 u64 val = *dbg_reg;
734
735                 val &= 0xffffffffUL;
736                 val |= p->regval << 32;
737                 *dbg_reg = val;
738
739                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
740         } else {
741                 p->regval = *dbg_reg >> 32;
742         }
743
744         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
745
746         return true;
747 }
748
749 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
750         /* DBGBVRn */                                                   \
751         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
752         /* DBGBCRn */                                                   \
753         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
754         /* DBGWVRn */                                                   \
755         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
756         /* DBGWCRn */                                                   \
757         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
758
759 #define DBGBXVR(n)                                                      \
760         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
761
762 /*
763  * Trapped cp14 registers. We generally ignore most of the external
764  * debug, on the principle that they don't really make sense to a
765  * guest. Revisit this one day, would this principle change.
766  */
767 static const struct sys_reg_desc cp14_regs[] = {
768         /* DBGIDR */
769         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
770         /* DBGDTRRXext */
771         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
772
773         DBG_BCR_BVR_WCR_WVR(0),
774         /* DBGDSCRint */
775         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
776         DBG_BCR_BVR_WCR_WVR(1),
777         /* DBGDCCINT */
778         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
779         /* DBGDSCRext */
780         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
781         DBG_BCR_BVR_WCR_WVR(2),
782         /* DBGDTR[RT]Xint */
783         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
784         /* DBGDTR[RT]Xext */
785         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
786         DBG_BCR_BVR_WCR_WVR(3),
787         DBG_BCR_BVR_WCR_WVR(4),
788         DBG_BCR_BVR_WCR_WVR(5),
789         /* DBGWFAR */
790         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
791         /* DBGOSECCR */
792         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
793         DBG_BCR_BVR_WCR_WVR(6),
794         /* DBGVCR */
795         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
796         DBG_BCR_BVR_WCR_WVR(7),
797         DBG_BCR_BVR_WCR_WVR(8),
798         DBG_BCR_BVR_WCR_WVR(9),
799         DBG_BCR_BVR_WCR_WVR(10),
800         DBG_BCR_BVR_WCR_WVR(11),
801         DBG_BCR_BVR_WCR_WVR(12),
802         DBG_BCR_BVR_WCR_WVR(13),
803         DBG_BCR_BVR_WCR_WVR(14),
804         DBG_BCR_BVR_WCR_WVR(15),
805
806         /* DBGDRAR (32bit) */
807         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
808
809         DBGBXVR(0),
810         /* DBGOSLAR */
811         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
812         DBGBXVR(1),
813         /* DBGOSLSR */
814         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
815         DBGBXVR(2),
816         DBGBXVR(3),
817         /* DBGOSDLR */
818         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
819         DBGBXVR(4),
820         /* DBGPRCR */
821         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
822         DBGBXVR(5),
823         DBGBXVR(6),
824         DBGBXVR(7),
825         DBGBXVR(8),
826         DBGBXVR(9),
827         DBGBXVR(10),
828         DBGBXVR(11),
829         DBGBXVR(12),
830         DBGBXVR(13),
831         DBGBXVR(14),
832         DBGBXVR(15),
833
834         /* DBGDSAR (32bit) */
835         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
836
837         /* DBGDEVID2 */
838         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
839         /* DBGDEVID1 */
840         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
841         /* DBGDEVID */
842         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
843         /* DBGCLAIMSET */
844         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
845         /* DBGCLAIMCLR */
846         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
847         /* DBGAUTHSTATUS */
848         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
849 };
850
851 /* Trapped cp14 64bit registers */
852 static const struct sys_reg_desc cp14_64_regs[] = {
853         /* DBGDRAR (64bit) */
854         { Op1( 0), CRm( 1), .access = trap_raz_wi },
855
856         /* DBGDSAR (64bit) */
857         { Op1( 0), CRm( 2), .access = trap_raz_wi },
858 };
859
860 /*
861  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
862  * depending on the way they are accessed (as a 32bit or a 64bit
863  * register).
