Merge tag 'at91-dt-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/mripard...
[cascardo/linux.git] / arch / powerpc / include / asm / kvm_book3s_64.h
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright SUSE Linux Products GmbH 2010
16  *
17  * Authors: Alexander Graf <agraf@suse.de>
18  */
19
20 #ifndef __ASM_KVM_BOOK3S_64_H__
21 #define __ASM_KVM_BOOK3S_64_H__
22
23 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
24 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
25 {
26         preempt_disable();
27         return &get_paca()->shadow_vcpu;
28 }
29
30 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
31 {
32         preempt_enable();
33 }
34 #endif
35
36 #define SPAPR_TCE_SHIFT         12
37
38 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
39 #define KVM_DEFAULT_HPT_ORDER   24      /* 16MB HPT by default */
40 extern unsigned long kvm_rma_pages;
41 #endif
42
43 #define VRMA_VSID       0x1ffffffUL     /* 1TB VSID reserved for VRMA */
44
45 /*
46  * We use a lock bit in HPTE dword 0 to synchronize updates and
47  * accesses to each HPTE, and another bit to indicate non-present
48  * HPTEs.
49  */
50 #define HPTE_V_HVLOCK   0x40UL
51 #define HPTE_V_ABSENT   0x20UL
52
53 /*
54  * We use this bit in the guest_rpte field of the revmap entry
55  * to indicate a modified HPTE.
56  */
57 #define HPTE_GR_MODIFIED        (1ul << 62)
58
59 /* These bits are reserved in the guest view of the HPTE */
60 #define HPTE_GR_RESERVED        HPTE_GR_MODIFIED
61
62 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
63 {
64         unsigned long tmp, old;
65         __be64 be_lockbit, be_bits;
66
67         /*
68          * We load/store in native endian, but the HTAB is in big endian. If
69          * we byte swap all data we apply on the PTE we're implicitly correct
70          * again.
71          */
72         be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
73         be_bits = cpu_to_be64(bits);
74
75         asm volatile("  ldarx   %0,0,%2\n"
76                      "  and.    %1,%0,%3\n"
77                      "  bne     2f\n"
78                      "  or      %0,%0,%4\n"
79                      "  stdcx.  %0,0,%2\n"
80                      "  beq+    2f\n"
81                      "  mr      %1,%3\n"
82                      "2:        isync"
83                      : "=&r" (tmp), "=&r" (old)
84                      : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
85                      : "cc", "memory");
86         return old == 0;
87 }
88
89 static inline int __hpte_actual_psize(unsigned int lp, int psize)
90 {
91         int i, shift;
92         unsigned int mask;
93
94         /* start from 1 ignoring MMU_PAGE_4K */
95         for (i = 1; i < MMU_PAGE_COUNT; i++) {
96
97                 /* invalid penc */
98                 if (mmu_psize_defs[psize].penc[i] == -1)
99                         continue;
100                 /*
101                  * encoding bits per actual page size
102                  *        PTE LP     actual page size
103                  *    rrrr rrrz         >=8KB
104                  *    rrrr rrzz         >=16KB
105                  *    rrrr rzzz         >=32KB
106                  *    rrrr zzzz         >=64KB
107                  * .......
108                  */
109                 shift = mmu_psize_defs[i].shift - LP_SHIFT;
110                 if (shift > LP_BITS)
111                         shift = LP_BITS;
112                 mask = (1 << shift) - 1;
113                 if ((lp & mask) == mmu_psize_defs[psize].penc[i])
114                         return i;
115         }
116         return -1;
117 }
118
119 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
120                                              unsigned long pte_index)
121 {
122         int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
123         unsigned int penc;
124         unsigned long rb = 0, va_low, sllp;
125         unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
126
127         if (v & HPTE_V_LARGE) {
128                 for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {
129
130                         /* valid entries have a shift value */
131                         if (!mmu_psize_defs[b_psize].shift)
132                                 continue;
133
134                         a_psize = __hpte_actual_psize(lp, b_psize);
135                         if (a_psize != -1)
136                                 break;
137                 }
138         }
139         /*
140          * Ignore the top 14 bits of va
141          * v have top two bits covering segment size, hence move
142          * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
143          * AVA field in v also have the lower 23 bits ignored.
