KVM: PPC: Book3S HV: Fix accounting of stolen time
[cascardo/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 /*
70  * We use the vcpu_load/put functions to measure stolen time.
71  * Stolen time is counted as time when either the vcpu is able to
72  * run as part of a virtual core, but the task running the vcore
73  * is preempted or sleeping, or when the vcpu needs something done
74  * in the kernel by the task running the vcpu, but that task is
75  * preempted or sleeping.  Those two things have to be counted
76  * separately, since one of the vcpu tasks will take on the job
77  * of running the core, and the other vcpu tasks in the vcore will
78  * sleep waiting for it to do that, but that sleep shouldn't count
79  * as stolen time.
80  *
81  * Hence we accumulate stolen time when the vcpu can run as part of
82  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
83  * needs its task to do other things in the kernel (for example,
84  * service a page fault) in busy_stolen.  We don't accumulate
85  * stolen time for a vcore when it is inactive, or for a vcpu
86  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
87  * a misnomer; it means that the vcpu task is not executing in
88  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
89  * the kernel.  We don't have any way of dividing up that time
90  * between time that the vcpu is genuinely stopped, time that
91  * the task is actively working on behalf of the vcpu, and time
92  * that the task is preempted, so we don't count any of it as
93  * stolen.
94  *
95  * Updates to busy_stolen are protected by arch.tbacct_lock;
96  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
97  * of the vcpu that has taken responsibility for running the vcore
98  * (i.e. vc->runner).  The stolen times are measured in units of
99  * timebase ticks.  (Note that the != TB_NIL checks below are
100  * purely defensive; they should never fail.)
101  */
102
103 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
104 {
105         struct kvmppc_vcore *vc = vcpu->arch.vcore;
106
107         spin_lock(&vcpu->arch.tbacct_lock);
108         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
109             vc->preempt_tb != TB_NIL) {
110                 vc->stolen_tb += mftb() - vc->preempt_tb;
111                 vc->preempt_tb = TB_NIL;
112         }
113         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
114             vcpu->arch.busy_preempt != TB_NIL) {
115                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
116                 vcpu->arch.busy_preempt = TB_NIL;
117         }
118         spin_unlock(&vcpu->arch.tbacct_lock);
119 }
120
121 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
122 {
123         struct kvmppc_vcore *vc = vcpu->arch.vcore;
124
125         spin_lock(&vcpu->arch.tbacct_lock);
126         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
127                 vc->preempt_tb = mftb();
128         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
129                 vcpu->arch.busy_preempt = mftb();
130         spin_unlock(&vcpu->arch.tbacct_lock);
131 }
132
133 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
134 {
135         vcpu->arch.shregs.msr = msr;
136         kvmppc_end_cede(vcpu);
137 }
138
139 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
140 {
141         vcpu->arch.pvr = pvr;
142 }
143
144 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
145 {
146         int r;
147
148         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
149         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
150                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
151         for (r = 0; r < 16; ++r)
152                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
153                        r, kvmppc_get_gpr(vcpu, r),
154                        r+16, kvmppc_get_gpr(vcpu, r+16));
155         pr_err("ctr = %.16lx  lr  = %.16lx\n",
156                vcpu->arch.ctr, vcpu->arch.lr);
157         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
158                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
159         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
160                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
161         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
162                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
163         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
164                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
165         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
166         pr_err("fault dar = %.16lx dsisr = %.8x\n",
167                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
168         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
169         for (r = 0; r < vcpu->arch.slb_max; ++r)
170                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
171                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
172         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
173                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
174                vcpu->arch.last_inst);
175 }
176
177 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
178 {
179         int r;
180         struct kvm_vcpu *v, *ret = NULL;
181
182         mutex_lock(&kvm->lock);
183         kvm_for_each_vcpu(r, v, kvm) {
184                 if (v->vcpu_id == id) {
185                         ret = v;
186                         break;
187                 }
188         }
189         mutex_unlock(&kvm->lock);
190         return ret;
191 }
192
193 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
194 {
195         vpa->shared_proc = 1;
196         vpa->yield_count = 1;
197 }
198
199 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
200                    unsigned long addr, unsigned long len)
201 {
202         /* check address is cacheline aligned */
203         if (addr & (L1_CACHE_BYTES - 1))
204                 return -EINVAL;
205         spin_lock(&vcpu->arch.vpa_update_lock);
206         if (v->next_gpa != addr || v->len != len) {
207                 v->next_gpa = addr;
208                 v->len = addr ? len : 0;
209                 v->update_pending = 1;
210         }
211         spin_unlock(&vcpu->arch.vpa_update_lock);
212         return 0;
213 }
214
215 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
216 struct reg_vpa {
217         u32 dummy;
218         union {
219                 u16 hword;
220                 u32 word;
221         } length;
222 };
223
224 static int vpa_is_registered(struct kvmppc_vpa *vpap)
225 {
226         if (vpap->update_pending)
227                 return vpap->next_gpa != 0;
228         return vpap->pinned_addr != NULL;
229 }
230
231 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
232                                        unsigned long flags,
233                                        unsigned long vcpuid, unsigned long vpa)
234 {
235         struct kvm *kvm = vcpu->kvm;
236         unsigned long len, nb;
237         void *va;
238         struct kvm_vcpu *tvcpu;
239         int err;
240         int subfunc;
241         struct kvmppc_vpa *vpap;
242
243         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
244         if (!tvcpu)
245                 return H_PARAMETER;
246
247         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
248         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
249             subfunc == H_VPA_REG_SLB) {
250                 /* Registering new area - address must be cache-line aligned */
251                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
252                         return H_PARAMETER;
253
254                 /* convert logical addr to kernel addr and read length */
255                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
256                 if (va == NULL)
257                         return H_PARAMETER;
258                 if (subfunc == H_VPA_REG_VPA)
259                         len = ((struct reg_vpa *)va)->length.hword;
260                 else
261                         len = ((struct reg_vpa *)va)->length.word;
262                 kvmppc_unpin_guest_page(kvm, va);
263
264                 /* Check length */
265                 if (len > nb || len < sizeof(struct reg_vpa))
266                         return H_PARAMETER;
267         } else {
268                 vpa = 0;
269                 len = 0;
270         }
271
272         err = H_PARAMETER;
273         vpap = NULL;
274         spin_lock(&tvcpu->arch.vpa_update_lock);
275
276         switch (subfunc) {
277         case H_VPA_REG_VPA:             /* register VPA */
278                 if (len < sizeof(struct lppaca))
279                         break;
280                 vpap = &tvcpu->arch.vpa;
281                 err = 0;
282                 break;
283
284         case H_VPA_REG_DTL:             /* register DTL */
285                 if (len < sizeof(struct dtl_entry))
286                         break;
287                 len -= len % sizeof(struct dtl_entry);
288
289                 /* Check that they have previously registered a VPA */
290                 err = H_RESOURCE;
291                 if (!vpa_is_registered(&tvcpu->arch.vpa))
292                         break;
293
294                 vpap = &tvcpu->arch.dtl;
295                 err = 0;
296                 break;
297
298         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
299                 /* Check that they have previously registered a VPA */
300                 err = H_RESOURCE;
301                 if (!vpa_is_registered(&tvcpu->arch.vpa))
302                         break;
303
304                 vpap = &tvcpu->arch.slb_shadow;
305                 err = 0;
306                 break;
307
308         case H_VPA_DEREG_VPA:           /* deregister VPA */
309                 /* Check they don't still have a DTL or SLB buf registered */
310                 err = H_RESOURCE;
311                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
312                     vpa_is_registered(&tvcpu->arch.slb_shadow))
313                         break;
314
315                 vpap = &tvcpu->arch.vpa;
316                 err = 0;
317                 break;
318
319         case H_VPA_DEREG_DTL:           /* deregister DTL */
320                 vpap = &tvcpu->arch.dtl;
321                 err = 0;
322                 break;
323
324         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
325                 vpap = &tvcpu->arch.slb_shadow;
326                 err = 0;
327                 break;
328         }
329
330         if (vpap) {
331                 vpap->next_gpa = vpa;
332                 vpap->len = len;
333                 vpap->update_pending = 1;
334         }
335
336         spin_unlock(&tvcpu->arch.vpa_update_lock);
337
338         return err;
339 }
340
341 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
342 {
343         struct kvm *kvm = vcpu->kvm;
344         void *va;
345         unsigned long nb;
346         unsigned long gpa;
347
348         /*
349          * We need to pin the page pointed to by vpap->next_gpa,
350          * but we can't call kvmppc_pin_guest_page under the lock
351          * as it does get_user_pages() and down_read().  So we
352          * have to drop the lock, pin the page, then get the lock
353          * again and check that a new area didn't get registered
354          * in the meantime.