864  */
865 static const struct sys_reg_desc cp15_regs[] = {
866         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
867
868         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
869         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
870         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
871         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
872         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
873         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
874         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
875         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
876         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
877         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
878         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
879
880         /*
881          * DC{C,I,CI}SW operations:
882          */
883         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
884         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
885         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
886
887         /* PMU */
888         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
889         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
890         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
891         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
892         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
893         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
894         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
895         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
896         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
897         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
898         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
899         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
900         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
901
902         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
903         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
904         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
905         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
906
907         /* ICC_SRE */
908         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
909
910         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
911 };
912
913 static const struct sys_reg_desc cp15_64_regs[] = {
914         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
915         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
916         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
917 };
918
919 /* Target specific emulation tables */
920 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
921
922 void kvm_register_target_sys_reg_table(unsigned int target,
923                                        struct kvm_sys_reg_target_table *table)
924 {
925         target_tables[target] = table;
926 }
927
928 /* Get specific register table for this target. */
929 static const struct sys_reg_desc *get_target_table(unsigned target,
930                                                    bool mode_is_64,
931                                                    size_t *num)
932 {
933         struct kvm_sys_reg_target_table *table;
934
935         table = target_tables[target];
936         if (mode_is_64) {
937                 *num = table->table64.num;
938                 return table->table64.table;
939         } else {
940                 *num = table->table32.num;
941                 return table->table32.table;
942         }
943 }
944
945 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
946                                          const struct sys_reg_desc table[],
947                                          unsigned int num)
948 {
949         unsigned int i;
950
951         for (i = 0; i < num; i++) {
952                 const struct sys_reg_desc *r = &table[i];
953
954                 if (params->Op0 != r->Op0)
955                         continue;
956                 if (params->Op1 != r->Op1)
957                         continue;
958                 if (params->CRn != r->CRn)
959                         continue;
960                 if (params->CRm != r->CRm)
961                         continue;
962                 if (params->Op2 != r->Op2)
963                         continue;
964
965                 return r;
966         }
967         return NULL;
968 }
969
970 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
971 {
972         kvm_inject_undefined(vcpu);
973         return 1;
974 }
975
976 /*
977  * emulate_cp --  tries to match a sys_reg access in a handling table, and
978  *                call the corresponding trap handler.
979  *
980  * @params: pointer to the descriptor of the access
981  * @table: array of trap descriptors
982  * @num: size of the trap descriptor array
983  *
984  * Return 0 if the access has been handled, and -1 if not.
985  */
986 static int emulate_cp(struct kvm_vcpu *vcpu,
987                       struct sys_reg_params *params,
988                       const struct sys_reg_desc *table,
989                       size_t num)
990 {
991         const struct sys_reg_desc *r;
992
993         if (!table)
994                 return -1;      /* Not handled */
995
996         r = find_reg(params, table, num);
997
998         if (r) {
999                 /*
1000                  * Not having an accessor means that we have
1001                  * configured a trap that we don't know how to
1002                  * handle. This certainly qualifies as a gross bug
1003                  * that should be fixed right away.
1004                  */
1005                 BUG_ON(!r->access);
1006
1007                 if (likely(r->access(vcpu, params, r))) {
1008                         /* Skip instruction, since it was emulated */
1009                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1010                         /* Handled */
1011                         return 0;
1012                 }
1013         }
1014
1015         /* Not handled */
1016         return -1;
1017 }
1018
1019 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1020                                 struct sys_reg_params *params)
1021 {
1022         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1023         int cp;
1024
1025         switch(hsr_ec) {
1026         case ESR_ELx_EC_CP15_32:
1027         case ESR_ELx_EC_CP15_64:
1028                 cp = 15;
1029                 break;
1030         case ESR_ELx_EC_CP14_MR:
1031         case ESR_ELx_EC_CP14_64:
1032                 cp = 14;
1033                 break;
1034         default:
1035                 WARN_ON((cp = -1));
1036         }
1037
1038         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1039                 cp, *vcpu_pc(vcpu));
1040         print_sys_reg_instr(params);
1041         kvm_inject_undefined(vcpu);
1042 }
1043
1044 /**
1045  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1046  * @vcpu: The VCPU pointer
1047  * @run:  The kvm_run struct
1048  */
1049 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1050                             const struct sys_reg_desc *global,
1051                             size_t nr_global,
1052                             const struct sys_reg_desc *target_specific,
1053                             size_t nr_specific)
1054 {
1055         struct sys_reg_params params;
1056         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1057         int Rt = (hsr >> 5) & 0xf;
1058         int Rt2 = (hsr >> 10) & 0xf;
1059
1060         params.is_aarch32 = true;
1061         params.is_32bit = false;
1062         params.CRm = (hsr >> 1) & 0xf;
1063         params.is_write = ((hsr & 1) == 0);
1064
1065         params.Op0 = 0;
1066         params.Op1 = (hsr >> 16) & 0xf;
1067         params.Op2 = 0;
1068         params.CRn = 0;
1069
1070         /*
1071          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1072          * backends between AArch32 and AArch64, we get away with it.
