Merge tag 'nfs-for-3.17-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[cascardo/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cache.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <linux/gfp.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 #include <linux/hugetlb.h>
57 #include <linux/module.h>
58
59 #include "book3s.h"
60
61 /* #define EXIT_DEBUG */
62 /* #define EXIT_DEBUG_SIMPLE */
63 /* #define EXIT_DEBUG_INT */
64
65 /* Used to indicate that a guest page fault needs to be handled */
66 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
67
68 /* Used as a "null" value for timebase values */
69 #define TB_NIL  (~(u64)0)
70
71 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
72
73 #if defined(CONFIG_PPC_64K_PAGES)
74 #define MPP_BUFFER_ORDER        0
75 #elif defined(CONFIG_PPC_4K_PAGES)
76 #define MPP_BUFFER_ORDER        3
77 #endif
78
79
80 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
81 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
82
83 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
84 {
85         int me;
86         int cpu = vcpu->cpu;
87         wait_queue_head_t *wqp;
88
89         wqp = kvm_arch_vcpu_wq(vcpu);
90         if (waitqueue_active(wqp)) {
91                 wake_up_interruptible(wqp);
92                 ++vcpu->stat.halt_wakeup;
93         }
94
95         me = get_cpu();
96
97         /* CPU points to the first thread of the core */
98         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
99 #ifdef CONFIG_PPC_ICP_NATIVE
100                 int real_cpu = cpu + vcpu->arch.ptid;
101                 if (paca[real_cpu].kvm_hstate.xics_phys)
102                         xics_wake_cpu(real_cpu);
103                 else
104 #endif
105                 if (cpu_online(cpu))
106                         smp_send_reschedule(cpu);
107         }
108         put_cpu();
109 }
110
111 /*
112  * We use the vcpu_load/put functions to measure stolen time.
113  * Stolen time is counted as time when either the vcpu is able to
114  * run as part of a virtual core, but the task running the vcore
115  * is preempted or sleeping, or when the vcpu needs something done
116  * in the kernel by the task running the vcpu, but that task is
117  * preempted or sleeping.  Those two things have to be counted
118  * separately, since one of the vcpu tasks will take on the job
119  * of running the core, and the other vcpu tasks in the vcore will
120  * sleep waiting for it to do that, but that sleep shouldn't count
121  * as stolen time.
122  *
123  * Hence we accumulate stolen time when the vcpu can run as part of
124  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
125  * needs its task to do other things in the kernel (for example,
126  * service a page fault) in busy_stolen.  We don't accumulate
127  * stolen time for a vcore when it is inactive, or for a vcpu
128  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
129  * a misnomer; it means that the vcpu task is not executing in
130  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
131  * the kernel.  We don't have any way of dividing up that time
132  * between time that the vcpu is genuinely stopped, time that
133  * the task is actively working on behalf of the vcpu, and time
134  * that the task is preempted, so we don't count any of it as
135  * stolen.
136  *
137  * Updates to busy_stolen are protected by arch.tbacct_lock;
138  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
139  * of the vcpu that has taken responsibility for running the vcore
140  * (i.e. vc->runner).  The stolen times are measured in units of
141  * timebase ticks.  (Note that the != TB_NIL checks below are
142  * purely defensive; they should never fail.)
143  */
144
145 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
146 {
147         struct kvmppc_vcore *vc = vcpu->arch.vcore;
148         unsigned long flags;
149
150         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
152             vc->preempt_tb != TB_NIL) {
153                 vc->stolen_tb += mftb() - vc->preempt_tb;
154                 vc->preempt_tb = TB_NIL;
155         }
156         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
157             vcpu->arch.busy_preempt != TB_NIL) {
158                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
159                 vcpu->arch.busy_preempt = TB_NIL;
160         }
161         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
162 }
163
164 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
165 {
166         struct kvmppc_vcore *vc = vcpu->arch.vcore;
167         unsigned long flags;
168
169         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
170         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
171                 vc->preempt_tb = mftb();
172         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
173                 vcpu->arch.busy_preempt = mftb();
174         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
175 }
176
177 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
178 {
179         vcpu->arch.shregs.msr = msr;
180         kvmppc_end_cede(vcpu);
181 }
182
183 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
184 {
185         vcpu->arch.pvr = pvr;
186 }
187
188 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
189 {
190         unsigned long pcr = 0;
191         struct kvmppc_vcore *vc = vcpu->arch.vcore;
192
193         if (arch_compat) {
194                 if (!cpu_has_feature(CPU_FTR_ARCH_206))
195                         return -EINVAL; /* 970 has no compat mode support */
196
197                 switch (arch_compat) {
198                 case PVR_ARCH_205:
199                         /*
200                          * If an arch bit is set in PCR, all the defined
201                          * higher-order arch bits also have to be set.
202                          */
203                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
204                         break;
205                 case PVR_ARCH_206:
206                 case PVR_ARCH_206p:
207                         pcr = PCR_ARCH_206;
208                         break;
209                 case PVR_ARCH_207:
210                         break;
211                 default:
212                         return -EINVAL;
213                 }
214
215                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
216                         /* POWER7 can't emulate POWER8 */
217                         if (!(pcr & PCR_ARCH_206))
218                                 return -EINVAL;
219                         pcr &= ~PCR_ARCH_206;
220                 }
221         }
222
223         spin_lock(&vc->lock);
224         vc->arch_compat = arch_compat;
225         vc->pcr = pcr;
226         spin_unlock(&vc->lock);
227
228         return 0;
229 }
230
231 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
232 {
233         int r;
234
235         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
236         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
237                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
238         for (r = 0; r < 16; ++r)
239                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
240                        r, kvmppc_get_gpr(vcpu, r),
241                        r+16, kvmppc_get_gpr(vcpu, r+16));
242         pr_err("ctr = %.16lx  lr  = %.16lx\n",
243                vcpu->arch.ctr, vcpu->arch.lr);
244         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
245                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
246         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
247                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
248         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
249                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
250         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
251                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
252         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
253         pr_err("fault dar = %.16lx dsisr = %.8x\n",
254                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
255         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
256         for (r = 0; r < vcpu->arch.slb_max; ++r)
257                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
258                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
259         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
260                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
261                vcpu->arch.last_inst);
262 }
263
264 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
265 {
266         int r;
267         struct kvm_vcpu *v, *ret = NULL;
268
269         mutex_lock(&kvm->lock);
270         kvm_for_each_vcpu(r, v, kvm) {
271                 if (v->vcpu_id == id) {
272                         ret = v;
273                         break;
274                 }
275         }
276         mutex_unlock(&kvm->lock);
277         return ret;
278 }
279
280 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
281 {
282         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
283         vpa->yield_count = cpu_to_be32(1);
284 }
285
286 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
287                    unsigned long addr, unsigned long len)
288 {
289         /* check address is cacheline aligned */
290         if (addr & (L1_CACHE_BYTES - 1))
291                 return -EINVAL;
292         spin_lock(&vcpu->arch.vpa_update_lock);
293         if (v->next_gpa != addr || v->len != len) {
294                 v->next_gpa = addr;
295                 v->len = addr ? len : 0;
296                 v->update_pending = 1;
297         }
298         spin_unlock(&vcpu->arch.vpa_update_lock);
299         return 0;
300 }
301
302 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
303 struct reg_vpa {
304         u32 dummy;
305         union {
306                 __be16 hword;
307                 __be32 word;
308         } length;
309 };
310
311 static int vpa_is_registered(struct kvmppc_vpa *vpap)
312 {
313         if (vpap->update_pending)
314                 return vpap->next_gpa != 0;
315         return vpap->pinned_addr != NULL;
316 }
317
318 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
319                                        unsigned long flags,
320                                        unsigned long vcpuid, unsigned long vpa)
321 {
322         struct kvm *kvm = vcpu->kvm;
323         unsigned long len, nb;
324         void *va;
325         struct kvm_vcpu *tvcpu;
326         int err;
327         int subfunc;
328         struct kvmppc_vpa *vpap;
329
330         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
331         if (!tvcpu)
332                 return H_PARAMETER;
333
334         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
335         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
336             subfunc == H_VPA_REG_SLB) {
337                 /* Registering new area - address must be cache-line aligned */
338                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
339                         return H_PARAMETER;
340
341                 /* convert logical addr to kernel addr and read length */
342                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
343                 if (va == NULL)
344                         return H_PARAMETER;
345                 if (subfunc == H_VPA_REG_VPA)
346                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
347                 else
348                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
349                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
350
351                 /* Check length */
352                 if (len > nb || len < sizeof(struct reg_vpa))
353                         return H_PARAMETER;
354         } else {
355                 vpa = 0;
356                 len = 0;
357         }
358
359         err = H_PARAMETER;
360         vpap = NULL;
361         spin_lock(&tvcpu->arch.vpa_update_lock);
362
363         switch (subfunc) {
364         case H_VPA_REG_VPA:             /* register VPA */
365                 if (len < sizeof(struct lppaca))
366                         break;
367                 vpap = &tvcpu->arch.vpa;
368                 err = 0;
369                 break;
370
371         case H_VPA_REG_DTL:             /* register DTL */
372                 if (len < sizeof(struct dtl_entry))
373                         break;
374                 len -= len % sizeof(struct dtl_entry);
375
376                 /* Check that they have previously registered a VPA */
377                 err = H_RESOURCE;
378                 if (!vpa_is_registered(&tvcpu->arch.vpa))
379                         break;
380
381                 vpap = &tvcpu->arch.dtl;
382                 err = 0;
383                 break;
384
385         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
386                 /* Check that they have previously registered a VPA */
387                 err = H_RESOURCE;
388                 if (!vpa_is_registered(&tvcpu->arch.vpa))
389                         break;
390
391                 vpap = &tvcpu->arch.slb_shadow;
392                 err = 0;
393                 break;
394
395         case H_VPA_DEREG_VPA:           /* deregister VPA */
396                 /* Check they don't still have a DTL or SLB buf registered */
397                 err = H_RESOURCE;
398                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
399                     vpa_is_registered(&tvcpu->arch.slb_shadow))
400                         break;
401
402                 vpap = &tvcpu->arch.vpa;
403                 err = 0;
404                 break;
405
406         case H_VPA_DEREG_DTL:           /* deregister DTL */
407                 vpap = &tvcpu->arch.dtl;
408                 err = 0;
409                 break;
410
411         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
412                 vpap = &tvcpu->arch.slb_shadow;
413                 err = 0;
414                 break;
415         }
416
417         if (vpap) {
418                 vpap->next_gpa = vpa;
419                 vpap->len = len;
420                 vpap->update_pending = 1;
421         }
422
423         spin_unlock(&tvcpu->arch.vpa_update_lock);
424
425         return err;
426 }
427
428 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
429 {
430         struct kvm *kvm = vcpu->kvm;
431         void *va;
432         unsigned long nb;
433         unsigned long gpa;
434
435         /*
436          * We need to pin the page pointed to by vpap->next_gpa,
437          * but we can't call kvmppc_pin_guest_page under the lock
438          * as it does get_user_pages() and down_read().  So we
439          * have to drop the lock, pin the page, then get the lock
440          * again and check that a new area didn't get registered
441          * in the meantime.