355          */
356         for (;;) {
357                 gpa = vpap->next_gpa;
358                 spin_unlock(&vcpu->arch.vpa_update_lock);
359                 va = NULL;
360                 nb = 0;
361                 if (gpa)
362                         va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
363                 spin_lock(&vcpu->arch.vpa_update_lock);
364                 if (gpa == vpap->next_gpa)
365                         break;
366                 /* sigh... unpin that one and try again */
367                 if (va)
368                         kvmppc_unpin_guest_page(kvm, va);
369         }
370
371         vpap->update_pending = 0;
372         if (va && nb < vpap->len) {
373                 /*
374                  * If it's now too short, it must be that userspace
375                  * has changed the mappings underlying guest memory,
376                  * so unregister the region.
377                  */
378                 kvmppc_unpin_guest_page(kvm, va);
379                 va = NULL;
380         }
381         if (vpap->pinned_addr)
382                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
383         vpap->pinned_addr = va;
384         if (va)
385                 vpap->pinned_end = va + vpap->len;
386 }
387
388 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
389 {
390         if (!(vcpu->arch.vpa.update_pending ||
391               vcpu->arch.slb_shadow.update_pending ||
392               vcpu->arch.dtl.update_pending))
393                 return;
394
395         spin_lock(&vcpu->arch.vpa_update_lock);
396         if (vcpu->arch.vpa.update_pending) {
397                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
398                 if (vcpu->arch.vpa.pinned_addr)
399                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
400         }
401         if (vcpu->arch.dtl.update_pending) {
402                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
403                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
404                 vcpu->arch.dtl_index = 0;
405         }
406         if (vcpu->arch.slb_shadow.update_pending)
407                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
408         spin_unlock(&vcpu->arch.vpa_update_lock);
409 }
410
411 /*
412  * Return the accumulated stolen time for the vcore up until `now'.
413  * The caller should hold the vcore lock.
414  */
415 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
416 {
417         u64 p;
418
419         /*
420          * If we are the task running the vcore, then since we hold
421          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
422          * can't be updated, so we don't need the tbacct_lock.
423          * If the vcore is inactive, it can't become active (since we
424          * hold the vcore lock), so the vcpu load/put functions won't
425          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
426          */
427         if (vc->vcore_state != VCORE_INACTIVE &&
428             vc->runner->arch.run_task != current) {
429                 spin_lock(&vc->runner->arch.tbacct_lock);
430                 p = vc->stolen_tb;
431                 if (vc->preempt_tb != TB_NIL)
432                         p += now - vc->preempt_tb;
433                 spin_unlock(&vc->runner->arch.tbacct_lock);
434         } else {
435                 p = vc->stolen_tb;
436         }
437         return p;
438 }
439
440 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
441                                     struct kvmppc_vcore *vc)
442 {
443         struct dtl_entry *dt;
444         struct lppaca *vpa;
445         unsigned long stolen;
446         unsigned long core_stolen;
447         u64 now;
448
449         dt = vcpu->arch.dtl_ptr;
450         vpa = vcpu->arch.vpa.pinned_addr;
451         now = mftb();
452         core_stolen = vcore_stolen_time(vc, now);
453         stolen = core_stolen - vcpu->arch.stolen_logged;
454         vcpu->arch.stolen_logged = core_stolen;
455         spin_lock(&vcpu->arch.tbacct_lock);
456         stolen += vcpu->arch.busy_stolen;
457         vcpu->arch.busy_stolen = 0;
458         spin_unlock(&vcpu->arch.tbacct_lock);
459         if (!dt || !vpa)
460                 return;
461         memset(dt, 0, sizeof(struct dtl_entry));
462         dt->dispatch_reason = 7;
463         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
464         dt->timebase = now;
465         dt->enqueue_to_dispatch_time = stolen;
466         dt->srr0 = kvmppc_get_pc(vcpu);
467         dt->srr1 = vcpu->arch.shregs.msr;
468         ++dt;
469         if (dt == vcpu->arch.dtl.pinned_end)
470                 dt = vcpu->arch.dtl.pinned_addr;
471         vcpu->arch.dtl_ptr = dt;
472         /* order writing *dt vs. writing vpa->dtl_idx */
473         smp_wmb();
474         vpa->dtl_idx = ++vcpu->arch.dtl_index;
475 }
476
477 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
478 {
479         unsigned long req = kvmppc_get_gpr(vcpu, 3);
480         unsigned long target, ret = H_SUCCESS;
481         struct kvm_vcpu *tvcpu;
482         int idx;
483
484         switch (req) {
485         case H_ENTER:
486                 idx = srcu_read_lock(&vcpu->kvm->srcu);
487                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
488                                               kvmppc_get_gpr(vcpu, 5),
489                                               kvmppc_get_gpr(vcpu, 6),
490                                               kvmppc_get_gpr(vcpu, 7));
491                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
492                 break;
493         case H_CEDE:
494                 break;
495         case H_PROD:
496                 target = kvmppc_get_gpr(vcpu, 4);
497                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
498                 if (!tvcpu) {
499                         ret = H_PARAMETER;
500                         break;
501                 }
502                 tvcpu->arch.prodded = 1;
503                 smp_mb();
504                 if (vcpu->arch.ceded) {
505                         if (waitqueue_active(&vcpu->wq)) {
506                                 wake_up_interruptible(&vcpu->wq);
507                                 vcpu->stat.halt_wakeup++;
508                         }
509                 }
510                 break;
511         case H_CONFER:
512                 break;
513         case H_REGISTER_VPA:
514                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
515                                         kvmppc_get_gpr(vcpu, 5),
516                                         kvmppc_get_gpr(vcpu, 6));
517                 break;
518         default:
519                 return RESUME_HOST;
520         }
521         kvmppc_set_gpr(vcpu, 3, ret);
522         vcpu->arch.hcall_needed = 0;
523         return RESUME_GUEST;
524 }
525
526 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
527                               struct task_struct *tsk)
528 {
529         int r = RESUME_HOST;
530
531         vcpu->stat.sum_exits++;
532
533         run->exit_reason = KVM_EXIT_UNKNOWN;
534         run->ready_for_interrupt_injection = 1;
535         switch (vcpu->arch.trap) {
536         /* We're good on these - the host merely wanted to get our attention */
537         case BOOK3S_INTERRUPT_HV_DECREMENTER:
538                 vcpu->stat.dec_exits++;
539                 r = RESUME_GUEST;
540                 break;
541         case BOOK3S_INTERRUPT_EXTERNAL:
542                 vcpu->stat.ext_intr_exits++;
543                 r = RESUME_GUEST;
544                 break;
545         case BOOK3S_INTERRUPT_PERFMON:
546                 r = RESUME_GUEST;
547                 break;
548         case BOOK3S_INTERRUPT_PROGRAM:
549         {
550                 ulong flags;
551                 /*
552                  * Normally program interrupts are delivered directly
553                  * to the guest by the hardware, but we can get here
554                  * as a result of a hypervisor emulation interrupt
555                  * (e40) getting turned into a 700 by BML RTAS.