1073          */
1074         if (params.is_write) {
1075                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1076                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1077         }
1078
1079         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1080                 goto out;
1081         if (!emulate_cp(vcpu, &params, global, nr_global))
1082                 goto out;
1083
1084         unhandled_cp_access(vcpu, &params);
1085
1086 out:
1087         /* Split up the value between registers for the read side */
1088         if (!params.is_write) {
1089                 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1090                 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1091         }
1092
1093         return 1;
1094 }
1095
1096 /**
1097  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1098  * @vcpu: The VCPU pointer
1099  * @run:  The kvm_run struct
1100  */
1101 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1102                             const struct sys_reg_desc *global,
1103                             size_t nr_global,
1104                             const struct sys_reg_desc *target_specific,
1105                             size_t nr_specific)
1106 {
1107         struct sys_reg_params params;
1108         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1109         int Rt  = (hsr >> 5) & 0xf;
1110
1111         params.is_aarch32 = true;
1112         params.is_32bit = true;
1113         params.CRm = (hsr >> 1) & 0xf;
1114         params.regval = vcpu_get_reg(vcpu, Rt);
1115         params.is_write = ((hsr & 1) == 0);
1116         params.CRn = (hsr >> 10) & 0xf;
1117         params.Op0 = 0;
1118         params.Op1 = (hsr >> 14) & 0x7;
1119         params.Op2 = (hsr >> 17) & 0x7;
1120
1121         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1122             !emulate_cp(vcpu, &params, global, nr_global)) {
1123                 if (!params.is_write)
1124                         vcpu_set_reg(vcpu, Rt, params.regval);
1125                 return 1;
1126         }
1127
1128         unhandled_cp_access(vcpu, &params);
1129         return 1;
1130 }
1131
1132 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1133 {
1134         const struct sys_reg_desc *target_specific;
1135         size_t num;
1136
1137         target_specific = get_target_table(vcpu->arch.target, false, &num);
1138         return kvm_handle_cp_64(vcpu,
1139                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1140                                 target_specific, num);
1141 }
1142
1143 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1144 {
1145         const struct sys_reg_desc *target_specific;
1146         size_t num;
1147
1148         target_specific = get_target_table(vcpu->arch.target, false, &num);
1149         return kvm_handle_cp_32(vcpu,
1150                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1151                                 target_specific, num);
1152 }
1153
1154 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1155 {
1156         return kvm_handle_cp_64(vcpu,
1157                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1158                                 NULL, 0);
1159 }
1160
1161 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1162 {
1163         return kvm_handle_cp_32(vcpu,
1164                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1165                                 NULL, 0);
1166 }
1167
1168 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1169                            struct sys_reg_params *params)
1170 {
1171         size_t num;
1172         const struct sys_reg_desc *table, *r;
1173
1174         table = get_target_table(vcpu->arch.target, true, &num);
1175
1176         /* Search target-specific then generic table. */
1177         r = find_reg(params, table, num);
1178         if (!r)
1179                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1180
1181         if (likely(r)) {
1182                 /*
1183                  * Not having an accessor means that we have
1184                  * configured a trap that we don't know how to
1185                  * handle. This certainly qualifies as a gross bug
1186                  * that should be fixed right away.