442          */
443         for (;;) {
444                 gpa = vpap->next_gpa;
445                 spin_unlock(&vcpu->arch.vpa_update_lock);
446                 va = NULL;
447                 nb = 0;
448                 if (gpa)
449                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
450                 spin_lock(&vcpu->arch.vpa_update_lock);
451                 if (gpa == vpap->next_gpa)
452                         break;
453                 /* sigh... unpin that one and try again */
454                 if (va)
455                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
456         }
457
458         vpap->update_pending = 0;
459         if (va && nb < vpap->len) {
460                 /*
461                  * If it's now too short, it must be that userspace
462                  * has changed the mappings underlying guest memory,
463                  * so unregister the region.
464                  */
465                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
466                 va = NULL;
467         }
468         if (vpap->pinned_addr)
469                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
470                                         vpap->dirty);
471         vpap->gpa = gpa;
472         vpap->pinned_addr = va;
473         vpap->dirty = false;
474         if (va)
475                 vpap->pinned_end = va + vpap->len;
476 }
477
478 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
479 {
480         if (!(vcpu->arch.vpa.update_pending ||
481               vcpu->arch.slb_shadow.update_pending ||
482               vcpu->arch.dtl.update_pending))
483                 return;
484
485         spin_lock(&vcpu->arch.vpa_update_lock);
486         if (vcpu->arch.vpa.update_pending) {
487                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
488                 if (vcpu->arch.vpa.pinned_addr)
489                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
490         }
491         if (vcpu->arch.dtl.update_pending) {
492                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
493                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
494                 vcpu->arch.dtl_index = 0;
495         }
496         if (vcpu->arch.slb_shadow.update_pending)
497                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
498         spin_unlock(&vcpu->arch.vpa_update_lock);
499 }
500
501 /*
502  * Return the accumulated stolen time for the vcore up until `now'.
503  * The caller should hold the vcore lock.
504  */
505 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
506 {
507         u64 p;
508
509         /*
510          * If we are the task running the vcore, then since we hold
511          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
512          * can't be updated, so we don't need the tbacct_lock.
513          * If the vcore is inactive, it can't become active (since we
514          * hold the vcore lock), so the vcpu load/put functions won't
515          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
516          */
517         if (vc->vcore_state != VCORE_INACTIVE &&
518             vc->runner->arch.run_task != current) {
519                 spin_lock_irq(&vc->runner->arch.tbacct_lock);
520                 p = vc->stolen_tb;
521                 if (vc->preempt_tb != TB_NIL)
522                         p += now - vc->preempt_tb;
523                 spin_unlock_irq(&vc->runner->arch.tbacct_lock);
524         } else {
525                 p = vc->stolen_tb;
526         }
527         return p;
528 }
529
530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
531                                     struct kvmppc_vcore *vc)
532 {
533         struct dtl_entry *dt;
534         struct lppaca *vpa;
535         unsigned long stolen;
536         unsigned long core_stolen;
537         u64 now;
538
539         dt = vcpu->arch.dtl_ptr;
540         vpa = vcpu->arch.vpa.pinned_addr;
541         now = mftb();
542         core_stolen = vcore_stolen_time(vc, now);
543         stolen = core_stolen - vcpu->arch.stolen_logged;
544         vcpu->arch.stolen_logged = core_stolen;
545         spin_lock_irq(&vcpu->arch.tbacct_lock);
546         stolen += vcpu->arch.busy_stolen;
547         vcpu->arch.busy_stolen = 0;
548         spin_unlock_irq(&vcpu->arch.tbacct_lock);
549         if (!dt || !vpa)
550                 return;
551         memset(dt, 0, sizeof(struct dtl_entry));
552         dt->dispatch_reason = 7;
553         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
554         dt->timebase = cpu_to_be64(now + vc->tb_offset);
555         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
556         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
557         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558         ++dt;
559         if (dt == vcpu->arch.dtl.pinned_end)
560                 dt = vcpu->arch.dtl.pinned_addr;
561         vcpu->arch.dtl_ptr = dt;
562         /* order writing *dt vs. writing vpa->dtl_idx */
563         smp_wmb();
564         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565         vcpu->arch.dtl.dirty = true;
566 }
567
568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
571                 return true;
572         if ((!vcpu->arch.vcore->arch_compat) &&
573             cpu_has_feature(CPU_FTR_ARCH_207S))
574                 return true;
575         return false;
576 }
577
578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
579                              unsigned long resource, unsigned long value1,
580                              unsigned long value2)
581 {
582         switch (resource) {
583         case H_SET_MODE_RESOURCE_SET_CIABR:
584                 if (!kvmppc_power8_compatible(vcpu))
585                         return H_P2;
586                 if (value2)
587                         return H_P4;
588                 if (mflags)
589                         return H_UNSUPPORTED_FLAG_START;
590                 /* Guests can't breakpoint the hypervisor */
591                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
592                         return H_P3;
593                 vcpu->arch.ciabr  = value1;
594                 return H_SUCCESS;
595         case H_SET_MODE_RESOURCE_SET_DAWR:
596                 if (!kvmppc_power8_compatible(vcpu))
597                         return H_P2;
598                 if (mflags)
599                         return H_UNSUPPORTED_FLAG_START;
600                 if (value2 & DABRX_HYP)
601                         return H_P4;
602                 vcpu->arch.dawr  = value1;
603                 vcpu->arch.dawrx = value2;
604                 return H_SUCCESS;
605         default:
606                 return H_TOO_HARD;
607         }
608 }
609
610 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
611 {
612         unsigned long req = kvmppc_get_gpr(vcpu, 3);
613         unsigned long target, ret = H_SUCCESS;
614         struct kvm_vcpu *tvcpu;
615         int idx, rc;
616
617         if (req <= MAX_HCALL_OPCODE &&
618             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
619                 return RESUME_HOST;
620
621         switch (req) {
622         case H_ENTER:
623                 idx = srcu_read_lock(&vcpu->kvm->srcu);
624                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
625                                               kvmppc_get_gpr(vcpu, 5),
626                                               kvmppc_get_gpr(vcpu, 6),
627                                               kvmppc_get_gpr(vcpu, 7));
628                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
629                 break;
630         case H_CEDE:
631                 break;
632         case H_PROD:
633                 target = kvmppc_get_gpr(vcpu, 4);
634                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
635                 if (!tvcpu) {
636                         ret = H_PARAMETER;
637                         break;
638                 }
639                 tvcpu->arch.prodded = 1;
640                 smp_mb();
641                 if (vcpu->arch.ceded) {
642                         if (waitqueue_active(&vcpu->wq)) {
643                                 wake_up_interruptible(&vcpu->wq);
644                                 vcpu->stat.halt_wakeup++;
645                         }
646                 }
647                 break;
648         case H_CONFER:
649                 target = kvmppc_get_gpr(vcpu, 4);
650                 if (target == -1)
651                         break;
652                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
653                 if (!tvcpu) {
654                         ret = H_PARAMETER;
655                         break;
656                 }
657                 kvm_vcpu_yield_to(tvcpu);
658                 break;
659         case H_REGISTER_VPA:
660                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
661                                         kvmppc_get_gpr(vcpu, 5),
662                                         kvmppc_get_gpr(vcpu, 6));
663                 break;
664         case H_RTAS:
665                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
666                         return RESUME_HOST;
667
668                 idx = srcu_read_lock(&vcpu->kvm->srcu);
669                 rc = kvmppc_rtas_hcall(vcpu);
670                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
671
672                 if (rc == -ENOENT)
673                         return RESUME_HOST;
674                 else if (rc == 0)
675                         break;
676
677                 /* Send the error out to userspace via KVM_RUN */
678                 return rc;
679         case H_SET_MODE:
680                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
681                                         kvmppc_get_gpr(vcpu, 5),
682                                         kvmppc_get_gpr(vcpu, 6),
683                                         kvmppc_get_gpr(vcpu, 7));
684                 if (ret == H_TOO_HARD)
685                         return RESUME_HOST;
686                 break;
687         case H_XIRR:
688         case H_CPPR:
689         case H_EOI:
690         case H_IPI:
691         case H_IPOLL:
692         case H_XIRR_X:
693                 if (kvmppc_xics_enabled(vcpu)) {
694                         ret = kvmppc_xics_hcall(vcpu, req);
695                         break;
696                 } /* fallthrough */
697         default:
698                 return RESUME_HOST;
699         }
700         kvmppc_set_gpr(vcpu, 3, ret);
701         vcpu->arch.hcall_needed = 0;
702         return RESUME_GUEST;
703 }
704
705 static int kvmppc_hcall_impl_hv(unsigned long cmd)
706 {
707         switch (cmd) {
708         case H_CEDE:
709         case H_PROD:
710         case H_CONFER:
711         case H_REGISTER_VPA:
712         case H_SET_MODE:
713 #ifdef CONFIG_KVM_XICS
714         case H_XIRR:
715         case H_CPPR:
716         case H_EOI:
717         case H_IPI:
718         case H_IPOLL:
719         case H_XIRR_X:
720 #endif
721                 return 1;
722         }
723
724         /* See if it's in the real-mode table */
725         return kvmppc_hcall_impl_hv_realmode(cmd);
726 }
727
728 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
729                                  struct task_struct *tsk)
730 {
731         int r = RESUME_HOST;
732
733         vcpu->stat.sum_exits++;
734
735         run->exit_reason = KVM_EXIT_UNKNOWN;
736         run->ready_for_interrupt_injection = 1;
737         switch (vcpu->arch.trap) {
738         /* We're good on these - the host merely wanted to get our attention */
739         case BOOK3S_INTERRUPT_HV_DECREMENTER:
740                 vcpu->stat.dec_exits++;
741                 r = RESUME_GUEST;
742                 break;
743         case BOOK3S_INTERRUPT_EXTERNAL:
744         case BOOK3S_INTERRUPT_H_DOORBELL:
745                 vcpu->stat.ext_intr_exits++;
746                 r = RESUME_GUEST;
747                 break;
748         case BOOK3S_INTERRUPT_PERFMON:
749                 r = RESUME_GUEST;
750                 break;
751         case BOOK3S_INTERRUPT_MACHINE_CHECK:
752                 /*
753                  * Deliver a machine check interrupt to the guest.