556                  */
557                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
558                 kvmppc_core_queue_program(vcpu, flags);
559                 r = RESUME_GUEST;
560                 break;
561         }
562         case BOOK3S_INTERRUPT_SYSCALL:
563         {
564                 /* hcall - punt to userspace */
565                 int i;
566
567                 if (vcpu->arch.shregs.msr & MSR_PR) {
568                         /* sc 1 from userspace - reflect to guest syscall */
569                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
570                         r = RESUME_GUEST;
571                         break;
572                 }
573                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
574                 for (i = 0; i < 9; ++i)
575                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
576                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
577                 vcpu->arch.hcall_needed = 1;
578                 r = RESUME_HOST;
579                 break;
580         }
581         /*
582          * We get these next two if the guest accesses a page which it thinks
583          * it has mapped but which is not actually present, either because
584          * it is for an emulated I/O device or because the corresonding
585          * host page has been paged out.  Any other HDSI/HISI interrupts
586          * have been handled already.
587          */
588         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
589                 r = RESUME_PAGE_FAULT;
590                 break;
591         case BOOK3S_INTERRUPT_H_INST_STORAGE:
592                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
593                 vcpu->arch.fault_dsisr = 0;
594                 r = RESUME_PAGE_FAULT;
595                 break;
596         /*
597          * This occurs if the guest executes an illegal instruction.
598          * We just generate a program interrupt to the guest, since
599          * we don't emulate any guest instructions at this stage.
600          */
601         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
602                 kvmppc_core_queue_program(vcpu, 0x80000);
603                 r = RESUME_GUEST;
604                 break;
605         default:
606                 kvmppc_dump_regs(vcpu);
607                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
608                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
609                         vcpu->arch.shregs.msr);
610                 r = RESUME_HOST;
611                 BUG();
612                 break;
613         }
614
615         return r;
616 }
617
618 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
619                                   struct kvm_sregs *sregs)
620 {
621         int i;
622
623         sregs->pvr = vcpu->arch.pvr;
624
625         memset(sregs, 0, sizeof(struct kvm_sregs));
626         for (i = 0; i < vcpu->arch.slb_max; i++) {
627                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
628                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
629         }
630
631         return 0;
632 }
633
634 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
635                                   struct kvm_sregs *sregs)
636 {
637         int i, j;
638
639         kvmppc_set_pvr(vcpu, sregs->pvr);
640
641         j = 0;
642         for (i = 0; i < vcpu->arch.slb_nr; i++) {
643                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
644                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
645                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
646                         ++j;
647                 }
648         }
649         vcpu->arch.slb_max = j;
650
651         return 0;
652 }
653
654 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
655 {
656         int r = 0;
657         long int i;
658
659         switch (id) {
660         case KVM_REG_PPC_HIOR:
661                 *val = get_reg_val(id, 0);
662                 break;
663         case KVM_REG_PPC_DABR:
664                 *val = get_reg_val(id, vcpu->arch.dabr);
665                 break;
666         case KVM_REG_PPC_DSCR:
667                 *val = get_reg_val(id, vcpu->arch.dscr);
668                 break;
669         case KVM_REG_PPC_PURR:
670                 *val = get_reg_val(id, vcpu->arch.purr);
671                 break;
672         case KVM_REG_PPC_SPURR:
673                 *val = get_reg_val(id, vcpu->arch.spurr);
674                 break;
675         case KVM_REG_PPC_AMR:
676                 *val = get_reg_val(id, vcpu->arch.amr);
677                 break;
678         case KVM_REG_PPC_UAMOR:
679                 *val = get_reg_val(id, vcpu->arch.uamor);
680                 break;
681         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
682                 i = id - KVM_REG_PPC_MMCR0;
683                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
684                 break;
685         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
686                 i = id - KVM_REG_PPC_PMC1;
687                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
688                 break;
689 #ifdef CONFIG_VSX
690         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
691                 if (cpu_has_feature(CPU_FTR_VSX)) {
692                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
693                         long int i = id - KVM_REG_PPC_FPR0;
694                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
695                 } else {
696                         /* let generic code handle it */
697                         r = -EINVAL;
698                 }
699                 break;
700         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
701                 if (cpu_has_feature(CPU_FTR_VSX)) {
702                         long int i = id - KVM_REG_PPC_VSR0;
703                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
704                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
705                 } else {
706                         r = -ENXIO;
707                 }
708                 break;
709 #endif /* CONFIG_VSX */
710         case KVM_REG_PPC_VPA_ADDR:
711                 spin_lock(&vcpu->arch.vpa_update_lock);
712                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
713                 spin_unlock(&vcpu->arch.vpa_update_lock);
714                 break;
715         case KVM_REG_PPC_VPA_SLB:
716                 spin_lock(&vcpu->arch.vpa_update_lock);
717                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
718                 val->vpaval.length = vcpu->arch.slb_shadow.len;
719                 spin_unlock(&vcpu->arch.vpa_update_lock);
720                 break;
721         case KVM_REG_PPC_VPA_DTL:
722                 spin_lock(&vcpu->arch.vpa_update_lock);
723                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
724                 val->vpaval.length = vcpu->arch.dtl.len;
725                 spin_unlock(&vcpu->arch.vpa_update_lock);
726                 break;
727         default:
728                 r = -EINVAL;
729                 break;
730         }
731
732         return r;
733 }
734
735 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
736 {
737         int r = 0;
738         long int i;
739         unsigned long addr, len;
740
741         switch (id) {
742         case KVM_REG_PPC_HIOR:
743                 /* Only allow this to be set to zero */
744                 if (set_reg_val(id, *val))
745                         r = -EINVAL;
746                 break;
747         case KVM_REG_PPC_DABR:
748                 vcpu->arch.dabr = set_reg_val(id, *val);
749                 break;
750         case KVM_REG_PPC_DSCR:
751                 vcpu->arch.dscr = set_reg_val(id, *val);
752                 break;
753         case KVM_REG_PPC_PURR:
754                 vcpu->arch.purr = set_reg_val(id, *val);
755                 break;
756         case KVM_REG_PPC_SPURR:
757                 vcpu->arch.spurr = set_reg_val(id, *val);
758                 break;
759         case KVM_REG_PPC_AMR:
760                 vcpu->arch.amr = set_reg_val(id, *val);
761                 break;
