MIPS: BMIPS: Introduce helper function to change the reset vector
[cascardo/linux.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39
40 static int __maybe_unused max_cpus = 1;
41
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46
47 #define RESET_FROM_KSEG0                0x80080800
48 #define RESET_FROM_KSEG1                0xa0080800
49
50 #ifdef CONFIG_SMP
51
52 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
53 unsigned long bmips_smp_boot_sp;
54 unsigned long bmips_smp_boot_gp;
55
56 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
57 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
58 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
59 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
60
61 /* SW interrupts 0,1 are used for interprocessor signaling */
62 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
63 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
64
65 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
66 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
67 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
68 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
69
70 static void __init bmips_smp_setup(void)
71 {
72         int i, cpu = 1, boot_cpu = 0;
73         int cpu_hw_intr;
74
75         switch (current_cpu_type()) {
76         case CPU_BMIPS4350:
77         case CPU_BMIPS4380:
78                 /* arbitration priority */
79                 clear_c0_brcm_cmt_ctrl(0x30);
80
81                 /* NBK and weak order flags */
82                 set_c0_brcm_config_0(0x30000);
83
84                 /* Find out if we are running on TP0 or TP1 */
85                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
86
87                 /*
88                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
89                  * thread
90                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
91                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
92                  */
93                 if (boot_cpu == 0)
94                         cpu_hw_intr = 0x02;
95                 else
96                         cpu_hw_intr = 0x1d;
97
98                 change_c0_brcm_cmt_intr(0xf8018000,
99                                         (cpu_hw_intr << 27) | (0x03 << 15));
100
101                 /* single core, 2 threads (2 pipelines) */
102                 max_cpus = 2;
103
104                 break;
105         case CPU_BMIPS5000:
106                 /* enable raceless SW interrupts */
107                 set_c0_brcm_config(0x03 << 22);
108
109                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
110                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
111
112                 /* N cores, 2 threads per core */
113                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
114
115                 /* clear any pending SW interrupts */
116                 for (i = 0; i < max_cpus; i++) {
117                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
118                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
119                 }
120
121                 break;
122         default:
123                 max_cpus = 1;
124         }
125
126         if (!bmips_smp_enabled)
127                 max_cpus = 1;
128
129         /* this can be overridden by the BSP */
130         if (!board_ebase_setup)
131                 board_ebase_setup = &bmips_ebase_setup;
132
133         __cpu_number_map[boot_cpu] = 0;
134         __cpu_logical_map[0] = boot_cpu;
135
136         for (i = 0; i < max_cpus; i++) {
137                 if (i != boot_cpu) {
138                         __cpu_number_map[i] = cpu;
139                         __cpu_logical_map[cpu] = i;
140                         cpu++;
141                 }
142                 set_cpu_possible(i, 1);
143                 set_cpu_present(i, 1);
144         }
145 }
146
147 /*
148  * IPI IRQ setup - runs on CPU0
149  */
150 static void bmips_prepare_cpus(unsigned int max_cpus)
151 {
152         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
153
154         switch (current_cpu_type()) {
155         case CPU_BMIPS4350:
156         case CPU_BMIPS4380:
157                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
158                 break;
159         case CPU_BMIPS5000:
160                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
161                 break;
162         default:
163                 return;
164         }
165
166         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
167                         "smp_ipi0", NULL))
168                 panic("Can't request IPI0 interrupt");
169         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
170                         "smp_ipi1", NULL))
171                 panic("Can't request IPI1 interrupt");
172 }
173
174 /*
175  * Tell the hardware to boot CPUx - runs on CPU0
176  */
177 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
178 {
179         bmips_smp_boot_sp = __KSTK_TOS(idle);
180         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
181         mb();
182
183         /*
184          * Initial boot sequence for secondary CPU:
185          *   bmips_reset_nmi_vec @ a000_0000 ->
186          *   bmips_smp_entry ->
187          *   plat_wired_tlb_setup (cached function call; optional) ->
188          *   start_secondary (cached jump)
189          *
190          * Warm restart sequence:
191          *   play_dead WAIT loop ->
192          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
193          *   eret to play_dead ->
194          *   bmips_secondary_reentry ->
195          *   start_secondary
196          */
197
198         pr_info("SMP: Booting CPU%d...\n", cpu);
199
200         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
201                 switch (current_cpu_type()) {
202                 case CPU_BMIPS4350:
203                 case CPU_BMIPS4380:
204                         bmips43xx_send_ipi_single(cpu, 0);