754                  * We have to do this, even if the host has handled the
755                  * machine check, because machine checks use SRR0/1 and
756                  * the interrupt might have trashed guest state in them.
757                  */
758                 kvmppc_book3s_queue_irqprio(vcpu,
759                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
760                 r = RESUME_GUEST;
761                 break;
762         case BOOK3S_INTERRUPT_PROGRAM:
763         {
764                 ulong flags;
765                 /*
766                  * Normally program interrupts are delivered directly
767                  * to the guest by the hardware, but we can get here
768                  * as a result of a hypervisor emulation interrupt
769                  * (e40) getting turned into a 700 by BML RTAS.
770                  */
771                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
772                 kvmppc_core_queue_program(vcpu, flags);
773                 r = RESUME_GUEST;
774                 break;
775         }
776         case BOOK3S_INTERRUPT_SYSCALL:
777         {
778                 /* hcall - punt to userspace */
779                 int i;
780
781                 /* hypercall with MSR_PR has already been handled in rmode,
782                  * and never reaches here.
783                  */
784
785                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
786                 for (i = 0; i < 9; ++i)
787                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
788                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
789                 vcpu->arch.hcall_needed = 1;
790                 r = RESUME_HOST;
791                 break;
792         }
793         /*
794          * We get these next two if the guest accesses a page which it thinks
795          * it has mapped but which is not actually present, either because
796          * it is for an emulated I/O device or because the corresonding
797          * host page has been paged out.  Any other HDSI/HISI interrupts
798          * have been handled already.
799          */
800         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
801                 r = RESUME_PAGE_FAULT;
802                 break;
803         case BOOK3S_INTERRUPT_H_INST_STORAGE:
804                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
805                 vcpu->arch.fault_dsisr = 0;
806                 r = RESUME_PAGE_FAULT;
807                 break;
808         /*
809          * This occurs if the guest executes an illegal instruction.
810          * We just generate a program interrupt to the guest, since
811          * we don't emulate any guest instructions at this stage.
812          */
813         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
814                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
815                 r = RESUME_GUEST;
816                 break;
817         /*
818          * This occurs if the guest (kernel or userspace), does something that
819          * is prohibited by HFSCR.  We just generate a program interrupt to
820          * the guest.
821          */
822         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
823                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
824                 r = RESUME_GUEST;
825                 break;
826         default:
827                 kvmppc_dump_regs(vcpu);
828                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
829                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
830                         vcpu->arch.shregs.msr);
831                 run->hw.hardware_exit_reason = vcpu->arch.trap;
832                 r = RESUME_HOST;
833                 break;
834         }
835
836         return r;
837 }
838
839 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
840                                             struct kvm_sregs *sregs)
841 {
842         int i;
843
844         memset(sregs, 0, sizeof(struct kvm_sregs));
845         sregs->pvr = vcpu->arch.pvr;
846         for (i = 0; i < vcpu->arch.slb_max; i++) {
847                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
848                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
849         }
850
851         return 0;
852 }
853
854 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
855                                             struct kvm_sregs *sregs)
856 {
857         int i, j;
858
859         kvmppc_set_pvr_hv(vcpu, sregs->pvr);
860
861         j = 0;
862         for (i = 0; i < vcpu->arch.slb_nr; i++) {
863                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
864                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
865                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
866                         ++j;
867                 }
868         }
869         vcpu->arch.slb_max = j;
870
871         return 0;
872 }
873
874 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
875                 bool preserve_top32)
876 {
877         struct kvmppc_vcore *vc = vcpu->arch.vcore;
878         u64 mask;
879
880         spin_lock(&vc->lock);
881         /*
882          * If ILE (interrupt little-endian) has changed, update the
883          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
884          */
885         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
886                 struct kvm *kvm = vcpu->kvm;
887                 struct kvm_vcpu *vcpu;
888                 int i;
889
890                 mutex_lock(&kvm->lock);
891                 kvm_for_each_vcpu(i, vcpu, kvm) {
892                         if (vcpu->arch.vcore != vc)
893                                 continue;
894                         if (new_lpcr & LPCR_ILE)
895                                 vcpu->arch.intr_msr |= MSR_LE;
896                         else
897                                 vcpu->arch.intr_msr &= ~MSR_LE;
898                 }
899                 mutex_unlock(&kvm->lock);
900         }
901
902         /*
903          * Userspace can only modify DPFD (default prefetch depth),
904          * ILE (interrupt little-endian) and TC (translation control).
905          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
906          */
907         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
908         if (cpu_has_feature(CPU_FTR_ARCH_207S))
909                 mask |= LPCR_AIL;
910
911         /* Broken 32-bit version of LPCR must not clear top bits */
912         if (preserve_top32)
913                 mask &= 0xFFFFFFFF;
914         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
915         spin_unlock(&vc->lock);
916 }
917
918 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
919                                  union kvmppc_one_reg *val)
920 {
921         int r = 0;
922         long int i;
923
924         switch (id) {
925         case KVM_REG_PPC_HIOR:
926                 *val = get_reg_val(id, 0);
927                 break;
928         case KVM_REG_PPC_DABR:
929                 *val = get_reg_val(id, vcpu->arch.dabr);
930                 break;
931         case KVM_REG_PPC_DABRX:
932                 *val = get_reg_val(id, vcpu->arch.dabrx);
933                 break;
934         case KVM_REG_PPC_DSCR:
935                 *val = get_reg_val(id, vcpu->arch.dscr);
936                 break;
937         case KVM_REG_PPC_PURR:
938                 *val = get_reg_val(id, vcpu->arch.purr);
939                 break;
940         case KVM_REG_PPC_SPURR:
941                 *val = get_reg_val(id, vcpu->arch.spurr);
942                 break;
943         case KVM_REG_PPC_AMR:
944                 *val = get_reg_val(id, vcpu->arch.amr);
945                 break;
946         case KVM_REG_PPC_UAMOR:
947                 *val = get_reg_val(id, vcpu->arch.uamor);
948                 break;
949         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
950                 i = id - KVM_REG_PPC_MMCR0;
951                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
952                 break;
953         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
954                 i = id - KVM_REG_PPC_PMC1;
955                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
956                 break;
957         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
958                 i = id - KVM_REG_PPC_SPMC1;
959                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
960                 break;
961         case KVM_REG_PPC_SIAR:
962                 *val = get_reg_val(id, vcpu->arch.siar);
963                 break;
964         case KVM_REG_PPC_SDAR:
965                 *val = get_reg_val(id, vcpu->arch.sdar);
966                 break;
967         case KVM_REG_PPC_SIER:
968                 *val = get_reg_val(id, vcpu->arch.sier);
969                 break;
970         case KVM_REG_PPC_IAMR:
971                 *val = get_reg_val(id, vcpu->arch.iamr);
972                 break;
973         case KVM_REG_PPC_PSPB:
974                 *val = get_reg_val(id, vcpu->arch.pspb);
975                 break;
976         case KVM_REG_PPC_DPDES:
977                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
978                 break;
979         case KVM_REG_PPC_DAWR:
980                 *val = get_reg_val(id, vcpu->arch.dawr);
981                 break;
982         case KVM_REG_PPC_DAWRX:
983                 *val = get_reg_val(id, vcpu->arch.dawrx);
984                 break;
985         case KVM_REG_PPC_CIABR:
986                 *val = get_reg_val(id, vcpu->arch.ciabr);
987                 break;
988         case KVM_REG_PPC_CSIGR:
989                 *val = get_reg_val(id, vcpu->arch.csigr);
990                 break;
991         case KVM_REG_PPC_TACR:
992                 *val = get_reg_val(id, vcpu->arch.tacr);
993                 break;
994         case KVM_REG_PPC_TCSCR:
995                 *val = get_reg_val(id, vcpu->arch.tcscr);
996                 break;
997         case KVM_REG_PPC_PID:
998                 *val = get_reg_val(id, vcpu->arch.pid);
999                 break;
1000         case KVM_REG_PPC_ACOP:
1001                 *val = get_reg_val(id, vcpu->arch.acop);
1002                 break;
1003         case KVM_REG_PPC_WORT:
1004                 *val = get_reg_val(id, vcpu->arch.wort);
1005                 break;
1006         case KVM_REG_PPC_VPA_ADDR:
1007                 spin_lock(&vcpu->arch.vpa_update_lock);
1008                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1009                 spin_unlock(&vcpu->arch.vpa_update_lock);
1010                 break;
1011         case KVM_REG_PPC_VPA_SLB:
1012                 spin_lock(&vcpu->arch.vpa_update_lock);
1013                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1014                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1015                 spin_unlock(&vcpu->arch.vpa_update_lock);
1016                 break;
1017         case KVM_REG_PPC_VPA_DTL:
1018                 spin_lock(&vcpu->arch.vpa_update_lock);
1019                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1020                 val->vpaval.length = vcpu->arch.dtl.len;
1021                 spin_unlock(&vcpu->arch.vpa_update_lock);
1022                 break;
1023         case KVM_REG_PPC_TB_OFFSET:
1024                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1025                 break;
1026         case KVM_REG_PPC_LPCR:
1027         case KVM_REG_PPC_LPCR_64:
1028                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1029                 break;
1030         case KVM_REG_PPC_PPR:
1031                 *val = get_reg_val(id, vcpu->arch.ppr);
1032                 break;
1033 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1034         case KVM_REG_PPC_TFHAR:
1035                 *val = get_reg_val(id, vcpu->arch.tfhar);
1036                 break;
1037         case KVM_REG_PPC_TFIAR:
1038                 *val = get_reg_val(id, vcpu->arch.tfiar);
1039                 break;
1040         case KVM_REG_PPC_TEXASR:
1041                 *val = get_reg_val(id, vcpu->arch.texasr);
1042                 break;