762         case KVM_REG_PPC_UAMOR:
763                 vcpu->arch.uamor = set_reg_val(id, *val);
764                 break;
765         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
766                 i = id - KVM_REG_PPC_MMCR0;
767                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
768                 break;
769         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
770                 i = id - KVM_REG_PPC_PMC1;
771                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
772                 break;
773 #ifdef CONFIG_VSX
774         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
775                 if (cpu_has_feature(CPU_FTR_VSX)) {
776                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
777                         long int i = id - KVM_REG_PPC_FPR0;
778                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
779                 } else {
780                         /* let generic code handle it */
781                         r = -EINVAL;
782                 }
783                 break;
784         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
785                 if (cpu_has_feature(CPU_FTR_VSX)) {
786                         long int i = id - KVM_REG_PPC_VSR0;
787                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
788                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
789                 } else {
790                         r = -ENXIO;
791                 }
792                 break;
793 #endif /* CONFIG_VSX */
794         case KVM_REG_PPC_VPA_ADDR:
795                 addr = set_reg_val(id, *val);
796                 r = -EINVAL;
797                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
798                               vcpu->arch.dtl.next_gpa))
799                         break;
800                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
801                 break;
802         case KVM_REG_PPC_VPA_SLB:
803                 addr = val->vpaval.addr;
804                 len = val->vpaval.length;
805                 r = -EINVAL;
806                 if (addr && !vcpu->arch.vpa.next_gpa)
807                         break;
808                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
809                 break;
810         case KVM_REG_PPC_VPA_DTL:
811                 addr = val->vpaval.addr;
812                 len = val->vpaval.length;
813                 r = -EINVAL;
814                 if (len < sizeof(struct dtl_entry))
815                         break;
816                 if (addr && !vcpu->arch.vpa.next_gpa)
817                         break;
818                 len -= len % sizeof(struct dtl_entry);
819                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
820                 break;
821         default:
822                 r = -EINVAL;
823                 break;
824         }
825
826         return r;
827 }
828
829 int kvmppc_core_check_processor_compat(void)
830 {
831         if (cpu_has_feature(CPU_FTR_HVMODE))
832                 return 0;
833         return -EIO;
834 }
835
836 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
837 {
838         struct kvm_vcpu *vcpu;
839         int err = -EINVAL;
840         int core;
841         struct kvmppc_vcore *vcore;
842
843         core = id / threads_per_core;
844         if (core >= KVM_MAX_VCORES)
845                 goto out;
846
847         err = -ENOMEM;
848         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
849         if (!vcpu)
850                 goto out;
851
852         err = kvm_vcpu_init(vcpu, kvm, id);
853         if (err)
854                 goto free_vcpu;
855
856         vcpu->arch.shared = &vcpu->arch.shregs;
857         vcpu->arch.last_cpu = -1;
858         vcpu->arch.mmcr[0] = MMCR0_FC;
859         vcpu->arch.ctrl = CTRL_RUNLATCH;
860         /* default to host PVR, since we can't spoof it */
861         vcpu->arch.pvr = mfspr(SPRN_PVR);
862         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
863         spin_lock_init(&vcpu->arch.vpa_update_lock);
864         spin_lock_init(&vcpu->arch.tbacct_lock);
865         vcpu->arch.busy_preempt = TB_NIL;
866
867         kvmppc_mmu_book3s_hv_init(vcpu);
868
869         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
870
871         init_waitqueue_head(&vcpu->arch.cpu_run);
872
873         mutex_lock(&kvm->lock);
874         vcore = kvm->arch.vcores[core];
875         if (!vcore) {
876                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
877                 if (vcore) {
878                         INIT_LIST_HEAD(&vcore->runnable_threads);
879                         spin_lock_init(&vcore->lock);
880                         init_waitqueue_head(&vcore->wq);
881                         vcore->preempt_tb = TB_NIL;
882                 }
883                 kvm->arch.vcores[core] = vcore;
884         }
885         mutex_unlock(&kvm->lock);
886
887         if (!vcore)
888                 goto free_vcpu;
889
890         spin_lock(&vcore->lock);
891         ++vcore->num_threads;
892         spin_unlock(&vcore->lock);
893         vcpu->arch.vcore = vcore;
894
895         vcpu->arch.cpu_type = KVM_CPU_3S_64;
896         kvmppc_sanity_check(vcpu);
897
898         return vcpu;
899
900 free_vcpu:
901         kmem_cache_free(kvm_vcpu_cache, vcpu);
902 out:
903         return ERR_PTR(err);
904 }
905
906 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
907 {
908         spin_lock(&vcpu->arch.vpa_update_lock);
909         if (vcpu->arch.dtl.pinned_addr)
910                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
911         if (vcpu->arch.slb_shadow.pinned_addr)
912                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
913         if (vcpu->arch.vpa.pinned_addr)
914                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
915         spin_unlock(&vcpu->arch.vpa_update_lock);
916         kvm_vcpu_uninit(vcpu);
917         kmem_cache_free(kvm_vcpu_cache, vcpu);
918 }
919
920 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
921 {
922         unsigned long dec_nsec, now;
923
924         now = get_tb();
925         if (now > vcpu->arch.dec_expires) {
926                 /* decrementer has already gone negative */
927                 kvmppc_core_queue_dec(vcpu);
928                 kvmppc_core_prepare_to_enter(vcpu);
929                 return;
930         }
931         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
932                    / tb_ticks_per_sec;
933         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
934                       HRTIMER_MODE_REL);
935         vcpu->arch.timer_running = 1;
936 }
937
938 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
939 {
940         vcpu->arch.ceded = 0;
941         if (vcpu->arch.timer_running) {
942                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
943                 vcpu->arch.timer_running = 0;
944         }
945 }
946
947 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
948 extern void xics_wake_cpu(int cpu);
949
950 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
951                                    struct kvm_vcpu *vcpu)
952 {
953         u64 now;
954
955         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
956                 return;
957         spin_lock(&vcpu->arch.tbacct_lock);
958         now = mftb();
959         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
960                 vcpu->arch.stolen_logged;
961         vcpu->arch.busy_preempt = now;
962         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
963         spin_unlock(&vcpu->arch.tbacct_lock);
964         --vc->n_runnable;
965         list_del(&vcpu->arch.run_list);
966 }
967
968 static int kvmppc_grab_hwthread(int cpu)
969 {
970         struct paca_struct *tpaca;
971         long timeout = 1000;
972
973         tpaca = &paca[cpu];
974
975         /* Ensure the thread won't go into the kernel if it wakes */
976         tpaca->kvm_hstate.hwthread_req = 1;
977         tpaca->kvm_hstate.kvm_vcpu = NULL;
978
979         /*
980          * If the thread is already executing in the kernel (e.g. handling
981          * a stray interrupt), wait for it to get back to nap mode.