205                         break;
206                 case CPU_BMIPS5000:
207                         bmips5000_send_ipi_single(cpu, 0);
208                         break;
209                 }
210         }
211         else {
212                 switch (current_cpu_type()) {
213                 case CPU_BMIPS4350:
214                 case CPU_BMIPS4380:
215                         /* Reset slave TP1 if booting from TP0 */
216                         if (cpu_logical_map(cpu) == 1)
217                                 set_c0_brcm_cmt_ctrl(0x01);
218                         break;
219                 case CPU_BMIPS5000:
220                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
221                         break;
222                 }
223                 cpumask_set_cpu(cpu, &bmips_booted_mask);
224         }
225 }
226
227 /*
228  * Early setup - runs on secondary CPU after cache probe
229  */
230 static void bmips_init_secondary(void)
231 {
232         /* move NMI vector to kseg0, in case XKS01 is enabled */
233
234         void __iomem *cbr;
235         unsigned long old_vec;
236         unsigned long relo_vector;
237         int boot_cpu;
238
239         switch (current_cpu_type()) {
240         case CPU_BMIPS4350:
241         case CPU_BMIPS4380:
242                 cbr = BMIPS_GET_CBR();
243
244                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
245                 relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
246                                   BMIPS_RELO_VECTOR_CONTROL_1;
247
248                 old_vec = __raw_readl(cbr + relo_vector);
249                 __raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
250
251                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
252                 break;
253         case CPU_BMIPS5000:
254                 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
255                         (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
256
257                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258                 break;
259         }
260 }
261
262 /*
263  * Late setup - runs on secondary CPU before entering the idle loop
264  */
265 static void bmips_smp_finish(void)
266 {
267         pr_info("SMP: CPU%d is running\n", smp_processor_id());
268
269         /* make sure there won't be a timer interrupt for a little while */
270         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
271
272         irq_enable_hazard();
273         set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
274         irq_enable_hazard();
275 }
276
277 /*
278  * BMIPS5000 raceless IPIs
279  *
280  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
281  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
282  * IPI1 is used for SMP_CALL_FUNCTION
283  */
284
285 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
286 {
287         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
288 }
289
290 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
291 {
292         int action = irq - IPI0_IRQ;
293
294         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
295
296         if (action == 0)
297                 scheduler_ipi();
298         else
299                 smp_call_function_interrupt();
300
301         return IRQ_HANDLED;
302 }
303
304 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
305         unsigned int action)
306 {
307         unsigned int i;
308
309         for_each_cpu(i, mask)
310                 bmips5000_send_ipi_single(i, action);
311 }
312
313 /*
314  * BMIPS43xx racey IPIs
315  *
316  * We use one inbound SW IRQ for each CPU.
317  *
318  * A spinlock must be held in order to keep CPUx from accidentally clearing
319  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
320  * same spinlock is used to protect the action masks.
321  */
322
323 static DEFINE_SPINLOCK(ipi_lock);
324 static DEFINE_PER_CPU(int, ipi_action_mask);
325
326 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
327 {
328         unsigned long flags;
329
330         spin_lock_irqsave(&ipi_lock, flags);
331         set_c0_cause(cpu ? C_SW1 : C_SW0);
332         per_cpu(ipi_action_mask, cpu) |= action;
333         irq_enable_hazard();
334         spin_unlock_irqrestore(&ipi_lock, flags);
335 }
336
337 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
338 {
339         unsigned long flags;
340         int action, cpu = irq - IPI0_IRQ;
341
342         spin_lock_irqsave(&ipi_lock, flags);
343         action = __this_cpu_read(ipi_action_mask);
344         per_cpu(ipi_action_mask, cpu) = 0;
345         clear_c0_cause(cpu ? C_SW1 : C_SW0);
346         spin_unlock_irqrestore(&ipi_lock, flags);
347
348         if (action & SMP_RESCHEDULE_YOURSELF)
349                 scheduler_ipi();
350         if (action & SMP_CALL_FUNCTION)
351                 smp_call_function_interrupt();
352
353         return IRQ_HANDLED;
354 }
355
356 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
357         unsigned int action)
358 {
359         unsigned int i;
360
361         for_each_cpu(i, mask)
362                 bmips43xx_send_ipi_single(i, action);
363 }
364
365 #ifdef CONFIG_HOTPLUG_CPU
366
367 static int bmips_cpu_disable(void)
368 {
369         unsigned int cpu = smp_processor_id();
370
371         if (cpu == 0)
372                 return -EBUSY;
373
374         pr_info("SMP: CPU%d is offline\n", cpu);
375
376         set_cpu_online(cpu, false);
377         cpu_clear(cpu, cpu_callin_map);
378
379         local_flush_tlb_all();
380         local_flush_icache_range(0, ~0);
381
382         return 0;
383 }
384
385 static void bmips_cpu_die(unsigned int cpu)
386 {
387 }
388
389 void __ref play_dead(void)
390 {
391         idle_task_exit();
392
393         /* flush data cache */
394         _dma_cache_wback_inv(0, ~0);
395
396         /*
397          * Wakeup is on SW0 or SW1; disable everything else
398          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399          * IRQ handlers; this clears ST0_IE and returns immediately.