1043         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1044                 i = id - KVM_REG_PPC_TM_GPR0;
1045                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1046                 break;
1047         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1048         {
1049                 int j;
1050                 i = id - KVM_REG_PPC_TM_VSR0;
1051                 if (i < 32)
1052                         for (j = 0; j < TS_FPRWIDTH; j++)
1053                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1054                 else {
1055                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1056                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1057                         else
1058                                 r = -ENXIO;
1059                 }
1060                 break;
1061         }
1062         case KVM_REG_PPC_TM_CR:
1063                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1064                 break;
1065         case KVM_REG_PPC_TM_LR:
1066                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1067                 break;
1068         case KVM_REG_PPC_TM_CTR:
1069                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1070                 break;
1071         case KVM_REG_PPC_TM_FPSCR:
1072                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1073                 break;
1074         case KVM_REG_PPC_TM_AMR:
1075                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1076                 break;
1077         case KVM_REG_PPC_TM_PPR:
1078                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1079                 break;
1080         case KVM_REG_PPC_TM_VRSAVE:
1081                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1082                 break;
1083         case KVM_REG_PPC_TM_VSCR:
1084                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1085                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1086                 else
1087                         r = -ENXIO;
1088                 break;
1089         case KVM_REG_PPC_TM_DSCR:
1090                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1091                 break;
1092         case KVM_REG_PPC_TM_TAR:
1093                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1094                 break;
1095 #endif
1096         case KVM_REG_PPC_ARCH_COMPAT:
1097                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1098                 break;
1099         default:
1100                 r = -EINVAL;
1101                 break;
1102         }
1103
1104         return r;
1105 }
1106
1107 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1108                                  union kvmppc_one_reg *val)
1109 {
1110         int r = 0;
1111         long int i;
1112         unsigned long addr, len;
1113
1114         switch (id) {
1115         case KVM_REG_PPC_HIOR:
1116                 /* Only allow this to be set to zero */
1117                 if (set_reg_val(id, *val))
1118                         r = -EINVAL;
1119                 break;
1120         case KVM_REG_PPC_DABR:
1121                 vcpu->arch.dabr = set_reg_val(id, *val);
1122                 break;
1123         case KVM_REG_PPC_DABRX:
1124                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1125                 break;
1126         case KVM_REG_PPC_DSCR:
1127                 vcpu->arch.dscr = set_reg_val(id, *val);
1128                 break;
1129         case KVM_REG_PPC_PURR:
1130                 vcpu->arch.purr = set_reg_val(id, *val);
1131                 break;
1132         case KVM_REG_PPC_SPURR:
1133                 vcpu->arch.spurr = set_reg_val(id, *val);
1134                 break;
1135         case KVM_REG_PPC_AMR:
1136                 vcpu->arch.amr = set_reg_val(id, *val);
1137                 break;
1138         case KVM_REG_PPC_UAMOR:
1139                 vcpu->arch.uamor = set_reg_val(id, *val);
1140                 break;
1141         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1142                 i = id - KVM_REG_PPC_MMCR0;
1143                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1144                 break;
1145         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1146                 i = id - KVM_REG_PPC_PMC1;
1147                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1148                 break;
1149         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1150                 i = id - KVM_REG_PPC_SPMC1;
1151                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1152                 break;
1153         case KVM_REG_PPC_SIAR:
1154                 vcpu->arch.siar = set_reg_val(id, *val);
1155                 break;
1156         case KVM_REG_PPC_SDAR:
1157                 vcpu->arch.sdar = set_reg_val(id, *val);
1158                 break;
1159         case KVM_REG_PPC_SIER:
1160                 vcpu->arch.sier = set_reg_val(id, *val);
1161                 break;
1162         case KVM_REG_PPC_IAMR:
1163                 vcpu->arch.iamr = set_reg_val(id, *val);
1164                 break;
1165         case KVM_REG_PPC_PSPB:
1166                 vcpu->arch.pspb = set_reg_val(id, *val);
1167                 break;
1168         case KVM_REG_PPC_DPDES:
1169                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1170                 break;
1171         case KVM_REG_PPC_DAWR:
1172                 vcpu->arch.dawr = set_reg_val(id, *val);
1173                 break;
1174         case KVM_REG_PPC_DAWRX:
1175                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1176                 break;
1177         case KVM_REG_PPC_CIABR:
1178                 vcpu->arch.ciabr = set_reg_val(id, *val);
1179                 /* Don't allow setting breakpoints in hypervisor code */
1180                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1181                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1182                 break;
1183         case KVM_REG_PPC_CSIGR:
1184                 vcpu->arch.csigr = set_reg_val(id, *val);
1185                 break;
1186         case KVM_REG_PPC_TACR:
1187                 vcpu->arch.tacr = set_reg_val(id, *val);
1188                 break;
1189         case KVM_REG_PPC_TCSCR:
1190                 vcpu->arch.tcscr = set_reg_val(id, *val);
1191                 break;
1192         case KVM_REG_PPC_PID:
1193                 vcpu->arch.pid = set_reg_val(id, *val);
1194                 break;
1195         case KVM_REG_PPC_ACOP:
1196                 vcpu->arch.acop = set_reg_val(id, *val);
1197                 break;
1198         case KVM_REG_PPC_WORT:
1199                 vcpu->arch.wort = set_reg_val(id, *val);
1200                 break;
1201         case KVM_REG_PPC_VPA_ADDR:
1202                 addr = set_reg_val(id, *val);
1203                 r = -EINVAL;
1204                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1205                               vcpu->arch.dtl.next_gpa))
1206                         break;
1207                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1208                 break;
1209         case KVM_REG_PPC_VPA_SLB:
1210                 addr = val->vpaval.addr;
1211                 len = val->vpaval.length;
1212                 r = -EINVAL;
1213                 if (addr && !vcpu->arch.vpa.next_gpa)
1214                         break;
1215                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1216                 break;
1217         case KVM_REG_PPC_VPA_DTL:
1218                 addr = val->vpaval.addr;
1219                 len = val->vpaval.length;
1220                 r = -EINVAL;
1221                 if (addr && (len < sizeof(struct dtl_entry) ||
1222                              !vcpu->arch.vpa.next_gpa))
1223                         break;
1224                 len -= len % sizeof(struct dtl_entry);
1225                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1226                 break;
1227         case KVM_REG_PPC_TB_OFFSET:
1228                 /* round up to multiple of 2^24 */
1229                 vcpu->arch.vcore->tb_offset =
1230                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1231                 break;
1232         case KVM_REG_PPC_LPCR:
1233                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1234                 break;
1235         case KVM_REG_PPC_LPCR_64:
1236                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1237                 break;
1238         case KVM_REG_PPC_PPR:
1239                 vcpu->arch.ppr = set_reg_val(id, *val);
1240                 break;
1241 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1242         case KVM_REG_PPC_TFHAR:
1243                 vcpu->arch.tfhar = set_reg_val(id, *val);
1244                 break;
1245         case KVM_REG_PPC_TFIAR:
1246                 vcpu->arch.tfiar = set_reg_val(id, *val);
1247                 break;
1248         case KVM_REG_PPC_TEXASR:
1249                 vcpu->arch.texasr = set_reg_val(id, *val);
1250                 break;
1251         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1252                 i = id - KVM_REG_PPC_TM_GPR0;
1253                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1254                 break;
1255         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1256         {
1257                 int j;
1258                 i = id - KVM_REG_PPC_TM_VSR0;
1259                 if (i < 32)
1260                         for (j = 0; j < TS_FPRWIDTH; j++)
1261                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1262                 else
1263                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1264                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1265                         else
1266                                 r = -ENXIO;
1267                 break;
1268         }
1269         case KVM_REG_PPC_TM_CR:
1270                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1271                 break;
1272         case KVM_REG_PPC_TM_LR:
1273                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1274                 break;
1275         case KVM_REG_PPC_TM_CTR:
1276                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1277                 break;
1278         case KVM_REG_PPC_TM_FPSCR:
1279                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1280                 break;
1281         case KVM_REG_PPC_TM_AMR:
1282                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1283                 break;
1284         case KVM_REG_PPC_TM_PPR:
1285                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1286                 break;
1287         case KVM_REG_PPC_TM_VRSAVE:
1288                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1289                 break;
1290         case KVM_REG_PPC_TM_VSCR:
1291                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1292                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1293                 else
1294                         r = - ENXIO;
1295                 break;
1296         case KVM_REG_PPC_TM_DSCR:
1297                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1298                 break;
1299         case KVM_REG_PPC_TM_TAR:
1300                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1301                 break;
1302 #endif
1303         case KVM_REG_PPC_ARCH_COMPAT:
1304                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1305                 break;
1306         default:
1307                 r = -EINVAL;
1308                 break;
1309         }
1310
1311         return r;
1312 }
1313
1314 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1315 {
1316         struct kvmppc_vcore *vcore;
1317
1318         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1319
1320         if (vcore == NULL)
1321                 return NULL;
1322
1323         INIT_LIST_HEAD(&vcore->runnable_threads);
1324         spin_lock_init(&vcore->lock);
1325         init_waitqueue_head(&vcore->wq);
1326         vcore->preempt_tb = TB_NIL;