982          * The smp_mb() is to ensure that our setting of hwthread_req
983          * is visible before we look at hwthread_state, so if this
984          * races with the code at system_reset_pSeries and the thread
985          * misses our setting of hwthread_req, we are sure to see its
986          * setting of hwthread_state, and vice versa.
987          */
988         smp_mb();
989         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
990                 if (--timeout <= 0) {
991                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
992                         return -EBUSY;
993                 }
994                 udelay(1);
995         }
996         return 0;
997 }
998
999 static void kvmppc_release_hwthread(int cpu)
1000 {
1001         struct paca_struct *tpaca;
1002
1003         tpaca = &paca[cpu];
1004         tpaca->kvm_hstate.hwthread_req = 0;
1005         tpaca->kvm_hstate.kvm_vcpu = NULL;
1006 }
1007
1008 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1009 {
1010         int cpu;
1011         struct paca_struct *tpaca;
1012         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1013
1014         if (vcpu->arch.timer_running) {
1015                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1016                 vcpu->arch.timer_running = 0;
1017         }
1018         cpu = vc->pcpu + vcpu->arch.ptid;
1019         tpaca = &paca[cpu];
1020         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1021         tpaca->kvm_hstate.kvm_vcore = vc;
1022         tpaca->kvm_hstate.napping = 0;
1023         vcpu->cpu = vc->pcpu;
1024         smp_wmb();
1025 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1026         if (vcpu->arch.ptid) {
1027                 xics_wake_cpu(cpu);
1028                 ++vc->n_woken;
1029         }
1030 #endif
1031 }
1032
1033 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1034 {
1035         int i;
1036
1037         HMT_low();
1038         i = 0;
1039         while (vc->nap_count < vc->n_woken) {
1040                 if (++i >= 1000000) {
1041                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1042                                vc->nap_count, vc->n_woken);
1043                         break;
1044                 }
1045                 cpu_relax();
1046         }
1047         HMT_medium();
1048 }
1049
1050 /*
1051  * Check that we are on thread 0 and that any other threads in
1052  * this core are off-line.  Then grab the threads so they can't
1053  * enter the kernel.
1054  */
1055 static int on_primary_thread(void)
1056 {
1057         int cpu = smp_processor_id();
1058         int thr = cpu_thread_in_core(cpu);
1059
1060         if (thr)
1061                 return 0;
1062         while (++thr < threads_per_core)
1063                 if (cpu_online(cpu + thr))
1064                         return 0;
1065
1066         /* Grab all hw threads so they can't go into the kernel */
1067         for (thr = 1; thr < threads_per_core; ++thr) {
1068                 if (kvmppc_grab_hwthread(cpu + thr)) {
1069                         /* Couldn't grab one; let the others go */
1070                         do {
1071                                 kvmppc_release_hwthread(cpu + thr);
1072                         } while (--thr > 0);
1073                         return 0;
1074                 }
1075         }
1076         return 1;
1077 }
1078
1079 /*
1080  * Run a set of guest threads on a physical core.
1081  * Called with vc->lock held.
1082  */
1083 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1084 {
1085         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1086         long ret;
1087         u64 now;
1088         int ptid, i, need_vpa_update;
1089         int srcu_idx;
1090         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1091
1092         /* don't start if any threads have a signal pending */
1093         need_vpa_update = 0;
1094         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1095                 if (signal_pending(vcpu->arch.run_task))
1096                         return;
1097                 if (vcpu->arch.vpa.update_pending ||
1098                     vcpu->arch.slb_shadow.update_pending ||
1099                     vcpu->arch.dtl.update_pending)
1100                         vcpus_to_update[need_vpa_update++] = vcpu;
1101         }
1102
1103         /*
1104          * Initialize *vc, in particular vc->vcore_state, so we can
1105          * drop the vcore lock if necessary.
1106          */
1107         vc->n_woken = 0;
1108         vc->nap_count = 0;
1109         vc->entry_exit_count = 0;
1110         vc->vcore_state = VCORE_STARTING;
1111         vc->in_guest = 0;
1112         vc->napping_threads = 0;
1113
1114         /*
1115          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1116          * which can't be called with any spinlocks held.
1117          */
1118         if (need_vpa_update) {
1119                 spin_unlock(&vc->lock);
1120                 for (i = 0; i < need_vpa_update; ++i)
1121                         kvmppc_update_vpas(vcpus_to_update[i]);
1122                 spin_lock(&vc->lock);
1123         }
1124
1125         /*
1126          * Assign physical thread IDs, first to non-ceded vcpus
1127          * and then to ceded ones.
1128          */
1129         ptid = 0;
1130         vcpu0 = NULL;
1131         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1132                 if (!vcpu->arch.ceded) {
1133                         if (!ptid)
1134                                 vcpu0 = vcpu;
1135                         vcpu->arch.ptid = ptid++;
1136                 }
1137         }
1138         if (!vcpu0)
1139                 goto out;       /* nothing to run; should never happen */
1140         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1141                 if (vcpu->arch.ceded)
1142                         vcpu->arch.ptid = ptid++;
1143
1144         /*
1145          * Make sure we are running on thread 0, and that
1146          * secondary threads are offline.
1147          */
1148         if (threads_per_core > 1 && !on_primary_thread()) {
1149                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1150                         vcpu->arch.ret = -EBUSY;
1151                 goto out;
1152         }
1153
1154         vc->pcpu = smp_processor_id();
1155         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1156                 kvmppc_start_thread(vcpu);
1157                 kvmppc_create_dtl_entry(vcpu, vc);
1158         }
1159
1160         vc->vcore_state = VCORE_RUNNING;
1161         preempt_disable();
1162         spin_unlock(&vc->lock);
1163
1164         kvm_guest_enter();
1165
1166         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1167
1168         __kvmppc_vcore_entry(NULL, vcpu0);
1169
1170         spin_lock(&vc->lock);
1171         /* disable sending of IPIs on virtual external irqs */
1172         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1173                 vcpu->cpu = -1;
1174         /* wait for secondary threads to finish writing their state to memory */
1175         if (vc->nap_count < vc->n_woken)
1176                 kvmppc_wait_for_nap(vc);
1177         for (i = 0; i < threads_per_core; ++i)
1178                 kvmppc_release_hwthread(vc->pcpu + i);
1179         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1180         vc->vcore_state = VCORE_EXITING;
1181         spin_unlock(&vc->lock);
1182
1183         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1184
1185         /* make sure updates to secondary vcpu structs are visible now */
1186         smp_mb();
1187         kvm_guest_exit();
1188
1189         preempt_enable();
1190         kvm_resched(vcpu);
1191
1192         spin_lock(&vc->lock);
1193         now = get_tb();
1194         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1195                 /* cancel pending dec exception if dec is positive */
1196                 if (now < vcpu->arch.dec_expires &&
1197                     kvmppc_core_pending_dec(vcpu))
1198                         kvmppc_core_dequeue_dec(vcpu);
1199
1200                 ret = RESUME_GUEST;
1201                 if (vcpu->arch.trap)
1202                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1203                                                  vcpu->arch.run_task);
1204
1205                 vcpu->arch.ret = ret;
1206                 vcpu->arch.trap = 0;
1207
1208                 if (vcpu->arch.ceded) {
1209                         if (ret != RESUME_GUEST)
1210                                 kvmppc_end_cede(vcpu);
1211                         else
1212                                 kvmppc_set_timer(vcpu);
1213                 }
1214         }
1215
1216  out:
1217         vc->vcore_state = VCORE_INACTIVE;
1218         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1219                                  arch.run_list) {
1220                 if (vcpu->arch.ret != RESUME_GUEST) {
1221                         kvmppc_remove_runnable(vc, vcpu);
1222                         wake_up(&vcpu->arch.cpu_run);
1223                 }
1224         }
1225 }
1226
1227 /*
1228  * Wait for some other vcpu thread to execute us, and
1229  * wake us up when we need to handle something in the host.