1187                  */
1188                 BUG_ON(!r->access);
1189
1190                 if (likely(r->access(vcpu, params, r))) {
1191                         /* Skip instruction, since it was emulated */
1192                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1193                         return 1;
1194                 }
1195                 /* If access function fails, it should complain. */
1196         } else {
1197                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1198                         *vcpu_pc(vcpu));
1199                 print_sys_reg_instr(params);
1200         }
1201         kvm_inject_undefined(vcpu);
1202         return 1;
1203 }
1204
1205 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1206                               const struct sys_reg_desc *table, size_t num)
1207 {
1208         unsigned long i;
1209
1210         for (i = 0; i < num; i++)
1211                 if (table[i].reset)
1212                         table[i].reset(vcpu, &table[i]);
1213 }
1214
1215 /**
1216  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1217  * @vcpu: The VCPU pointer
1218  * @run:  The kvm_run struct
1219  */
1220 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1221 {
1222         struct sys_reg_params params;
1223         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1224         int Rt = (esr >> 5) & 0x1f;
1225         int ret;
1226
1227         trace_kvm_handle_sys_reg(esr);
1228
1229         params.is_aarch32 = false;
1230         params.is_32bit = false;
1231         params.Op0 = (esr >> 20) & 3;
1232         params.Op1 = (esr >> 14) & 0x7;
1233         params.CRn = (esr >> 10) & 0xf;
1234         params.CRm = (esr >> 1) & 0xf;
1235         params.Op2 = (esr >> 17) & 0x7;
1236         params.regval = vcpu_get_reg(vcpu, Rt);
1237         params.is_write = !(esr & 1);
1238
1239         ret = emulate_sys_reg(vcpu, &params);
1240
1241         if (!params.is_write)
1242                 vcpu_set_reg(vcpu, Rt, params.regval);
1243         return ret;
1244 }
1245
1246 /******************************************************************************
1247  * Userspace API
1248  *****************************************************************************/
1249
1250 static bool index_to_params(u64 id, struct sys_reg_params *params)
1251 {
1252         switch (id & KVM_REG_SIZE_MASK) {
1253         case KVM_REG_SIZE_U64:
1254                 /* Any unused index bits means it's not valid. */
1255                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1256                               | KVM_REG_ARM_COPROC_MASK
1257                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1258                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1259                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1260                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1261                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1262                         return false;
1263                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1264                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1265                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1266                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1267                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1268                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1269                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1270                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1271                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1272                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1273                 return true;
1274         default:
1275                 return false;
1276         }
1277 }
1278
1279 /* Decode an index value, and find the sys_reg_desc entry. */
1280 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1281                                                     u64 id)
1282 {
1283         size_t num;
1284         const struct sys_reg_desc *table, *r;
1285         struct sys_reg_params params;
1286
1287         /* We only do sys_reg for now. */
1288         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1289                 return NULL;
1290
1291         if (!index_to_params(id, &params))
1292                 return NULL;
1293
1294         table = get_target_table(vcpu->arch.target, true, &num);
1295         r = find_reg(&params, table, num);
1296         if (!r)
1297                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1298
1299         /* Not saved in the sys_reg array? */
1300         if (r && !r->reg)
1301                 r = NULL;
1302
1303         return r;
1304 }
1305
1306 /*
1307  * These are the invariant sys_reg registers: we let the guest see the
1308  * host versions of these, so they're part of the guest state.
1309  *
1310  * A future CPU may provide a mechanism to present different values to
1311  * the guest, or a future kvm may trap them.