1327         vcore->lpcr = kvm->arch.lpcr;
1328         vcore->first_vcpuid = core * threads_per_subcore;
1329         vcore->kvm = kvm;
1330
1331         vcore->mpp_buffer_is_valid = false;
1332
1333         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1334                 vcore->mpp_buffer = (void *)__get_free_pages(
1335                         GFP_KERNEL|__GFP_ZERO,
1336                         MPP_BUFFER_ORDER);
1337
1338         return vcore;
1339 }
1340
1341 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1342                                                    unsigned int id)
1343 {
1344         struct kvm_vcpu *vcpu;
1345         int err = -EINVAL;
1346         int core;
1347         struct kvmppc_vcore *vcore;
1348
1349         core = id / threads_per_subcore;
1350         if (core >= KVM_MAX_VCORES)
1351                 goto out;
1352
1353         err = -ENOMEM;
1354         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1355         if (!vcpu)
1356                 goto out;
1357
1358         err = kvm_vcpu_init(vcpu, kvm, id);
1359         if (err)
1360                 goto free_vcpu;
1361
1362         vcpu->arch.shared = &vcpu->arch.shregs;
1363 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1364         /*
1365          * The shared struct is never shared on HV,
1366          * so we can always use host endianness
1367          */
1368 #ifdef __BIG_ENDIAN__
1369         vcpu->arch.shared_big_endian = true;
1370 #else
1371         vcpu->arch.shared_big_endian = false;
1372 #endif
1373 #endif
1374         vcpu->arch.mmcr[0] = MMCR0_FC;
1375         vcpu->arch.ctrl = CTRL_RUNLATCH;
1376         /* default to host PVR, since we can't spoof it */
1377         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1378         spin_lock_init(&vcpu->arch.vpa_update_lock);
1379         spin_lock_init(&vcpu->arch.tbacct_lock);
1380         vcpu->arch.busy_preempt = TB_NIL;
1381         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1382
1383         kvmppc_mmu_book3s_hv_init(vcpu);
1384
1385         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1386
1387         init_waitqueue_head(&vcpu->arch.cpu_run);
1388
1389         mutex_lock(&kvm->lock);
1390         vcore = kvm->arch.vcores[core];
1391         if (!vcore) {
1392                 vcore = kvmppc_vcore_create(kvm, core);
1393                 kvm->arch.vcores[core] = vcore;
1394                 kvm->arch.online_vcores++;
1395         }
1396         mutex_unlock(&kvm->lock);
1397
1398         if (!vcore)
1399                 goto free_vcpu;
1400
1401         spin_lock(&vcore->lock);
1402         ++vcore->num_threads;
1403         spin_unlock(&vcore->lock);
1404         vcpu->arch.vcore = vcore;
1405         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1406
1407         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1408         kvmppc_sanity_check(vcpu);
1409
1410         return vcpu;
1411
1412 free_vcpu:
1413         kmem_cache_free(kvm_vcpu_cache, vcpu);
1414 out:
1415         return ERR_PTR(err);
1416 }
1417
1418 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1419 {
1420         if (vpa->pinned_addr)
1421                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1422                                         vpa->dirty);
1423 }
1424
1425 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1426 {
1427         spin_lock(&vcpu->arch.vpa_update_lock);
1428         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1429         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1430         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1431         spin_unlock(&vcpu->arch.vpa_update_lock);
1432         kvm_vcpu_uninit(vcpu);
1433         kmem_cache_free(kvm_vcpu_cache, vcpu);
1434 }
1435
1436 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1437 {
1438         /* Indicate we want to get back into the guest */
1439         return 1;
1440 }
1441
1442 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1443 {
1444         unsigned long dec_nsec, now;
1445
1446         now = get_tb();
1447         if (now > vcpu->arch.dec_expires) {
1448                 /* decrementer has already gone negative */
1449                 kvmppc_core_queue_dec(vcpu);
1450                 kvmppc_core_prepare_to_enter(vcpu);
1451                 return;
1452         }
1453         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1454                    / tb_ticks_per_sec;
1455         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1456                       HRTIMER_MODE_REL);
1457         vcpu->arch.timer_running = 1;
1458 }
1459
1460 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1461 {
1462         vcpu->arch.ceded = 0;
1463         if (vcpu->arch.timer_running) {
1464                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1465                 vcpu->arch.timer_running = 0;
1466         }
1467 }
1468
1469 extern void __kvmppc_vcore_entry(void);
1470
1471 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1472                                    struct kvm_vcpu *vcpu)
1473 {
1474         u64 now;
1475
1476         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1477                 return;
1478         spin_lock_irq(&vcpu->arch.tbacct_lock);
1479         now = mftb();
1480         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1481                 vcpu->arch.stolen_logged;
1482         vcpu->arch.busy_preempt = now;
1483         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1484         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1485         --vc->n_runnable;
1486         list_del(&vcpu->arch.run_list);
1487 }
1488
1489 static int kvmppc_grab_hwthread(int cpu)
1490 {
1491         struct paca_struct *tpaca;
1492         long timeout = 1000;
1493
1494         tpaca = &paca[cpu];
1495
1496         /* Ensure the thread won't go into the kernel if it wakes */
1497         tpaca->kvm_hstate.hwthread_req = 1;
1498         tpaca->kvm_hstate.kvm_vcpu = NULL;
1499
1500         /*
1501          * If the thread is already executing in the kernel (e.g. handling
1502          * a stray interrupt), wait for it to get back to nap mode.
1503          * The smp_mb() is to ensure that our setting of hwthread_req
1504          * is visible before we look at hwthread_state, so if this
1505          * races with the code at system_reset_pSeries and the thread
1506          * misses our setting of hwthread_req, we are sure to see its
1507          * setting of hwthread_state, and vice versa.
1508          */
1509         smp_mb();
1510         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1511                 if (--timeout <= 0) {
1512                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1513                         return -EBUSY;
1514                 }
1515                 udelay(1);
1516         }
1517         return 0;
1518 }
1519
1520 static void kvmppc_release_hwthread(int cpu)
1521 {
1522         struct paca_struct *tpaca;
1523
1524         tpaca = &paca[cpu];
1525         tpaca->kvm_hstate.hwthread_req = 0;
1526         tpaca->kvm_hstate.kvm_vcpu = NULL;
1527 }
1528
1529 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1530 {
1531         int cpu;
1532         struct paca_struct *tpaca;
1533         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1534
1535         if (vcpu->arch.timer_running) {
1536                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1537                 vcpu->arch.timer_running = 0;
1538         }
1539         cpu = vc->pcpu + vcpu->arch.ptid;
1540         tpaca = &paca[cpu];
1541         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1542         tpaca->kvm_hstate.kvm_vcore = vc;
1543         tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1544         vcpu->cpu = vc->pcpu;
1545         smp_wmb();
1546 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1547         if (cpu != smp_processor_id()) {
1548                 xics_wake_cpu(cpu);
1549                 if (vcpu->arch.ptid)
1550                         ++vc->n_woken;
1551         }
1552 #endif
1553 }
1554
1555 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1556 {
1557         int i;
1558
1559         HMT_low();
1560         i = 0;
1561         while (vc->nap_count < vc->n_woken) {
1562                 if (++i >= 1000000) {
1563                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1564                                vc->nap_count, vc->n_woken);
1565                         break;
1566                 }
1567                 cpu_relax();
1568         }
1569         HMT_medium();
1570 }
1571
1572 /*
1573  * Check that we are on thread 0 and that any other threads in
1574  * this core are off-line.  Then grab the threads so they can't
1575  * enter the kernel.
1576  */
1577 static int on_primary_thread(void)
1578 {
1579         int cpu = smp_processor_id();
1580         int thr;
1581
1582         /* Are we on a primary subcore? */
1583         if (cpu_thread_in_subcore(cpu))
1584                 return 0;
1585
1586         thr = 0;
1587         while (++thr < threads_per_subcore)
1588                 if (cpu_online(cpu + thr))
1589                         return 0;
1590
1591         /* Grab all hw threads so they can't go into the kernel */
1592         for (thr = 1; thr < threads_per_subcore; ++thr) {
1593                 if (kvmppc_grab_hwthread(cpu + thr)) {
1594                         /* Couldn't grab one; let the others go */
1595                         do {
1596                                 kvmppc_release_hwthread(cpu + thr);
1597                         } while (--thr > 0);
1598                         return 0;
1599                 }
1600         }
1601         return 1;
1602 }
1603
1604 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1605 {
1606         phys_addr_t phy_addr, mpp_addr;
1607
1608         phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1609         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1610
1611         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1612         logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1613
1614         vc->mpp_buffer_is_valid = true;
1615 }
1616
1617 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1618 {
1619         phys_addr_t phy_addr, mpp_addr;
1620
1621         phy_addr = virt_to_phys(vc->mpp_buffer);
1622         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1623
1624         /* We must abort any in-progress save operations to ensure
1625          * the table is valid so that prefetch engine knows when to
1626          * stop prefetching. */
1627         logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1628         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1629 }
1630
1631 /*
1632  * Run a set of guest threads on a physical core.
1633  * Called with vc->lock held.
1634  */
1635 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1636 {
1637         struct kvm_vcpu *vcpu, *vnext;
1638         long ret;
1639         u64 now;
1640         int i, need_vpa_update;
1641         int srcu_idx;
1642         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1643
1644         /* don't start if any threads have a signal pending */
1645         need_vpa_update = 0;
1646         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1647                 if (signal_pending(vcpu->arch.run_task))
1648                         return;
1649                 if (vcpu->arch.vpa.update_pending ||
1650                     vcpu->arch.slb_shadow.update_pending ||
1651                     vcpu->arch.dtl.update_pending)
1652                         vcpus_to_update[need_vpa_update++] = vcpu;
1653         }
1654
1655         /*
1656          * Initialize *vc, in particular vc->vcore_state, so we can
1657          * drop the vcore lock if necessary.
1658          */
1659         vc->n_woken = 0;
1660         vc->nap_count = 0;
1661         vc->entry_exit_count = 0;
1662         vc->vcore_state = VCORE_STARTING;
1663         vc->in_guest = 0;
1664         vc->napping_threads = 0;
1665
1666         /*
1667          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1668          * which can't be called with any spinlocks held.