1230  */
1231 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1232 {
1233         DEFINE_WAIT(wait);
1234
1235         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1236         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1237                 schedule();
1238         finish_wait(&vcpu->arch.cpu_run, &wait);
1239 }
1240
1241 /*
1242  * All the vcpus in this vcore are idle, so wait for a decrementer
1243  * or external interrupt to one of the vcpus.  vc->lock is held.
1244  */
1245 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1246 {
1247         DEFINE_WAIT(wait);
1248
1249         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1250         vc->vcore_state = VCORE_SLEEPING;
1251         spin_unlock(&vc->lock);
1252         schedule();
1253         finish_wait(&vc->wq, &wait);
1254         spin_lock(&vc->lock);
1255         vc->vcore_state = VCORE_INACTIVE;
1256 }
1257
1258 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1259 {
1260         int n_ceded;
1261         struct kvmppc_vcore *vc;
1262         struct kvm_vcpu *v, *vn;
1263
1264         kvm_run->exit_reason = 0;
1265         vcpu->arch.ret = RESUME_GUEST;
1266         vcpu->arch.trap = 0;
1267         kvmppc_update_vpas(vcpu);
1268
1269         /*
1270          * Synchronize with other threads in this virtual core
1271          */
1272         vc = vcpu->arch.vcore;
1273         spin_lock(&vc->lock);
1274         vcpu->arch.ceded = 0;
1275         vcpu->arch.run_task = current;
1276         vcpu->arch.kvm_run = kvm_run;
1277         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1278         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1279         vcpu->arch.busy_preempt = TB_NIL;
1280         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1281         ++vc->n_runnable;
1282
1283         /*
1284          * This happens the first time this is called for a vcpu.
1285          * If the vcore is already running, we may be able to start
1286          * this thread straight away and have it join in.
1287          */
1288         if (!signal_pending(current)) {
1289                 if (vc->vcore_state == VCORE_RUNNING &&
1290                     VCORE_EXIT_COUNT(vc) == 0) {
1291                         vcpu->arch.ptid = vc->n_runnable - 1;
1292                         kvmppc_create_dtl_entry(vcpu, vc);
1293                         kvmppc_start_thread(vcpu);
1294                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1295                         wake_up(&vc->wq);
1296                 }
1297
1298         }
1299
1300         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1301                !signal_pending(current)) {
1302                 if (vc->vcore_state != VCORE_INACTIVE) {
1303                         spin_unlock(&vc->lock);
1304                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1305                         spin_lock(&vc->lock);
1306                         continue;
1307                 }
1308                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1309                                          arch.run_list) {
1310                         kvmppc_core_prepare_to_enter(v);
1311                         if (signal_pending(v->arch.run_task)) {
1312                                 kvmppc_remove_runnable(vc, v);
1313                                 v->stat.signal_exits++;
1314                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1315                                 v->arch.ret = -EINTR;
1316                                 wake_up(&v->arch.cpu_run);
1317                         }
1318                 }
1319                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1320                         break;
1321                 vc->runner = vcpu;
1322                 n_ceded = 0;
1323                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1324                         if (!v->arch.pending_exceptions)
1325                                 n_ceded += v->arch.ceded;
1326                 if (n_ceded == vc->n_runnable)
1327                         kvmppc_vcore_blocked(vc);
1328                 else
1329                         kvmppc_run_core(vc);
1330                 vc->runner = NULL;
1331         }
1332
1333         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1334                (vc->vcore_state == VCORE_RUNNING ||
1335                 vc->vcore_state == VCORE_EXITING)) {
1336                 spin_unlock(&vc->lock);
1337                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1338                 spin_lock(&vc->lock);
1339         }
1340
1341         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1342                 kvmppc_remove_runnable(vc, vcpu);
1343                 vcpu->stat.signal_exits++;
1344                 kvm_run->exit_reason = KVM_EXIT_INTR;
1345                 vcpu->arch.ret = -EINTR;
1346         }
1347
1348         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1349                 /* Wake up some vcpu to run the core */
1350                 v = list_first_entry(&vc->runnable_threads,
1351                                      struct kvm_vcpu, arch.run_list);
1352                 wake_up(&v->arch.cpu_run);
1353         }
1354
1355         spin_unlock(&vc->lock);
1356         return vcpu->arch.ret;
1357 }
1358
1359 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1360 {
1361         int r;
1362         int srcu_idx;
1363
1364         if (!vcpu->arch.sane) {
1365                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1366                 return -EINVAL;
1367         }
1368
1369         kvmppc_core_prepare_to_enter(vcpu);
1370
1371         /* No need to go into the guest when all we'll do is come back out */
1372         if (signal_pending(current)) {
1373                 run->exit_reason = KVM_EXIT_INTR;
1374                 return -EINTR;
1375         }
1376
1377         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1378         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1379         smp_mb();
1380
1381         /* On the first time here, set up HTAB and VRMA or RMA */
1382         if (!vcpu->kvm->arch.rma_setup_done) {
1383                 r = kvmppc_hv_setup_htab_rma(vcpu);
1384                 if (r)
1385                         goto out;
1386         }
1387
1388         flush_fp_to_thread(current);
1389         flush_altivec_to_thread(current);
1390         flush_vsx_to_thread(current);
1391         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1392         vcpu->arch.pgdir = current->mm->pgd;
1393         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1394
1395         do {
1396                 r = kvmppc_run_vcpu(run, vcpu);
1397
1398                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1399                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1400                         r = kvmppc_pseries_do_hcall(vcpu);
1401                         kvmppc_core_prepare_to_enter(vcpu);
1402                 } else if (r == RESUME_PAGE_FAULT) {
1403                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1404                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1405                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1406                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1407                 }
1408         } while (r == RESUME_GUEST);
1409
1410  out:
1411         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1412         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1413         return r;
1414 }
1415
1416
1417 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1418    Assumes POWER7 or PPC970. */
1419 static inline int lpcr_rmls(unsigned long rma_size)
1420 {
1421         switch (rma_size) {