1312  */
1313
1314 #define FUNCTION_INVARIANT(reg)                                         \
1315         static void get_##reg(struct kvm_vcpu *v,                       \
1316                               const struct sys_reg_desc *r)             \
1317         {                                                               \
1318                 u64 val;                                                \
1319                                                                         \
1320                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1321                              : "=r" (val));                             \
1322                 ((struct sys_reg_desc *)r)->val = val;                  \
1323         }
1324
1325 FUNCTION_INVARIANT(midr_el1)
1326 FUNCTION_INVARIANT(ctr_el0)
1327 FUNCTION_INVARIANT(revidr_el1)
1328 FUNCTION_INVARIANT(id_pfr0_el1)
1329 FUNCTION_INVARIANT(id_pfr1_el1)
1330 FUNCTION_INVARIANT(id_dfr0_el1)
1331 FUNCTION_INVARIANT(id_afr0_el1)
1332 FUNCTION_INVARIANT(id_mmfr0_el1)
1333 FUNCTION_INVARIANT(id_mmfr1_el1)
1334 FUNCTION_INVARIANT(id_mmfr2_el1)
1335 FUNCTION_INVARIANT(id_mmfr3_el1)
1336 FUNCTION_INVARIANT(id_isar0_el1)
1337 FUNCTION_INVARIANT(id_isar1_el1)
1338 FUNCTION_INVARIANT(id_isar2_el1)
1339 FUNCTION_INVARIANT(id_isar3_el1)
1340 FUNCTION_INVARIANT(id_isar4_el1)
1341 FUNCTION_INVARIANT(id_isar5_el1)
1342 FUNCTION_INVARIANT(clidr_el1)
1343 FUNCTION_INVARIANT(aidr_el1)
1344
1345 /* ->val is filled in by kvm_sys_reg_table_init() */
1346 static struct sys_reg_desc invariant_sys_regs[] = {
1347         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1348           NULL, get_midr_el1 },
1349         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1350           NULL, get_revidr_el1 },
1351         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1352           NULL, get_id_pfr0_el1 },
1353         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1354           NULL, get_id_pfr1_el1 },
1355         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1356           NULL, get_id_dfr0_el1 },
1357         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1358           NULL, get_id_afr0_el1 },
1359         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1360           NULL, get_id_mmfr0_el1 },
1361         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1362           NULL, get_id_mmfr1_el1 },
1363         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1364           NULL, get_id_mmfr2_el1 },
1365         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1366           NULL, get_id_mmfr3_el1 },
1367         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1368           NULL, get_id_isar0_el1 },
1369         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1370           NULL, get_id_isar1_el1 },
1371         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1372           NULL, get_id_isar2_el1 },
1373         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1374           NULL, get_id_isar3_el1 },
1375         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1376           NULL, get_id_isar4_el1 },
1377         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1378           NULL, get_id_isar5_el1 },
1379         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1380           NULL, get_clidr_el1 },
1381         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1382           NULL, get_aidr_el1 },
1383         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1384           NULL, get_ctr_el0 },
1385 };
1386
1387 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1388 {
1389         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1390                 return -EFAULT;
1391         return 0;
1392 }
1393
1394 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1395 {
1396         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1397                 return -EFAULT;
1398         return 0;
1399 }
1400
1401 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1402 {
1403         struct sys_reg_params params;
1404         const struct sys_reg_desc *r;
1405
1406         if (!index_to_params(id, &params))
1407                 return -ENOENT;
1408
1409         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1410         if (!r)
1411                 return -ENOENT;
1412
1413         return reg_to_user(uaddr, &r->val, id);
1414 }
1415
1416 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1417 {
1418         struct sys_reg_params params;
1419         const struct sys_reg_desc *r;
1420         int err;
1421         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1422
1423         if (!index_to_params(id, &params))
1424                 return -ENOENT;
1425         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1426         if (!r)
1427                 return -ENOENT;
1428
1429         err = reg_from_user(&val, uaddr, id);
1430         if (err)
1431                 return err;
1432
1433         /* This is what we mean by invariant: you can't change it. */
1434         if (r->val != val)
1435                 return -EINVAL;
1436
1437         return 0;
1438 }
1439
1440 static bool is_valid_cache(u32 val)
1441 {
1442         u32 level, ctype;
1443
1444         if (val >= CSSELR_MAX)
1445                 return false;
1446
1447         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1448         level = (val >> 1);
1449         ctype = (cache_levels >> (level * 3)) & 7;
1450
1451         switch (ctype) {
1452         case 0: /* No cache */
1453                 return false;
1454         case 1: /* Instruction cache only */
1455                 return (val & 1);
1456         case 2: /* Data cache only */
