MIPS: BMIPS: Explicitly configure reset vectors prior to secondary boot
[cascardo/linux.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39
40 static int __maybe_unused max_cpus = 1;
41
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46
47 #define RESET_FROM_KSEG0                0x80080800
48 #define RESET_FROM_KSEG1                0xa0080800
49
50 static void bmips_set_reset_vec(int cpu, u32 val);
51
52 #ifdef CONFIG_SMP
53
54 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
55 unsigned long bmips_smp_boot_sp;
56 unsigned long bmips_smp_boot_gp;
57
58 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
59 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
60 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
61 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
62
63 /* SW interrupts 0,1 are used for interprocessor signaling */
64 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
65 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
66
67 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
68 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
69 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
71
72 static void __init bmips_smp_setup(void)
73 {
74         int i, cpu = 1, boot_cpu = 0;
75         int cpu_hw_intr;
76
77         switch (current_cpu_type()) {
78         case CPU_BMIPS4350:
79         case CPU_BMIPS4380:
80                 /* arbitration priority */
81                 clear_c0_brcm_cmt_ctrl(0x30);
82
83                 /* NBK and weak order flags */
84                 set_c0_brcm_config_0(0x30000);
85
86                 /* Find out if we are running on TP0 or TP1 */
87                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
88
89                 /*
90                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
91                  * thread
92                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
93                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
94                  */
95                 if (boot_cpu == 0)
96                         cpu_hw_intr = 0x02;
97                 else
98                         cpu_hw_intr = 0x1d;
99
100                 change_c0_brcm_cmt_intr(0xf8018000,
101                                         (cpu_hw_intr << 27) | (0x03 << 15));
102
103                 /* single core, 2 threads (2 pipelines) */
104                 max_cpus = 2;
105
106                 break;
107         case CPU_BMIPS5000:
108                 /* enable raceless SW interrupts */
109                 set_c0_brcm_config(0x03 << 22);
110
111                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
112                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
113
114                 /* N cores, 2 threads per core */
115                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
116
117                 /* clear any pending SW interrupts */
118                 for (i = 0; i < max_cpus; i++) {
119                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
120                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
121                 }
122
123                 break;
124         default:
125                 max_cpus = 1;
126         }
127
128         if (!bmips_smp_enabled)
129                 max_cpus = 1;
130
131         /* this can be overridden by the BSP */
132         if (!board_ebase_setup)
133                 board_ebase_setup = &bmips_ebase_setup;
134
135         __cpu_number_map[boot_cpu] = 0;
136         __cpu_logical_map[0] = boot_cpu;
137
138         for (i = 0; i < max_cpus; i++) {
139                 if (i != boot_cpu) {
140                         __cpu_number_map[i] = cpu;
141                         __cpu_logical_map[cpu] = i;
142                         cpu++;
143                 }
144                 set_cpu_possible(i, 1);
145                 set_cpu_present(i, 1);
146         }
147 }
148
149 /*
150  * IPI IRQ setup - runs on CPU0
151  */
152 static void bmips_prepare_cpus(unsigned int max_cpus)
153 {
154         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
155
156         switch (current_cpu_type()) {
157         case CPU_BMIPS4350:
158         case CPU_BMIPS4380:
159                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
160                 break;
161         case CPU_BMIPS5000:
162                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
163                 break;
164         default:
165                 return;
166         }
167
168         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
169                         "smp_ipi0", NULL))
170                 panic("Can't request IPI0 interrupt");
171         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
172                         "smp_ipi1", NULL))
173                 panic("Can't request IPI1 interrupt");
174 }
175
176 /*
177  * Tell the hardware to boot CPUx - runs on CPU0
178  */
179 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
180 {
181         bmips_smp_boot_sp = __KSTK_TOS(idle);
182         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
183         mb();
184
185         /*
186          * Initial boot sequence for secondary CPU:
187          *   bmips_reset_nmi_vec @ a000_0000 ->
188          *   bmips_smp_entry ->
189          *   plat_wired_tlb_setup (cached function call; optional) ->
190          *   start_secondary (cached jump)
191          *
192          * Warm restart sequence:
193          *   play_dead WAIT loop ->
194          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
195          *   eret to play_dead ->
196          *   bmips_secondary_reentry ->
197          *   start_secondary
198          */
199
200         pr_info("SMP: Booting CPU%d...\n", cpu);
201