1422         case 32ul << 20:        /* 32 MB */
1423                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1424                         return 8;       /* only supported on POWER7 */
1425                 return -1;
1426         case 64ul << 20:        /* 64 MB */
1427                 return 3;
1428         case 128ul << 20:       /* 128 MB */
1429                 return 7;
1430         case 256ul << 20:       /* 256 MB */
1431                 return 4;
1432         case 1ul << 30:         /* 1 GB */
1433                 return 2;
1434         case 16ul << 30:        /* 16 GB */
1435                 return 1;
1436         case 256ul << 30:       /* 256 GB */
1437                 return 0;
1438         default:
1439                 return -1;
1440         }
1441 }
1442
1443 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1444 {
1445         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1446         struct page *page;
1447
1448         if (vmf->pgoff >= ri->npages)
1449                 return VM_FAULT_SIGBUS;
1450
1451         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1452         get_page(page);
1453         vmf->page = page;
1454         return 0;
1455 }
1456
1457 static const struct vm_operations_struct kvm_rma_vm_ops = {
1458         .fault = kvm_rma_fault,
1459 };
1460
1461 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1462 {
1463         vma->vm_flags |= VM_RESERVED;
1464         vma->vm_ops = &kvm_rma_vm_ops;
1465         return 0;
1466 }
1467
1468 static int kvm_rma_release(struct inode *inode, struct file *filp)
1469 {
1470         struct kvmppc_linear_info *ri = filp->private_data;
1471
1472         kvm_release_rma(ri);
1473         return 0;
1474 }
1475
1476 static struct file_operations kvm_rma_fops = {
1477         .mmap           = kvm_rma_mmap,
1478         .release        = kvm_rma_release,
1479 };
1480
1481 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1482 {
1483         struct kvmppc_linear_info *ri;
1484         long fd;
1485
1486         ri = kvm_alloc_rma();
1487         if (!ri)
1488                 return -ENOMEM;
1489
1490         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1491         if (fd < 0)
1492                 kvm_release_rma(ri);
1493
1494         ret->rma_size = ri->npages << PAGE_SHIFT;
1495         return fd;
1496 }
1497
1498 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1499                                      int linux_psize)
1500 {
1501         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1502
1503         if (!def->shift)
1504                 return;
1505         (*sps)->page_shift = def->shift;
1506         (*sps)->slb_enc = def->sllp;
1507         (*sps)->enc[0].page_shift = def->shift;
1508         (*sps)->enc[0].pte_enc = def->penc;
1509         (*sps)++;
1510 }
1511
1512 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1513 {
1514         struct kvm_ppc_one_seg_page_size *sps;
1515
1516         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1517         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1518                 info->flags |= KVM_PPC_1T_SEGMENTS;
1519         info->slb_size = mmu_slb_size;
1520
1521         /* We only support these sizes for now, and no muti-size segments */
1522         sps = &info->sps[0];
1523         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1524         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1525         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1526
1527         return 0;
1528 }
1529
1530 /*
1531  * Get (and clear) the dirty memory log for a memory slot.
1532  */
1533 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1534 {
1535         struct kvm_memory_slot *memslot;
1536         int r;
1537         unsigned long n;
1538
1539         mutex_lock(&kvm->slots_lock);
1540
1541         r = -EINVAL;
1542         if (log->slot >= KVM_MEMORY_SLOTS)
1543                 goto out;
1544
1545         memslot = id_to_memslot(kvm->memslots, log->slot);
1546         r = -ENOENT;
1547         if (!memslot->dirty_bitmap)
1548                 goto out;
1549
1550         n = kvm_dirty_bitmap_bytes(memslot);
1551         memset(memslot->dirty_bitmap, 0, n);
1552
1553         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1554         if (r)
1555                 goto out;
1556
1557         r = -EFAULT;
1558         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1559                 goto out;
1560
1561         r = 0;
1562 out:
1563         mutex_unlock(&kvm->slots_lock);
1564         return r;
1565 }
1566
1567 static unsigned long slb_pgsize_encoding(unsigned long psize)
1568 {
1569         unsigned long senc = 0;
1570
1571         if (psize > 0x1000) {
1572                 senc = SLB_VSID_L;
1573                 if (psize == 0x10000)
1574                         senc |= SLB_VSID_LP_01;
1575         }
1576         return senc;
1577 }
1578
1579 static void unpin_slot(struct kvm_memory_slot *memslot)
1580 {
1581         unsigned long *physp;
1582         unsigned long j, npages, pfn;
1583         struct page *page;
1584
1585         physp = memslot->arch.slot_phys;
1586         npages = memslot->npages;
1587         if (!physp)
1588                 return;
1589         for (j = 0; j < npages; j++) {
1590                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1591                         continue;
1592                 pfn = physp[j] >> PAGE_SHIFT;
1593                 page = pfn_to_page(pfn);
1594                 SetPageDirty(page);
1595                 put_page(page);
1596         }
1597 }
1598
1599 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1600                               struct kvm_memory_slot *dont)
1601 {
1602         if (!dont || free->arch.rmap != dont->arch.rmap) {
1603                 vfree(free->arch.rmap);
1604                 free->arch.rmap = NULL;
1605         }
1606         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1607                 unpin_slot(free);
1608                 vfree(free->arch.slot_phys);
1609                 free->arch.slot_phys = NULL;
1610         }
1611 }
1612
1613 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1614                                unsigned long npages)
1615 {
1616         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1617         if (!slot->arch.rmap)
1618                 return -ENOMEM;
1619         slot->arch.slot_phys = NULL;
1620
1621         return 0;
1622 }
1623
1624 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1625                                       struct kvm_memory_slot *memslot,
1626                                       struct kvm_userspace_memory_region *mem)
1627 {
1628         unsigned long *phys;
1629
1630         /* Allocate a slot_phys array if needed */
1631         phys = memslot->arch.slot_phys;
1632         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1633                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1634                 if (!phys)
1635                         return -ENOMEM;
1636                 memslot->arch.slot_phys = phys;
1637         }
1638
1639         return 0;
1640 }
1641
1642 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1643                                       struct kvm_userspace_memory_region *mem,
1644                                       struct kvm_memory_slot old)
1645 {
1646         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1647         struct kvm_memory_slot *memslot;
1648
1649         if (npages && old.npages) {
1650                 /*
1651                  * If modifying a memslot, reset all the rmap dirty bits.
1652                  * If this is a new memslot, we don't need to do anything
1653                  * since the rmap array starts out as all zeroes,
1654                  * i.e. no pages are dirty.