144          * For base page size 4K we need 14 .. 65 bits (so need to
145          * collect extra 11 bits)
146          * For others we need 14..14+i
147          */
148         /* This covers 14..54 bits of va*/
149         rb = (v & ~0x7fUL) << 16;               /* AVA field */
150
151         rb |= v >> (62 - 8);                    /*  B field */
152         /*
153          * AVA in v had cleared lower 23 bits. We need to derive
154          * that from pteg index
155          */
156         va_low = pte_index >> 3;
157         if (v & HPTE_V_SECONDARY)
158                 va_low = ~va_low;
159         /*
160          * get the vpn bits from va_low using reverse of hashing.
161          * In v we have va with 23 bits dropped and then left shifted
162          * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
163          * right shift it with (SID_SHIFT - (23 - 7))
164          */
165         if (!(v & HPTE_V_1TB_SEG))
166                 va_low ^= v >> (SID_SHIFT - 16);
167         else
168                 va_low ^= v >> (SID_SHIFT_1T - 16);
169         va_low &= 0x7ff;
170
171         switch (b_psize) {
172         case MMU_PAGE_4K:
173                 sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
174                         ((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
175                 rb |= sllp << 5;        /*  AP field */
176                 rb |= (va_low & 0x7ff) << 12;   /* remaining 11 bits of AVA */
177                 break;
178         default:
179         {
180                 int aval_shift;
181                 /*
182                  * remaining bits of AVA/LP fields
183                  * Also contain the rr bits of LP
184                  */
185                 rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
186                 /*
187                  * Now clear not needed LP bits based on actual psize
188                  */
189                 rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
190                 /*
191                  * AVAL field 58..77 - base_page_shift bits of va
192                  * we have space for 58..64 bits, Missing bits should
193                  * be zero filled. +1 is to take care of L bit shift
194                  */
195                 aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
196                 rb |= ((va_low << aval_shift) & 0xfe);
197
198                 rb |= 1;                /* L field */
199                 penc = mmu_psize_defs[b_psize].penc[a_psize];
200                 rb |= penc << 12;       /* LP field */
201                 break;
202         }
203         }
204         rb |= (v >> 54) & 0x300;                /* B field */
205         return rb;
206 }
207
208 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
209                                              bool is_base_size)
210 {
211
212         int size, a_psize;
213         /* Look at the 8 bit LP value */
214         unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
215
216         /* only handle 4k, 64k and 16M pages for now */
217         if (!(h & HPTE_V_LARGE))
218                 return 1ul << 12;
219         else {
220                 for (size = 0; size < MMU_PAGE_COUNT; size++) {
221                         /* valid entries have a shift value */
222                         if (!mmu_psize_defs[size].shift)
223                                 continue;
224
225                         a_psize = __hpte_actual_psize(lp, size);
226                         if (a_psize != -1) {
227                                 if (is_base_size)
228                                         return 1ul << mmu_psize_defs[size].shift;
229                                 return 1ul << mmu_psize_defs[a_psize].shift;
230                         }
231                 }
232
233         }
234         return 0;
235 }
236
237 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
238 {
239         return __hpte_page_size(h, l, 0);
240 }
241
242 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
243 {
244         return __hpte_page_size(h, l, 1);
245 }
246
247 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
248 {
249         return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
250 }
251
252 static inline int hpte_is_writable(unsigned long ptel)
253 {
254         unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
255
256         return pp != PP_RXRX && pp != PP_RXXX;
257 }
258
259 static inline unsigned long hpte_make_readonly(unsigned long ptel)
260 {
261         if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
262                 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
263         else
264                 ptel |= PP_RXRX;
265         return ptel;
266 }
267
268 static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
269 {
270         unsigned int wimg = ptel & HPTE_R_WIMG;
271
272         /* Handle SAO */
273         if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
274             cpu_has_feature(CPU_FTR_ARCH_206))
275                 wimg = HPTE_R_M;
276
277         if (!io_type)
278                 return wimg == HPTE_R_M;