202         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
203                 /* kseg1 might not exist if this CPU enabled XKS01 */
204                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
205
206                 switch (current_cpu_type()) {
207                 case CPU_BMIPS4350:
208                 case CPU_BMIPS4380:
209                         bmips43xx_send_ipi_single(cpu, 0);
210                         break;
211                 case CPU_BMIPS5000:
212                         bmips5000_send_ipi_single(cpu, 0);
213                         break;
214                 }
215         } else {
216                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
217
218                 switch (current_cpu_type()) {
219                 case CPU_BMIPS4350:
220                 case CPU_BMIPS4380:
221                         /* Reset slave TP1 if booting from TP0 */
222                         if (cpu_logical_map(cpu) == 1)
223                                 set_c0_brcm_cmt_ctrl(0x01);
224                         break;
225                 case CPU_BMIPS5000:
226                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
227                         break;
228                 }
229                 cpumask_set_cpu(cpu, &bmips_booted_mask);
230         }
231 }
232
233 /*
234  * Early setup - runs on secondary CPU after cache probe
235  */
236 static void bmips_init_secondary(void)
237 {
238         switch (current_cpu_type()) {
239         case CPU_BMIPS4350:
240         case CPU_BMIPS4380:
241                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
242                 break;
243         case CPU_BMIPS5000:
244                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
245                 break;
246         }
247 }
248
249 /*
250  * Late setup - runs on secondary CPU before entering the idle loop
251  */
252 static void bmips_smp_finish(void)
253 {
254         pr_info("SMP: CPU%d is running\n", smp_processor_id());
255
256         /* make sure there won't be a timer interrupt for a little while */
257         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
258
259         irq_enable_hazard();
260         set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
261         irq_enable_hazard();
262 }
263
264 /*
265  * BMIPS5000 raceless IPIs
266  *
267  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
268  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
269  * IPI1 is used for SMP_CALL_FUNCTION
270  */
271
272 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
273 {
274         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
275 }
276
277 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
278 {
279         int action = irq - IPI0_IRQ;
280
281         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
282
283         if (action == 0)
284                 scheduler_ipi();
285         else
286                 smp_call_function_interrupt();
287
288         return IRQ_HANDLED;
289 }
290
291 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
292         unsigned int action)
293 {
294         unsigned int i;
295
296         for_each_cpu(i, mask)
297                 bmips5000_send_ipi_single(i, action);
298 }
299
300 /*
301  * BMIPS43xx racey IPIs
302  *
303  * We use one inbound SW IRQ for each CPU.
304  *
305  * A spinlock must be held in order to keep CPUx from accidentally clearing
306  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
307  * same spinlock is used to protect the action masks.
308  */
309
310 static DEFINE_SPINLOCK(ipi_lock);
311 static DEFINE_PER_CPU(int, ipi_action_mask);
312
313 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
314 {
315         unsigned long flags;
316
317         spin_lock_irqsave(&ipi_lock, flags);
318         set_c0_cause(cpu ? C_SW1 : C_SW0);
319         per_cpu(ipi_action_mask, cpu) |= action;
320         irq_enable_hazard();
321         spin_unlock_irqrestore(&ipi_lock, flags);
322 }
323
324 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
325 {
326         unsigned long flags;
327         int action, cpu = irq - IPI0_IRQ;
328
329         spin_lock_irqsave(&ipi_lock, flags);
330         action = __this_cpu_read(ipi_action_mask);
331         per_cpu(ipi_action_mask, cpu) = 0;
332         clear_c0_cause(cpu ? C_SW1 : C_SW0);
333         spin_unlock_irqrestore(&ipi_lock, flags);
334
335         if (action & SMP_RESCHEDULE_YOURSELF)
336                 scheduler_ipi();
337         if (action & SMP_CALL_FUNCTION)
338                 smp_call_function_interrupt();
339
340         return IRQ_HANDLED;
341 }
342
343 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
344         unsigned int action)
345 {
346         unsigned int i;
347
348         for_each_cpu(i, mask)
349                 bmips43xx_send_ipi_single(i, action);
350 }
351
352 #ifdef CONFIG_HOTPLUG_CPU
353
354 static int bmips_cpu_disable(void)
355 {
356         unsigned int cpu = smp_processor_id();
357
358         if (cpu == 0)
359                 return -EBUSY;
360
361         pr_info("SMP: CPU%d is offline\n", cpu);
362
363         set_cpu_online(cpu, false);
364         cpu_clear(cpu, cpu_callin_map);
365         clear_c0_status(IE_IRQ5);
366
367         local_flush_tlb_all();
368         local_flush_icache_range(0, ~0);
369
370         return 0;
371 }
372
373 static void bmips_cpu_die(unsigned int cpu)
374 {
375 }
376
377 void __ref play_dead(void)
378 {
379         idle_task_exit();
380
381         /* flush data cache */
382         _dma_cache_wback_inv(0, ~0);
383
384         /*
385          * Wakeup is on SW0 or SW1; disable everything else
386          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
387          * IRQ handlers; this clears ST0_IE and returns immediately.