1669          */
1670         if (need_vpa_update) {
1671                 spin_unlock(&vc->lock);
1672                 for (i = 0; i < need_vpa_update; ++i)
1673                         kvmppc_update_vpas(vcpus_to_update[i]);
1674                 spin_lock(&vc->lock);
1675         }
1676
1677         /*
1678          * Make sure we are running on primary threads, and that secondary
1679          * threads are offline.  Also check if the number of threads in this
1680          * guest are greater than the current system threads per guest.
1681          */
1682         if ((threads_per_core > 1) &&
1683             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1684                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1685                         vcpu->arch.ret = -EBUSY;
1686                 goto out;
1687         }
1688
1689
1690         vc->pcpu = smp_processor_id();
1691         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1692                 kvmppc_start_thread(vcpu);
1693                 kvmppc_create_dtl_entry(vcpu, vc);
1694         }
1695
1696         /* Set this explicitly in case thread 0 doesn't have a vcpu */
1697         get_paca()->kvm_hstate.kvm_vcore = vc;
1698         get_paca()->kvm_hstate.ptid = 0;
1699
1700         vc->vcore_state = VCORE_RUNNING;
1701         preempt_disable();
1702         spin_unlock(&vc->lock);
1703
1704         kvm_guest_enter();
1705
1706         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1707
1708         if (vc->mpp_buffer_is_valid)
1709                 kvmppc_start_restoring_l2_cache(vc);
1710
1711         __kvmppc_vcore_entry();
1712
1713         spin_lock(&vc->lock);
1714
1715         if (vc->mpp_buffer)
1716                 kvmppc_start_saving_l2_cache(vc);
1717
1718         /* disable sending of IPIs on virtual external irqs */
1719         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1720                 vcpu->cpu = -1;
1721         /* wait for secondary threads to finish writing their state to memory */
1722         if (vc->nap_count < vc->n_woken)
1723                 kvmppc_wait_for_nap(vc);
1724         for (i = 0; i < threads_per_subcore; ++i)
1725                 kvmppc_release_hwthread(vc->pcpu + i);
1726         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1727         vc->vcore_state = VCORE_EXITING;
1728         spin_unlock(&vc->lock);
1729
1730         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1731
1732         /* make sure updates to secondary vcpu structs are visible now */
1733         smp_mb();
1734         kvm_guest_exit();
1735
1736         preempt_enable();
1737         cond_resched();
1738
1739         spin_lock(&vc->lock);
1740         now = get_tb();
1741         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1742                 /* cancel pending dec exception if dec is positive */
1743                 if (now < vcpu->arch.dec_expires &&
1744                     kvmppc_core_pending_dec(vcpu))
1745                         kvmppc_core_dequeue_dec(vcpu);
1746
1747                 ret = RESUME_GUEST;
1748                 if (vcpu->arch.trap)
1749                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1750                                                     vcpu->arch.run_task);
1751
1752                 vcpu->arch.ret = ret;
1753                 vcpu->arch.trap = 0;
1754
1755                 if (vcpu->arch.ceded) {
1756                         if (!is_kvmppc_resume_guest(ret))
1757                                 kvmppc_end_cede(vcpu);
1758                         else
1759                                 kvmppc_set_timer(vcpu);
1760                 }
1761         }
1762
1763  out:
1764         vc->vcore_state = VCORE_INACTIVE;
1765         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1766                                  arch.run_list) {
1767                 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1768                         kvmppc_remove_runnable(vc, vcpu);
1769                         wake_up(&vcpu->arch.cpu_run);
1770                 }
1771         }
1772 }
1773
1774 /*
1775  * Wait for some other vcpu thread to execute us, and
1776  * wake us up when we need to handle something in the host.
1777  */
1778 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1779 {
1780         DEFINE_WAIT(wait);
1781
1782         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1783         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1784                 schedule();
1785         finish_wait(&vcpu->arch.cpu_run, &wait);
1786 }
1787
1788 /*
1789  * All the vcpus in this vcore are idle, so wait for a decrementer
1790  * or external interrupt to one of the vcpus.  vc->lock is held.
1791  */
1792 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1793 {
1794         DEFINE_WAIT(wait);
1795
1796         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1797         vc->vcore_state = VCORE_SLEEPING;
1798         spin_unlock(&vc->lock);
1799         schedule();
1800         finish_wait(&vc->wq, &wait);
1801         spin_lock(&vc->lock);
1802         vc->vcore_state = VCORE_INACTIVE;
1803 }
1804
1805 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1806 {
1807         int n_ceded;
1808         struct kvmppc_vcore *vc;
1809         struct kvm_vcpu *v, *vn;
1810
1811         kvm_run->exit_reason = 0;
1812         vcpu->arch.ret = RESUME_GUEST;
1813         vcpu->arch.trap = 0;
1814         kvmppc_update_vpas(vcpu);
1815
1816         /*
1817          * Synchronize with other threads in this virtual core
1818          */
1819         vc = vcpu->arch.vcore;
1820         spin_lock(&vc->lock);
1821         vcpu->arch.ceded = 0;
1822         vcpu->arch.run_task = current;
1823         vcpu->arch.kvm_run = kvm_run;
1824         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1825         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1826         vcpu->arch.busy_preempt = TB_NIL;
1827         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1828         ++vc->n_runnable;
1829
1830         /*
1831          * This happens the first time this is called for a vcpu.
1832          * If the vcore is already running, we may be able to start
1833          * this thread straight away and have it join in.
1834          */
1835         if (!signal_pending(current)) {
1836                 if (vc->vcore_state == VCORE_RUNNING &&
1837                     VCORE_EXIT_COUNT(vc) == 0) {
1838                         kvmppc_create_dtl_entry(vcpu, vc);
1839                         kvmppc_start_thread(vcpu);
1840                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1841                         wake_up(&vc->wq);
1842                 }
1843
1844         }
1845
1846         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1847                !signal_pending(current)) {
1848                 if (vc->vcore_state != VCORE_INACTIVE) {
1849                         spin_unlock(&vc->lock);
1850                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1851                         spin_lock(&vc->lock);
1852                         continue;
1853                 }
1854                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1855                                          arch.run_list) {
1856                         kvmppc_core_prepare_to_enter(v);
1857                         if (signal_pending(v->arch.run_task)) {
1858                                 kvmppc_remove_runnable(vc, v);
1859                                 v->stat.signal_exits++;
1860                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1861                                 v->arch.ret = -EINTR;
1862                                 wake_up(&v->arch.cpu_run);
1863                         }
1864                 }
1865                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1866                         break;
1867                 vc->runner = vcpu;
1868                 n_ceded = 0;
1869                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1870                         if (!v->arch.pending_exceptions)
1871                                 n_ceded += v->arch.ceded;
1872                         else
1873                                 v->arch.ceded = 0;
1874                 }
1875                 if (n_ceded == vc->n_runnable)
1876                         kvmppc_vcore_blocked(vc);
1877                 else
1878                         kvmppc_run_core(vc);
1879                 vc->runner = NULL;
1880         }
1881
1882         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1883                (vc->vcore_state == VCORE_RUNNING ||
1884                 vc->vcore_state == VCORE_EXITING)) {
1885                 spin_unlock(&vc->lock);
1886                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1887                 spin_lock(&vc->lock);
1888         }
1889
1890         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1891                 kvmppc_remove_runnable(vc, vcpu);
1892                 vcpu->stat.signal_exits++;
1893                 kvm_run->exit_reason = KVM_EXIT_INTR;
1894                 vcpu->arch.ret = -EINTR;
1895         }
1896
1897         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1898                 /* Wake up some vcpu to run the core */
1899                 v = list_first_entry(&vc->runnable_threads,
1900                                      struct kvm_vcpu, arch.run_list);
1901                 wake_up(&v->arch.cpu_run);
1902         }
1903
1904         spin_unlock(&vc->lock);
1905         return vcpu->arch.ret;
1906 }
1907
1908 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1909 {
1910         int r;
1911         int srcu_idx;
1912
1913         if (!vcpu->arch.sane) {
1914                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1915                 return -EINVAL;
1916         }
1917
1918         kvmppc_core_prepare_to_enter(vcpu);
1919
1920         /* No need to go into the guest when all we'll do is come back out */
1921         if (signal_pending(current)) {
1922                 run->exit_reason = KVM_EXIT_INTR;
1923                 return -EINTR;
1924         }
1925
1926         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1927         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1928         smp_mb();
1929
1930         /* On the first time here, set up HTAB and VRMA or RMA */
1931         if (!vcpu->kvm->arch.rma_setup_done) {
1932                 r = kvmppc_hv_setup_htab_rma(vcpu);
1933                 if (r)
1934                         goto out;
1935         }
1936
1937         flush_fp_to_thread(current);
1938         flush_altivec_to_thread(current);
1939         flush_vsx_to_thread(current);
1940         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1941         vcpu->arch.pgdir = current->mm->pgd;
1942         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1943
1944         do {
1945                 r = kvmppc_run_vcpu(run, vcpu);
1946
1947                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1948                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1949                         r = kvmppc_pseries_do_hcall(vcpu);
1950                         kvmppc_core_prepare_to_enter(vcpu);
1951                 } else if (r == RESUME_PAGE_FAULT) {
1952                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1953                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1954                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1955                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1956                 }
1957         } while (is_kvmppc_resume_guest(r));
1958
1959  out:
1960         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1961         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1962         return r;
1963 }
1964
1965
1966 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1967    Assumes POWER7 or PPC970. */
1968 static inline int lpcr_rmls(unsigned long rma_size)
1969 {
1970         switch (rma_size) {
1971         case 32ul << 20:        /* 32 MB */
1972                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1973                         return 8;       /* only supported on POWER7 */
1974                 return -1;
1975         case 64ul << 20:        /* 64 MB */
1976                 return 3;
1977         case 128ul << 20:       /* 128 MB */
1978                 return 7;
1979         case 256ul << 20:       /* 256 MB */
1980                 return 4;
1981         case 1ul << 30:         /* 1 GB */
1982                 return 2;
1983         case 16ul << 30:        /* 16 GB */
1984                 return 1;
1985         case 256ul << 30:       /* 256 GB */
1986                 return 0;
1987         default:
1988                 return -1;
1989         }
1990 }
1991
1992 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1993 {
1994         struct page *page;
1995         struct kvm_rma_info *ri = vma->vm_file->private_data;
1996
1997         if (vmf->pgoff >= kvm_rma_pages)
1998                 return VM_FAULT_SIGBUS;
1999
2000         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
2001         get_page(page);
2002         vmf->page = page;
2003         return 0;
2004 }
2005
2006 static const struct vm_operations_struct kvm_rma_vm_ops = {
2007         .fault = kvm_rma_fault,
2008 };
2009
2010 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
2011 {
2012         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2013         vma->vm_ops = &kvm_rma_vm_ops;
2014         return 0;
2015 }
2016
2017 static int kvm_rma_release(struct inode *inode, struct file *filp)
2018 {
2019         struct kvm_rma_info *ri = filp->private_data;
2020
2021         kvm_release_rma(ri);
2022         return 0;
2023 }
2024
2025 static const struct file_operations kvm_rma_fops = {
2026         .mmap           = kvm_rma_mmap,
2027         .release        = kvm_rma_release,
2028 };
2029
2030 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
2031                                       struct kvm_allocate_rma *ret)
2032 {
2033         long fd;
2034         struct kvm_rma_info *ri;
2035         /*
2036          * Only do this on PPC970 in HV mode
2037          */
2038         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2039             !cpu_has_feature(CPU_FTR_ARCH_201))
2040                 return -EINVAL;
2041
2042         if (!kvm_rma_pages)
2043                 return -EINVAL;
2044
2045         ri = kvm_alloc_rma();
2046         if (!ri)
2047                 return -ENOMEM;
2048
2049         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
2050         if (fd < 0)
2051                 kvm_release_rma(ri);
2052
2053         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
2054         return fd;
2055 }
2056
2057 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2058                                      int linux_psize)
2059 {
2060         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2061
2062         if (!def->shift)
2063                 return;
2064         (*sps)->page_shift = def->shift;
2065         (*sps)->slb_enc = def->sllp;
2066         (*sps)->enc[0].page_shift = def->shift;
2067         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2068         /*
2069          * Add 16MB MPSS support if host supports it
2070          */
2071         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2072                 (*sps)->enc[1].page_shift = 24;
2073                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2074         }
2075         (*sps)++;
2076 }
2077
2078 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2079                                          struct kvm_ppc_smmu_info *info)
2080 {
2081         struct kvm_ppc_one_seg_page_size *sps;
2082
2083         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2084         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2085                 info->flags |= KVM_PPC_1T_SEGMENTS;
2086         info->slb_size = mmu_slb_size;
2087
2088         /* We only support these sizes for now, and no muti-size segments */
2089         sps = &info->sps[0];
2090         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2091         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2092         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2093
2094         return 0;
2095 }
2096
2097 /*
2098  * Get (and clear) the dirty memory log for a memory slot.