1655                  */
1656                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1657                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1658         }
1659 }
1660
1661 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1662 {
1663         int err = 0;
1664         struct kvm *kvm = vcpu->kvm;
1665         struct kvmppc_linear_info *ri = NULL;
1666         unsigned long hva;
1667         struct kvm_memory_slot *memslot;
1668         struct vm_area_struct *vma;
1669         unsigned long lpcr, senc;
1670         unsigned long psize, porder;
1671         unsigned long rma_size;
1672         unsigned long rmls;
1673         unsigned long *physp;
1674         unsigned long i, npages;
1675         int srcu_idx;
1676
1677         mutex_lock(&kvm->lock);
1678         if (kvm->arch.rma_setup_done)
1679                 goto out;       /* another vcpu beat us to it */
1680
1681         /* Allocate hashed page table (if not done already) and reset it */
1682         if (!kvm->arch.hpt_virt) {
1683                 err = kvmppc_alloc_hpt(kvm, NULL);
1684                 if (err) {
1685                         pr_err("KVM: Couldn't alloc HPT\n");
1686                         goto out;
1687                 }
1688         }
1689
1690         /* Look up the memslot for guest physical address 0 */
1691         srcu_idx = srcu_read_lock(&kvm->srcu);
1692         memslot = gfn_to_memslot(kvm, 0);
1693
1694         /* We must have some memory at 0 by now */
1695         err = -EINVAL;
1696         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1697                 goto out_srcu;
1698
1699         /* Look up the VMA for the start of this memory slot */
1700         hva = memslot->userspace_addr;
1701         down_read(&current->mm->mmap_sem);
1702         vma = find_vma(current->mm, hva);
1703         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1704                 goto up_out;
1705
1706         psize = vma_kernel_pagesize(vma);
1707         porder = __ilog2(psize);
1708
1709         /* Is this one of our preallocated RMAs? */
1710         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1711             hva == vma->vm_start)
1712                 ri = vma->vm_file->private_data;
1713
1714         up_read(&current->mm->mmap_sem);
1715
1716         if (!ri) {
1717                 /* On POWER7, use VRMA; on PPC970, give up */
1718                 err = -EPERM;
1719                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1720                         pr_err("KVM: CPU requires an RMO\n");
1721                         goto out_srcu;
1722                 }
1723
1724                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1725                 err = -EINVAL;
1726                 if (!(psize == 0x1000 || psize == 0x10000 ||
1727                       psize == 0x1000000))
1728                         goto out_srcu;
1729
1730                 /* Update VRMASD field in the LPCR */
1731                 senc = slb_pgsize_encoding(psize);
1732                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1733                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1734                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1735                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1736                 kvm->arch.lpcr = lpcr;
1737
1738                 /* Create HPTEs in the hash page table for the VRMA */
1739                 kvmppc_map_vrma(vcpu, memslot, porder);
1740
1741         } else {
1742                 /* Set up to use an RMO region */
1743                 rma_size = ri->npages;
1744                 if (rma_size > memslot->npages)
1745                         rma_size = memslot->npages;
1746                 rma_size <<= PAGE_SHIFT;
1747                 rmls = lpcr_rmls(rma_size);
1748                 err = -EINVAL;
1749                 if (rmls < 0) {
1750                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1751                         goto out_srcu;
1752                 }
1753                 atomic_inc(&ri->use_count);
1754                 kvm->arch.rma = ri;
1755
1756                 /* Update LPCR and RMOR */
1757                 lpcr = kvm->arch.lpcr;
1758                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1759                         /* PPC970; insert RMLS value (split field) in HID4 */
1760                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1761                                   (3ul << HID4_RMLS2_SH));
1762                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1763                                 ((rmls & 3) << HID4_RMLS2_SH);
1764                         /* RMOR is also in HID4 */
1765                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1766                                 << HID4_RMOR_SH;
1767                 } else {
1768                         /* POWER7 */
1769                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1770                         lpcr |= rmls << LPCR_RMLS_SH;
1771                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1772                 }
1773                 kvm->arch.lpcr = lpcr;
1774                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1775                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1776
1777                 /* Initialize phys addrs of pages in RMO */
1778                 npages = ri->npages;
1779                 porder = __ilog2(npages);
1780                 physp = memslot->arch.slot_phys;
1781                 if (physp) {
1782                         if (npages > memslot->npages)
1783                                 npages = memslot->npages;
1784                         spin_lock(&kvm->arch.slot_phys_lock);
1785                         for (i = 0; i < npages; ++i)
1786                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1787                                         porder;
1788                         spin_unlock(&kvm->arch.slot_phys_lock);
1789                 }
1790         }
1791
1792         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1793         smp_wmb();
1794         kvm->arch.rma_setup_done = 1;
1795         err = 0;
1796  out_srcu:
1797         srcu_read_unlock(&kvm->srcu, srcu_idx);
1798  out:
1799         mutex_unlock(&kvm->lock);
1800         return err;
1801
1802  up_out:
1803         up_read(&current->mm->mmap_sem);
1804         goto out;
1805 }
1806
1807 int kvmppc_core_init_vm(struct kvm *kvm)
1808 {
1809         unsigned long lpcr, lpid;
1810
1811         /* Allocate the guest's logical partition ID */
1812
1813         lpid = kvmppc_alloc_lpid();
1814         if (lpid < 0)
1815                 return -ENOMEM;
1816         kvm->arch.lpid = lpid;
1817
1818         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1819
1820         kvm->arch.rma = NULL;
1821
1822         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1823
1824         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1825                 /* PPC970; HID4 is effectively the LPCR */
1826                 kvm->arch.host_lpid = 0;
1827                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1828                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1829                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1830                         ((lpid & 0xf) << HID4_LPID5_SH);
1831         } else {
1832                 /* POWER7; init LPCR for virtual RMA mode */
1833                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1834                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1835                 lpcr &= LPCR_PECE | LPCR_LPES;
1836                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1837                         LPCR_VPM0 | LPCR_VPM1;
1838                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1839                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1840         }
1841         kvm->arch.lpcr = lpcr;
1842
1843         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1844         spin_lock_init(&kvm->arch.slot_phys_lock);
1845
1846         /*
1847          * Don't allow secondary CPU threads to come online
1848          * while any KVM VMs exist.
1849          */
1850         inhibit_secondary_onlining();
1851
1852         return 0;
1853 }
1854
1855 void kvmppc_core_destroy_vm(struct kvm *kvm)
1856 {
1857         uninhibit_secondary_onlining();
1858
1859         if (kvm->arch.rma) {
1860                 kvm_release_rma(kvm->arch.rma);
1861                 kvm->arch.rma = NULL;
1862         }
1863
1864         kvmppc_free_hpt(kvm);
1865         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1866 }
1867
1868 /* These are stubs for now */
1869 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1870 {
1871 }
1872
1873 /* We don't need to emulate any privileged instructions or dcbz */
1874 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1875                            unsigned int inst, int *advance)
1876 {
1877         return EMULATE_FAIL;
1878 }
1879
1880 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1881 {
1882         return EMULATE_FAIL;
1883 }
1884
1885 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1886 {
1887         return EMULATE_FAIL;
1888 }
1889
1890 static int kvmppc_book3s_hv_init(void)
1891 {
1892         int r;
1893
1894         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1895
1896         if (r)
1897                 return r;
1898
1899         r = kvmppc_mmu_hv_init();
1900
1901         return r;
1902 }
1903
1904 static void kvmppc_book3s_hv_exit(void)
1905 {
1906         kvm_exit();
1907 }
1908
1909 module_init(kvmppc_book3s_hv_init);
1910 module_exit(kvmppc_book3s_hv_exit);