279
280         return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
281 }
282
283 /*
284  * If it's present and writable, atomically set dirty and referenced bits and
285  * return the PTE, otherwise return 0. If we find a transparent hugepage
286  * and if it is marked splitting we return 0;
287  */
288 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing,
289                                                  unsigned int hugepage)
290 {
291         pte_t old_pte, new_pte = __pte(0);
292
293         while (1) {
294                 old_pte = pte_val(*ptep);
295                 /*
296                  * wait until _PAGE_BUSY is clear then set it atomically
297                  */
298                 if (unlikely(old_pte & _PAGE_BUSY)) {
299                         cpu_relax();
300                         continue;
301                 }
302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
303                 /* If hugepage and is trans splitting return None */
304                 if (unlikely(hugepage &&
305                              pmd_trans_splitting(pte_pmd(old_pte))))
306                         return __pte(0);
307 #endif
308                 /* If pte is not present return None */
309                 if (unlikely(!(old_pte & _PAGE_PRESENT)))
310                         return __pte(0);
311
312                 new_pte = pte_mkyoung(old_pte);
313                 if (writing && pte_write(old_pte))
314                         new_pte = pte_mkdirty(new_pte);
315
316                 if (old_pte == __cmpxchg_u64((unsigned long *)ptep, old_pte,
317                                              new_pte))
318                         break;
319         }
320         return new_pte;
321 }
322
323
324 /* Return HPTE cache control bits corresponding to Linux pte bits */
325 static inline unsigned long hpte_cache_bits(unsigned long pte_val)
326 {
327 #if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
328         return pte_val & (HPTE_R_W | HPTE_R_I);
329 #else
330         return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
331                 ((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
332 #endif
333 }
334
335 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
336 {
337         if (key)
338                 return PP_RWRX <= pp && pp <= PP_RXRX;
339         return 1;
340 }
341
342 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
343 {
344         if (key)
345                 return pp == PP_RWRW;
346         return pp <= PP_RWRW;
347 }
348
349 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
350 {
351         unsigned long skey;
352
353         skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
354                 ((hpte_r & HPTE_R_KEY_LO) >> 9);
355         return (amr >> (62 - 2 * skey)) & 3;
356 }
357
358 static inline void lock_rmap(unsigned long *rmap)
359 {
360         do {
361                 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
362                         cpu_relax();
363         } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
364 }
365
366 static inline void unlock_rmap(unsigned long *rmap)
367 {
368         __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
369 }
370
371 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
372                                    unsigned long pagesize)
373 {
374         unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
375
376         if (pagesize <= PAGE_SIZE)
377                 return 1;
378         return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
379 }
380
381 /*
382  * This works for 4k, 64k and 16M pages on POWER7,
383  * and 4k and 16M pages on PPC970.
384  */
385 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
386 {
387         unsigned long senc = 0;
388
389         if (psize > 0x1000) {
390                 senc = SLB_VSID_L;
391                 if (psize == 0x10000)
392                         senc |= SLB_VSID_LP_01;
393         }
394         return senc;
395 }
396
397 static inline int is_vrma_hpte(unsigned long hpte_v)
398 {
399         return (hpte_v & ~0xffffffUL) ==
400                 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
401 }
402
403 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
404 /*
405  * Note modification of an HPTE; set the HPTE modified bit
406  * if anyone is interested.
407  */
408 static inline void note_hpte_modification(struct kvm *kvm,
409                                           struct revmap_entry *rev)
410 {
411         if (atomic_read(&kvm->arch.hpte_mod_interest))
412                 rev->guest_rpte |= HPTE_GR_MODIFIED;
413 }
414
415 /*
416  * Like kvm_memslots(), but for use in real mode when we can't do
417  * any RCU stuff (since the secondary threads are offline from the
418  * kernel's point of view), and we can't print anything.
419  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
420  */
421 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
422 {
423         return rcu_dereference_raw_notrace(kvm->memslots);
424 }
425
426 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
427
428 #endif /* __ASM_KVM_BOOK3S_64_H__ */