2099  */
2100 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2101                                          struct kvm_dirty_log *log)
2102 {
2103         struct kvm_memory_slot *memslot;
2104         int r;
2105         unsigned long n;
2106
2107         mutex_lock(&kvm->slots_lock);
2108
2109         r = -EINVAL;
2110         if (log->slot >= KVM_USER_MEM_SLOTS)
2111                 goto out;
2112
2113         memslot = id_to_memslot(kvm->memslots, log->slot);
2114         r = -ENOENT;
2115         if (!memslot->dirty_bitmap)
2116                 goto out;
2117
2118         n = kvm_dirty_bitmap_bytes(memslot);
2119         memset(memslot->dirty_bitmap, 0, n);
2120
2121         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2122         if (r)
2123                 goto out;
2124
2125         r = -EFAULT;
2126         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2127                 goto out;
2128
2129         r = 0;
2130 out:
2131         mutex_unlock(&kvm->slots_lock);
2132         return r;
2133 }
2134
2135 static void unpin_slot(struct kvm_memory_slot *memslot)
2136 {
2137         unsigned long *physp;
2138         unsigned long j, npages, pfn;
2139         struct page *page;
2140
2141         physp = memslot->arch.slot_phys;
2142         npages = memslot->npages;
2143         if (!physp)
2144                 return;
2145         for (j = 0; j < npages; j++) {
2146                 if (!(physp[j] & KVMPPC_GOT_PAGE))
2147                         continue;
2148                 pfn = physp[j] >> PAGE_SHIFT;
2149                 page = pfn_to_page(pfn);
2150                 SetPageDirty(page);
2151                 put_page(page);
2152         }
2153 }
2154
2155 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2156                                         struct kvm_memory_slot *dont)
2157 {
2158         if (!dont || free->arch.rmap != dont->arch.rmap) {
2159                 vfree(free->arch.rmap);
2160                 free->arch.rmap = NULL;
2161         }
2162         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
2163                 unpin_slot(free);
2164                 vfree(free->arch.slot_phys);
2165                 free->arch.slot_phys = NULL;
2166         }
2167 }
2168
2169 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2170                                          unsigned long npages)
2171 {
2172         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2173         if (!slot->arch.rmap)
2174                 return -ENOMEM;
2175         slot->arch.slot_phys = NULL;
2176
2177         return 0;
2178 }
2179
2180 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2181                                         struct kvm_memory_slot *memslot,
2182                                         struct kvm_userspace_memory_region *mem)
2183 {
2184         unsigned long *phys;
2185
2186         /* Allocate a slot_phys array if needed */
2187         phys = memslot->arch.slot_phys;
2188         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
2189                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
2190                 if (!phys)
2191                         return -ENOMEM;
2192                 memslot->arch.slot_phys = phys;
2193         }
2194
2195         return 0;
2196 }
2197
2198 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2199                                 struct kvm_userspace_memory_region *mem,
2200                                 const struct kvm_memory_slot *old)
2201 {
2202         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2203         struct kvm_memory_slot *memslot;
2204
2205         if (npages && old->npages) {
2206                 /*
2207                  * If modifying a memslot, reset all the rmap dirty bits.
2208                  * If this is a new memslot, we don't need to do anything
2209                  * since the rmap array starts out as all zeroes,
2210                  * i.e. no pages are dirty.
2211                  */
2212                 memslot = id_to_memslot(kvm->memslots, mem->slot);
2213                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2214         }
2215 }
2216
2217 /*
2218  * Update LPCR values in kvm->arch and in vcores.
2219  * Caller must hold kvm->lock.
2220  */
2221 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2222 {
2223         long int i;
2224         u32 cores_done = 0;
2225
2226         if ((kvm->arch.lpcr & mask) == lpcr)
2227                 return;
2228
2229         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2230
2231         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2232                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2233                 if (!vc)
2234                         continue;
2235                 spin_lock(&vc->lock);
2236                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2237                 spin_unlock(&vc->lock);
2238                 if (++cores_done >= kvm->arch.online_vcores)
2239                         break;
2240         }
2241 }
2242
2243 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2244 {
2245         return;
2246 }
2247
2248 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2249 {
2250         int err = 0;
2251         struct kvm *kvm = vcpu->kvm;
2252         struct kvm_rma_info *ri = NULL;
2253         unsigned long hva;
2254         struct kvm_memory_slot *memslot;
2255         struct vm_area_struct *vma;
2256         unsigned long lpcr = 0, senc;
2257         unsigned long lpcr_mask = 0;
2258         unsigned long psize, porder;
2259         unsigned long rma_size;
2260         unsigned long rmls;
2261         unsigned long *physp;
2262         unsigned long i, npages;
2263         int srcu_idx;
2264
2265         mutex_lock(&kvm->lock);
2266         if (kvm->arch.rma_setup_done)
2267                 goto out;       /* another vcpu beat us to it */
2268
2269         /* Allocate hashed page table (if not done already) and reset it */
2270         if (!kvm->arch.hpt_virt) {
2271                 err = kvmppc_alloc_hpt(kvm, NULL);
2272                 if (err) {
2273                         pr_err("KVM: Couldn't alloc HPT\n");
2274                         goto out;
2275                 }
2276         }
2277
2278         /* Look up the memslot for guest physical address 0 */
2279         srcu_idx = srcu_read_lock(&kvm->srcu);
2280         memslot = gfn_to_memslot(kvm, 0);
2281
2282         /* We must have some memory at 0 by now */
2283         err = -EINVAL;
2284         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2285                 goto out_srcu;
2286
2287         /* Look up the VMA for the start of this memory slot */
2288         hva = memslot->userspace_addr;
2289         down_read(&current->mm->mmap_sem);
2290         vma = find_vma(current->mm, hva);
2291         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2292                 goto up_out;
2293
2294         psize = vma_kernel_pagesize(vma);
2295         porder = __ilog2(psize);
2296
2297         /* Is this one of our preallocated RMAs? */
2298         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2299             hva == vma->vm_start)
2300                 ri = vma->vm_file->private_data;
2301
2302         up_read(&current->mm->mmap_sem);
2303
2304         if (!ri) {
2305                 /* On POWER7, use VRMA; on PPC970, give up */
2306                 err = -EPERM;
2307                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2308                         pr_err("KVM: CPU requires an RMO\n");
2309                         goto out_srcu;
2310                 }
2311
2312                 /* We can handle 4k, 64k or 16M pages in the VRMA */
2313                 err = -EINVAL;
2314                 if (!(psize == 0x1000 || psize == 0x10000 ||
2315                       psize == 0x1000000))
2316                         goto out_srcu;
2317
2318                 /* Update VRMASD field in the LPCR */
2319                 senc = slb_pgsize_encoding(psize);
2320                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2321                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2322                 lpcr_mask = LPCR_VRMASD;
2323                 /* the -4 is to account for senc values starting at 0x10 */
2324                 lpcr = senc << (LPCR_VRMASD_SH - 4);
2325
2326                 /* Create HPTEs in the hash page table for the VRMA */
2327                 kvmppc_map_vrma(vcpu, memslot, porder);
2328
2329         } else {
2330                 /* Set up to use an RMO region */
2331                 rma_size = kvm_rma_pages;
2332                 if (rma_size > memslot->npages)
2333                         rma_size = memslot->npages;
2334                 rma_size <<= PAGE_SHIFT;
2335                 rmls = lpcr_rmls(rma_size);
2336                 err = -EINVAL;
2337                 if ((long)rmls < 0) {
2338                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2339                         goto out_srcu;
2340                 }
2341                 atomic_inc(&ri->use_count);
2342                 kvm->arch.rma = ri;
2343
2344                 /* Update LPCR and RMOR */
2345                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2346                         /* PPC970; insert RMLS value (split field) in HID4 */
2347                         lpcr_mask = (1ul << HID4_RMLS0_SH) |
2348                                 (3ul << HID4_RMLS2_SH) | HID4_RMOR;
2349                         lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2350                                 ((rmls & 3) << HID4_RMLS2_SH);
2351                         /* RMOR is also in HID4 */
2352                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2353                                 << HID4_RMOR_SH;
2354                 } else {
2355                         /* POWER7 */
2356                         lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2357                         lpcr = rmls << LPCR_RMLS_SH;
2358                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2359                 }
2360                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2361                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2362
2363                 /* Initialize phys addrs of pages in RMO */
2364                 npages = kvm_rma_pages;
2365                 porder = __ilog2(npages);
2366                 physp = memslot->arch.slot_phys;
2367                 if (physp) {
2368                         if (npages > memslot->npages)
2369                                 npages = memslot->npages;
2370                         spin_lock(&kvm->arch.slot_phys_lock);
2371                         for (i = 0; i < npages; ++i)
2372                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2373                                         porder;
2374                         spin_unlock(&kvm->arch.slot_phys_lock);
2375                 }
2376         }
2377
2378         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2379
2380         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2381         smp_wmb();
2382         kvm->arch.rma_setup_done = 1;
2383         err = 0;
2384  out_srcu:
2385         srcu_read_unlock(&kvm->srcu, srcu_idx);
2386  out:
2387         mutex_unlock(&kvm->lock);
2388         return err;
2389
2390  up_out:
2391         up_read(&current->mm->mmap_sem);
2392         goto out_srcu;
2393 }
2394
2395 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2396 {
2397         unsigned long lpcr, lpid;
2398
2399         /* Allocate the guest's logical partition ID */
2400
2401         lpid = kvmppc_alloc_lpid();
2402         if ((long)lpid < 0)
2403                 return -ENOMEM;
2404         kvm->arch.lpid = lpid;
2405
2406         /*
2407          * Since we don't flush the TLB when tearing down a VM,
2408          * and this lpid might have previously been used,
2409          * make sure we flush on each core before running the new VM.