1457         case 4: /* Unified cache */
1458                 return !(val & 1);
1459         case 3: /* Separate instruction and data caches */
1460                 return true;
1461         default: /* Reserved: we can't know instruction or data. */
1462                 return false;
1463         }
1464 }
1465
1466 static int demux_c15_get(u64 id, void __user *uaddr)
1467 {
1468         u32 val;
1469         u32 __user *uval = uaddr;
1470
1471         /* Fail if we have unknown bits set. */
1472         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1473                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1474                 return -ENOENT;
1475
1476         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1477         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1478                 if (KVM_REG_SIZE(id) != 4)
1479                         return -ENOENT;
1480                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1481                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1482                 if (!is_valid_cache(val))
1483                         return -ENOENT;
1484
1485                 return put_user(get_ccsidr(val), uval);
1486         default:
1487                 return -ENOENT;
1488         }
1489 }
1490
1491 static int demux_c15_set(u64 id, void __user *uaddr)
1492 {
1493         u32 val, newval;
1494         u32 __user *uval = uaddr;
1495
1496         /* Fail if we have unknown bits set. */
1497         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1498                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1499                 return -ENOENT;
1500
1501         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1502         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1503                 if (KVM_REG_SIZE(id) != 4)
1504                         return -ENOENT;
1505                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1506                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1507                 if (!is_valid_cache(val))
1508                         return -ENOENT;
1509
1510                 if (get_user(newval, uval))
1511                         return -EFAULT;
1512
1513                 /* This is also invariant: you can't change it. */
1514                 if (newval != get_ccsidr(val))
1515                         return -EINVAL;
1516                 return 0;
1517         default:
1518                 return -ENOENT;
1519         }
1520 }
1521
1522 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1523 {
1524         const struct sys_reg_desc *r;
1525         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1526
1527         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1528                 return demux_c15_get(reg->id, uaddr);
1529
1530         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1531                 return -ENOENT;
1532
1533         r = index_to_sys_reg_desc(vcpu, reg->id);
1534         if (!r)
1535                 return get_invariant_sys_reg(reg->id, uaddr);
1536
1537         if (r->get_user)
1538                 return (r->get_user)(vcpu, r, reg, uaddr);
1539
1540         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1541 }
1542
1543 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1544 {
1545         const struct sys_reg_desc *r;
1546         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1547
1548         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1549                 return demux_c15_set(reg->id, uaddr);
1550
1551         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1552                 return -ENOENT;
1553
1554         r = index_to_sys_reg_desc(vcpu, reg->id);
1555         if (!r)
1556                 return set_invariant_sys_reg(reg->id, uaddr);
1557
1558         if (r->set_user)
1559                 return (r->set_user)(vcpu, r, reg, uaddr);
1560
1561         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1562 }
1563
1564 static unsigned int num_demux_regs(void)
1565 {
1566         unsigned int i, count = 0;
1567
1568         for (i = 0; i < CSSELR_MAX; i++)
1569                 if (is_valid_cache(i))
1570                         count++;
1571
1572         return count;
1573 }
1574
1575 static int write_demux_regids(u64 __user *uindices)
1576 {
1577         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1578         unsigned int i;
1579
1580         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1581         for (i = 0; i < CSSELR_MAX; i++) {
1582                 if (!is_valid_cache(i))
1583                         continue;
1584                 if (put_user(val | i, uindices))
1585                         return -EFAULT;
1586                 uindices++;
1587         }
1588         return 0;
1589 }
1590
1591 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1592 {
1593         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1594                 KVM_REG_ARM64_SYSREG |
1595                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1596                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1597                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1598                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1599                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1600 }
1601
1602 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1603 {
1604         if (!*uind)
1605                 return true;
1606
1607         if (put_user(sys_reg_to_index(reg), *uind))
1608                 return false;
1609
1610         (*uind)++;
1611         return true;
1612 }
1613