388          */
389         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
390         change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
391                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
392         irq_disable_hazard();
393
394         /*
395          * wait for SW interrupt from bmips_boot_secondary(), then jump
396          * back to start_secondary()
397          */
398         __asm__ __volatile__(
399         "       wait\n"
400         "       j       bmips_secondary_reentry\n"
401         : : : "memory");
402 }
403
404 #endif /* CONFIG_HOTPLUG_CPU */
405
406 struct plat_smp_ops bmips43xx_smp_ops = {
407         .smp_setup              = bmips_smp_setup,
408         .prepare_cpus           = bmips_prepare_cpus,
409         .boot_secondary         = bmips_boot_secondary,
410         .smp_finish             = bmips_smp_finish,
411         .init_secondary         = bmips_init_secondary,
412         .send_ipi_single        = bmips43xx_send_ipi_single,
413         .send_ipi_mask          = bmips43xx_send_ipi_mask,
414 #ifdef CONFIG_HOTPLUG_CPU
415         .cpu_disable            = bmips_cpu_disable,
416         .cpu_die                = bmips_cpu_die,
417 #endif
418 };
419
420 struct plat_smp_ops bmips5000_smp_ops = {
421         .smp_setup              = bmips_smp_setup,
422         .prepare_cpus           = bmips_prepare_cpus,
423         .boot_secondary         = bmips_boot_secondary,
424         .smp_finish             = bmips_smp_finish,
425         .init_secondary         = bmips_init_secondary,
426         .send_ipi_single        = bmips5000_send_ipi_single,
427         .send_ipi_mask          = bmips5000_send_ipi_mask,
428 #ifdef CONFIG_HOTPLUG_CPU
429         .cpu_disable            = bmips_cpu_disable,
430         .cpu_die                = bmips_cpu_die,
431 #endif
432 };
433
434 #endif /* CONFIG_SMP */
435
436 /***********************************************************************
437  * BMIPS vector relocation
438  * This is primarily used for SMP boot, but it is applicable to some
439  * UP BMIPS systems as well.
440  ***********************************************************************/
441
442 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
443 {
444         memcpy((void *)dst, start, end - start);
445         dma_cache_wback((unsigned long)start, end - start);
446         local_flush_icache_range(dst, dst + (end - start));
447         instruction_hazard();
448 }
449
450 static inline void bmips_nmi_handler_setup(void)
451 {
452         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
453                 &bmips_reset_nmi_vec_end);
454         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
455                 &bmips_smp_int_vec_end);
456 }
457
458 struct reset_vec_info {
459         int cpu;
460         u32 val;
461 };
462
463 static void bmips_set_reset_vec_remote(void *vinfo)
464 {
465         struct reset_vec_info *info = vinfo;
466         int shift = info->cpu & 0x01 ? 16 : 0;
467         u32 mask = ~(0xffff << shift), val = info->val >> 16;
468
469         preempt_disable();
470         if (smp_processor_id() > 0) {
471                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
472                                          info, 1);
473         } else {
474                 if (info->cpu & 0x02) {
475                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
476                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
477                         bmips_read_zscm_reg(0xa0);
478                 } else {
479                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
480                                               (val << shift));
481                 }
482         }
483         preempt_enable();
484 }
485
486 static void bmips_set_reset_vec(int cpu, u32 val)
487 {
488         struct reset_vec_info info;
489
490         if (current_cpu_type() == CPU_BMIPS5000) {
491                 /* this needs to run from CPU0 (which is always online) */
492                 info.cpu = cpu;
493                 info.val = val;
494                 bmips_set_reset_vec_remote(&info);
495         } else {
496                 void __iomem *cbr = BMIPS_GET_CBR();
497
498                 if (cpu == 0)
499                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
500                 else {
501                         if (current_cpu_type() != CPU_BMIPS4380)
502                                 return;
503                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
504                 }
505         }
506         __sync();
507         back_to_back_c0_hazard();
508 }
509
510 void bmips_ebase_setup(void)
511 {
512         unsigned long new_ebase = ebase;
513
514         BUG_ON(ebase != CKSEG0);
515
516         switch (current_cpu_type()) {
517         case CPU_BMIPS4350:
518                 /*
519                  * BMIPS4350 cannot relocate the normal vectors, but it
520                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
521                  * the relocated BEV=1, IV=0 general exception vector @
522                  * 0xa000_0380.
523                  *
524                  * set_uncached_handler() is used here because:
525                  *  - CPU1 will run this from uncached space
526                  *  - None of the cacheflush functions are set up yet
527                  */
528                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
529                         &bmips_smp_int_vec, 0x80);
530                 __sync();
531                 return;
532         case CPU_BMIPS3300:
533         case CPU_BMIPS4380:
534                 /*
535                  * 0x8000_0000: reset/NMI (initially in kseg1)
536                  * 0x8000_0400: normal vectors
537                  */
538                 new_ebase = 0x80000400;
539                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
540                 break;
541         case CPU_BMIPS5000:
542                 /*
543                  * 0x8000_0000: reset/NMI (initially in kseg1)
544                  * 0x8000_1000: normal vectors
545                  */
546                 new_ebase = 0x80001000;
547                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
548                 write_c0_ebase(new_ebase);
549                 break;
550         default:
551                 return;
552         }
553
554         board_nmi_handler_setup = &bmips_nmi_handler_setup;
555         ebase = new_ebase;
556 }
557
558 asmlinkage void __weak plat_wired_tlb_setup(void)
559 {
560         /*
561          * Called when starting/restarting a secondary CPU.
562          * Kernel stacks and other important data might only be accessible
563          * once the wired entries are present.
564          */
565 }