2410          */
2411         cpumask_setall(&kvm->arch.need_tlb_flush);
2412
2413         /* Start out with the default set of hcalls enabled */
2414         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2415                sizeof(kvm->arch.enabled_hcalls));
2416
2417         kvm->arch.rma = NULL;
2418
2419         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2420
2421         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2422                 /* PPC970; HID4 is effectively the LPCR */
2423                 kvm->arch.host_lpid = 0;
2424                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2425                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2426                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2427                         ((lpid & 0xf) << HID4_LPID5_SH);
2428         } else {
2429                 /* POWER7; init LPCR for virtual RMA mode */
2430                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2431                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2432                 lpcr &= LPCR_PECE | LPCR_LPES;
2433                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2434                         LPCR_VPM0 | LPCR_VPM1;
2435                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2436                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2437                 /* On POWER8 turn on online bit to enable PURR/SPURR */
2438                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
2439                         lpcr |= LPCR_ONL;
2440         }
2441         kvm->arch.lpcr = lpcr;
2442
2443         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2444         spin_lock_init(&kvm->arch.slot_phys_lock);
2445
2446         /*
2447          * Track that we now have a HV mode VM active. This blocks secondary
2448          * CPU threads from coming online.
2449          */
2450         kvm_hv_vm_activated();
2451
2452         return 0;
2453 }
2454
2455 static void kvmppc_free_vcores(struct kvm *kvm)
2456 {
2457         long int i;
2458
2459         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2460                 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2461                         struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2462                         free_pages((unsigned long)vc->mpp_buffer,
2463                                    MPP_BUFFER_ORDER);
2464                 }
2465                 kfree(kvm->arch.vcores[i]);
2466         }
2467         kvm->arch.online_vcores = 0;
2468 }
2469
2470 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2471 {
2472         kvm_hv_vm_deactivated();
2473
2474         kvmppc_free_vcores(kvm);
2475         if (kvm->arch.rma) {
2476                 kvm_release_rma(kvm->arch.rma);
2477                 kvm->arch.rma = NULL;
2478         }
2479
2480         kvmppc_free_hpt(kvm);
2481 }
2482
2483 /* We don't need to emulate any privileged instructions or dcbz */
2484 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2485                                      unsigned int inst, int *advance)
2486 {
2487         return EMULATE_FAIL;
2488 }
2489
2490 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2491                                         ulong spr_val)
2492 {
2493         return EMULATE_FAIL;
2494 }
2495
2496 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2497                                         ulong *spr_val)
2498 {
2499         return EMULATE_FAIL;
2500 }
2501
2502 static int kvmppc_core_check_processor_compat_hv(void)
2503 {
2504         if (!cpu_has_feature(CPU_FTR_HVMODE))
2505                 return -EIO;
2506         return 0;
2507 }
2508
2509 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2510                                  unsigned int ioctl, unsigned long arg)
2511 {
2512         struct kvm *kvm __maybe_unused = filp->private_data;
2513         void __user *argp = (void __user *)arg;
2514         long r;
2515
2516         switch (ioctl) {
2517
2518         case KVM_ALLOCATE_RMA: {
2519                 struct kvm_allocate_rma rma;
2520                 struct kvm *kvm = filp->private_data;
2521
2522                 r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2523                 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2524                         r = -EFAULT;
2525                 break;
2526         }
2527
2528         case KVM_PPC_ALLOCATE_HTAB: {
2529                 u32 htab_order;
2530
2531                 r = -EFAULT;
2532                 if (get_user(htab_order, (u32 __user *)argp))
2533                         break;
2534                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2535                 if (r)
2536                         break;
2537                 r = -EFAULT;
2538                 if (put_user(htab_order, (u32 __user *)argp))
2539                         break;
2540                 r = 0;
2541                 break;
2542         }
2543
2544         case KVM_PPC_GET_HTAB_FD: {
2545                 struct kvm_get_htab_fd ghf;
2546
2547                 r = -EFAULT;
2548                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2549                         break;
2550                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2551                 break;
2552         }
2553
2554         default:
2555                 r = -ENOTTY;
2556         }
2557
2558         return r;
2559 }
2560
2561 /*
2562  * List of hcall numbers to enable by default.
2563  * For compatibility with old userspace, we enable by default
2564  * all hcalls that were implemented before the hcall-enabling
2565  * facility was added.  Note this list should not include H_RTAS.
2566  */
2567 static unsigned int default_hcall_list[] = {
2568         H_REMOVE,
2569         H_ENTER,
2570         H_READ,
2571         H_PROTECT,
2572         H_BULK_REMOVE,
2573         H_GET_TCE,
2574         H_PUT_TCE,
2575         H_SET_DABR,
2576         H_SET_XDABR,
2577         H_CEDE,
2578         H_PROD,
2579         H_CONFER,
2580         H_REGISTER_VPA,
2581 #ifdef CONFIG_KVM_XICS
2582         H_EOI,
2583         H_CPPR,
2584         H_IPI,
2585         H_IPOLL,
2586         H_XIRR,
2587         H_XIRR_X,
2588 #endif
2589         0
2590 };
2591
2592 static void init_default_hcalls(void)
2593 {
2594         int i;
2595         unsigned int hcall;
2596
2597         for (i = 0; default_hcall_list[i]; ++i) {
2598                 hcall = default_hcall_list[i];
2599                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2600                 __set_bit(hcall / 4, default_enabled_hcalls);
2601         }
2602 }
2603
2604 static struct kvmppc_ops kvm_ops_hv = {
2605         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2606         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2607         .get_one_reg = kvmppc_get_one_reg_hv,
2608         .set_one_reg = kvmppc_set_one_reg_hv,
2609         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2610         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2611         .set_msr     = kvmppc_set_msr_hv,
2612         .vcpu_run    = kvmppc_vcpu_run_hv,
2613         .vcpu_create = kvmppc_core_vcpu_create_hv,
2614         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2615         .check_requests = kvmppc_core_check_requests_hv,
2616         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2617         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2618         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2619         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2620         .unmap_hva = kvm_unmap_hva_hv,
2621         .unmap_hva_range = kvm_unmap_hva_range_hv,
2622         .age_hva  = kvm_age_hva_hv,
2623         .test_age_hva = kvm_test_age_hva_hv,
2624         .set_spte_hva = kvm_set_spte_hva_hv,
2625         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2626         .free_memslot = kvmppc_core_free_memslot_hv,
2627         .create_memslot = kvmppc_core_create_memslot_hv,
2628         .init_vm =  kvmppc_core_init_vm_hv,
2629         .destroy_vm = kvmppc_core_destroy_vm_hv,
2630         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2631         .emulate_op = kvmppc_core_emulate_op_hv,
2632         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2633         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2634         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2635         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2636         .hcall_implemented = kvmppc_hcall_impl_hv,
2637 };
2638
2639 static int kvmppc_book3s_init_hv(void)
2640 {
2641         int r;
2642         /*
2643          * FIXME!! Do we need to check on all cpus ?
2644          */
2645         r = kvmppc_core_check_processor_compat_hv();
2646         if (r < 0)
2647                 return -ENODEV;
2648
2649         kvm_ops_hv.owner = THIS_MODULE;
2650         kvmppc_hv_ops = &kvm_ops_hv;
2651
2652         init_default_hcalls();
2653
2654         r = kvmppc_mmu_hv_init();
2655         return r;
2656 }
2657
2658 static void kvmppc_book3s_exit_hv(void)
2659 {
2660         kvmppc_hv_ops = NULL;
2661 }
2662
2663 module_init(kvmppc_book3s_init_hv);
2664 module_exit(kvmppc_book3s_exit_hv);
2665 MODULE_LICENSE("GPL");
2666 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2667 MODULE_ALIAS("devname:kvm");