400          */
401         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402         change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
403                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
404         irq_disable_hazard();
405
406         /*
407          * wait for SW interrupt from bmips_boot_secondary(), then jump
408          * back to start_secondary()
409          */
410         __asm__ __volatile__(
411         "       wait\n"
412         "       j       bmips_secondary_reentry\n"
413         : : : "memory");
414 }
415
416 #endif /* CONFIG_HOTPLUG_CPU */
417
418 struct plat_smp_ops bmips43xx_smp_ops = {
419         .smp_setup              = bmips_smp_setup,
420         .prepare_cpus           = bmips_prepare_cpus,
421         .boot_secondary         = bmips_boot_secondary,
422         .smp_finish             = bmips_smp_finish,
423         .init_secondary         = bmips_init_secondary,
424         .send_ipi_single        = bmips43xx_send_ipi_single,
425         .send_ipi_mask          = bmips43xx_send_ipi_mask,
426 #ifdef CONFIG_HOTPLUG_CPU
427         .cpu_disable            = bmips_cpu_disable,
428         .cpu_die                = bmips_cpu_die,
429 #endif
430 };
431
432 struct plat_smp_ops bmips5000_smp_ops = {
433         .smp_setup              = bmips_smp_setup,
434         .prepare_cpus           = bmips_prepare_cpus,
435         .boot_secondary         = bmips_boot_secondary,
436         .smp_finish             = bmips_smp_finish,
437         .init_secondary         = bmips_init_secondary,
438         .send_ipi_single        = bmips5000_send_ipi_single,
439         .send_ipi_mask          = bmips5000_send_ipi_mask,
440 #ifdef CONFIG_HOTPLUG_CPU
441         .cpu_disable            = bmips_cpu_disable,
442         .cpu_die                = bmips_cpu_die,
443 #endif
444 };
445
446 #endif /* CONFIG_SMP */
447
448 /***********************************************************************
449  * BMIPS vector relocation
450  * This is primarily used for SMP boot, but it is applicable to some
451  * UP BMIPS systems as well.
452  ***********************************************************************/
453
454 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
455 {
456         memcpy((void *)dst, start, end - start);
457         dma_cache_wback((unsigned long)start, end - start);
458         local_flush_icache_range(dst, dst + (end - start));
459         instruction_hazard();
460 }
461
462 static inline void bmips_nmi_handler_setup(void)
463 {
464         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
465                 &bmips_reset_nmi_vec_end);
466         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
467                 &bmips_smp_int_vec_end);
468 }
469
470 struct reset_vec_info {
471         int cpu;
472         u32 val;
473 };
474
475 static void bmips_set_reset_vec_remote(void *vinfo)
476 {
477         struct reset_vec_info *info = vinfo;
478         int shift = info->cpu & 0x01 ? 16 : 0;
479         u32 mask = ~(0xffff << shift), val = info->val >> 16;
480
481         preempt_disable();
482         if (smp_processor_id() > 0) {
483                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
484                                          info, 1);
485         } else {
486                 if (info->cpu & 0x02) {
487                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
488                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
489                         bmips_read_zscm_reg(0xa0);
490                 } else {
491                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
492                                               (val << shift));
493                 }
494         }
495         preempt_enable();
496 }
497
498 static void bmips_set_reset_vec(int cpu, u32 val)
499 {
500         struct reset_vec_info info;
501
502         if (current_cpu_type() == CPU_BMIPS5000) {
503                 /* this needs to run from CPU0 (which is always online) */
504                 info.cpu = cpu;
505                 info.val = val;
506                 bmips_set_reset_vec_remote(&info);
507         } else {
508                 void __iomem *cbr = BMIPS_GET_CBR();
509
510                 if (cpu == 0)
511                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
512                 else {
513                         if (current_cpu_type() != CPU_BMIPS4380)
514                                 return;
515                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
516                 }
517         }
518         __sync();
519         back_to_back_c0_hazard();
520 }
521
522 void bmips_ebase_setup(void)
523 {
524         unsigned long new_ebase = ebase;
525
526         BUG_ON(ebase != CKSEG0);
527
528         switch (current_cpu_type()) {
529         case CPU_BMIPS4350:
530                 /*
531                  * BMIPS4350 cannot relocate the normal vectors, but it
532                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
533                  * the relocated BEV=1, IV=0 general exception vector @
534                  * 0xa000_0380.
535                  *
536                  * set_uncached_handler() is used here because:
537                  *  - CPU1 will run this from uncached space
538                  *  - None of the cacheflush functions are set up yet
539                  */
540                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
541                         &bmips_smp_int_vec, 0x80);
542                 __sync();
543                 return;
544         case CPU_BMIPS4380:
545                 /*
546                  * 0x8000_0000: reset/NMI (initially in kseg1)
547                  * 0x8000_0400: normal vectors
548                  */
549                 new_ebase = 0x80000400;
550                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
551                 break;
552         case CPU_BMIPS5000:
553                 /*
554                  * 0x8000_0000: reset/NMI (initially in kseg1)
555                  * 0x8000_1000: normal vectors
556                  */
557                 new_ebase = 0x80001000;
558                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
559                 write_c0_ebase(new_ebase);
560                 break;
561         default:
562                 return;
563         }
564
565         board_nmi_handler_setup = &bmips_nmi_handler_setup;
566         ebase = new_ebase;
567 }
568
569 asmlinkage void __weak plat_wired_tlb_setup(void)
570 {
571         /*
572          * Called when starting/restarting a secondary CPU.
573          * Kernel stacks and other important data might only be accessible
574          * once the wired entries are present.
575          */
576 }