1614 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1615 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1616 {
1617         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1618         unsigned int total = 0;
1619         size_t num;
1620
1621         /* We check for duplicates here, to allow arch-specific overrides. */
1622         i1 = get_target_table(vcpu->arch.target, true, &num);
1623         end1 = i1 + num;
1624         i2 = sys_reg_descs;
1625         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1626
1627         BUG_ON(i1 == end1 || i2 == end2);
1628
1629         /* Walk carefully, as both tables may refer to the same register. */
1630         while (i1 || i2) {
1631                 int cmp = cmp_sys_reg(i1, i2);
1632                 /* target-specific overrides generic entry. */
1633                 if (cmp <= 0) {
1634                         /* Ignore registers we trap but don't save. */
1635                         if (i1->reg) {
1636                                 if (!copy_reg_to_user(i1, &uind))
1637                                         return -EFAULT;
1638                                 total++;
1639                         }
1640                 } else {
1641                         /* Ignore registers we trap but don't save. */
1642                         if (i2->reg) {
1643                                 if (!copy_reg_to_user(i2, &uind))
1644                                         return -EFAULT;
1645                                 total++;
1646                         }
1647                 }
1648
1649                 if (cmp <= 0 && ++i1 == end1)
1650                         i1 = NULL;
1651                 if (cmp >= 0 && ++i2 == end2)
1652                         i2 = NULL;
1653         }
1654         return total;
1655 }
1656
1657 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1658 {
1659         return ARRAY_SIZE(invariant_sys_regs)
1660                 + num_demux_regs()
1661                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1662 }
1663
1664 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1665 {
1666         unsigned int i;
1667         int err;
1668
1669         /* Then give them all the invariant registers' indices. */
1670         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1671                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1672                         return -EFAULT;
1673                 uindices++;
1674         }
1675
1676         err = walk_sys_regs(vcpu, uindices);
1677         if (err < 0)
1678                 return err;
1679         uindices += err;
1680
1681         return write_demux_regids(uindices);
1682 }
1683
1684 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1685 {
1686         unsigned int i;
1687
1688         for (i = 1; i < n; i++) {
1689                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1690                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1691                         return 1;
1692                 }
1693         }
1694
1695         return 0;
1696 }
1697
1698 void kvm_sys_reg_table_init(void)
1699 {
1700         unsigned int i;
1701         struct sys_reg_desc clidr;
1702
1703         /* Make sure tables are unique and in order. */
1704         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1705         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1706         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1707         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1708         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1709         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1710
1711         /* We abuse the reset function to overwrite the table itself. */
1712         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1713                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1714
1715         /*
1716          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1717          *
1718          *   If software reads the Cache Type fields from Ctype1
1719          *   upwards, once it has seen a value of 0b000, no caches
1720          *   exist at further-out levels of the hierarchy. So, for
1721          *   example, if Ctype3 is the first Cache Type field with a
1722          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1723          *   ignored.
1724          */
1725         get_clidr_el1(NULL, &clidr); /* Ugly... */
1726         cache_levels = clidr.val;
1727         for (i = 0; i < 7; i++)
1728                 if (((cache_levels >> (i*3)) & 7) == 0)
1729                         break;
1730         /* Clear all higher bits. */
1731         cache_levels &= (1 << (i*3))-1;
1732 }
1733
1734 /**
1735  * kvm_reset_sys_regs - sets system registers to reset value
1736  * @vcpu: The VCPU pointer
1737  *
1738  * This function finds the right table above and sets the registers on the
1739  * virtual CPU struct to their architecturally defined reset values.
1740  */
1741 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1742 {
1743         size_t num;
1744         const struct sys_reg_desc *table;
1745
1746         /* Catch someone adding a register without putting in reset entry. */
1747         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1748
1749         /* Generic chip reset first (so target could override). */
1750         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1751
1752         table = get_target_table(vcpu->arch.target, true, &num);
1753         reset_sys_reg_descs(vcpu, table, num);
1754
1755         for (num = 1; num < NR_SYS_REGS; num++)
1756                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1757                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1758 }