Merge branch 'for-3.18/drivers' of git://git.kernel.dk/linux-block
[cascardo/linux.git] / arch / powerpc / platforms / pseries / eeh_pseries.c
1 /*
2  * The file intends to implement the platform dependent EEH operations on pseries.
3  * Actually, the pseries platform is built based on RTAS heavily. That means the
4  * pseries platform dependent EEH operations will be built on RTAS calls. The functions
5  * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
6  * been done.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
9  * Copyright IBM Corporation 2001, 2005, 2006
10  * Copyright Dave Engebretsen & Todd Inglett 2001
11  * Copyright Linas Vepstas 2005, 2006
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
26  */
27
28 #include <linux/atomic.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/of.h>
34 #include <linux/pci.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rbtree.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47
48 /* RTAS tokens */
49 static int ibm_set_eeh_option;
50 static int ibm_set_slot_reset;
51 static int ibm_read_slot_reset_state;
52 static int ibm_read_slot_reset_state2;
53 static int ibm_slot_error_detail;
54 static int ibm_get_config_addr_info;
55 static int ibm_get_config_addr_info2;
56 static int ibm_configure_bridge;
57 static int ibm_configure_pe;
58
59 /*
60  * Buffer for reporting slot-error-detail rtas calls. Its here
61  * in BSS, and not dynamically alloced, so that it ends up in
62  * RMO where RTAS can access it.
63  */
64 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
65 static DEFINE_SPINLOCK(slot_errbuf_lock);
66 static int eeh_error_buf_size;
67
68 /**
69  * pseries_eeh_init - EEH platform dependent initialization
70  *
71  * EEH platform dependent initialization on pseries.
72  */
73 static int pseries_eeh_init(void)
74 {
75         /* figure out EEH RTAS function call tokens */
76         ibm_set_eeh_option              = rtas_token("ibm,set-eeh-option");
77         ibm_set_slot_reset              = rtas_token("ibm,set-slot-reset");
78         ibm_read_slot_reset_state2      = rtas_token("ibm,read-slot-reset-state2");
79         ibm_read_slot_reset_state       = rtas_token("ibm,read-slot-reset-state");
80         ibm_slot_error_detail           = rtas_token("ibm,slot-error-detail");
81         ibm_get_config_addr_info2       = rtas_token("ibm,get-config-addr-info2");
82         ibm_get_config_addr_info        = rtas_token("ibm,get-config-addr-info");
83         ibm_configure_pe                = rtas_token("ibm,configure-pe");
84         ibm_configure_bridge            = rtas_token("ibm,configure-bridge");
85
86         /*
87          * Necessary sanity check. We needn't check "get-config-addr-info"
88          * and its variant since the old firmware probably support address
89          * of domain/bus/slot/function for EEH RTAS operations.
90          */
91         if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE          ||
92             ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE          ||
93             (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
94              ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
95             ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE       ||
96             (ibm_configure_pe == RTAS_UNKNOWN_SERVICE           &&
97              ibm_configure_bridge == RTAS_UNKNOWN_SERVICE)) {
98                 pr_info("EEH functionality not supported\n");
99                 return -EINVAL;
100         }
101
102         /* Initialize error log lock and size */
103         spin_lock_init(&slot_errbuf_lock);
104         eeh_error_buf_size = rtas_token("rtas-error-log-max");
105         if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
106                 pr_info("%s: unknown EEH error log size\n",
107                         __func__);
108                 eeh_error_buf_size = 1024;
109         } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
110                 pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
111                         __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
112                 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
113         }
114
115         /* Set EEH probe mode */
116         eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
117
118         return 0;
119 }
120
121 static int pseries_eeh_cap_start(struct device_node *dn)
122 {
123         struct pci_dn *pdn = PCI_DN(dn);
124         u32 status;
125
126         if (!pdn)
127                 return 0;
128
129         rtas_read_config(pdn, PCI_STATUS, 2, &status);
130         if (!(status & PCI_STATUS_CAP_LIST))
131                 return 0;
132
133         return PCI_CAPABILITY_LIST;
134 }
135
136
137 static int pseries_eeh_find_cap(struct device_node *dn, int cap)
138 {
139         struct pci_dn *pdn = PCI_DN(dn);
140         int pos = pseries_eeh_cap_start(dn);
141         int cnt = 48;   /* Maximal number of capabilities */
142         u32 id;
143
144         if (!pos)
145                 return 0;
146
147         while (cnt--) {
148                 rtas_read_config(pdn, pos, 1, &pos);
149                 if (pos < 0x40)
150                         break;
151                 pos &= ~3;
152                 rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
153                 if (id == 0xff)
154                         break;
155                 if (id == cap)
156                         return pos;
157                 pos += PCI_CAP_LIST_NEXT;
158         }
159
160         return 0;
161 }
162
163 static int pseries_eeh_find_ecap(struct device_node *dn, int cap)
164 {
165         struct pci_dn *pdn = PCI_DN(dn);
166         struct eeh_dev *edev = of_node_to_eeh_dev(dn);
167         u32 header;
168         int pos = 256;
169         int ttl = (4096 - 256) / 8;
170
171         if (!edev || !edev->pcie_cap)
172                 return 0;
173         if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
174                 return 0;
175         else if (!header)
176                 return 0;
177
178         while (ttl-- > 0) {
179                 if (PCI_EXT_CAP_ID(header) == cap && pos)
180                         return pos;
181
182                 pos = PCI_EXT_CAP_NEXT(header);
183                 if (pos < 256)
184                         break;
185
186                 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
187                         break;
188         }
189
190         return 0;
191 }
192
193 /**
194  * pseries_eeh_of_probe - EEH probe on the given device
195  * @dn: OF node
196  * @flag: Unused
197  *
198  * When EEH module is installed during system boot, all PCI devices
199  * are checked one by one to see if it supports EEH. The function
200  * is introduced for the purpose.
201  */
202 static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
203 {
204         struct eeh_dev *edev;
205         struct eeh_pe pe;
206         struct pci_dn *pdn = PCI_DN(dn);
207         const __be32 *classp, *vendorp, *devicep;
208         u32 class_code;
209         const __be32 *regs;
210         u32 pcie_flags;
211         int enable = 0;
212         int ret;
213
214         /* Retrieve OF node and eeh device */
215         edev = of_node_to_eeh_dev(dn);
216         if (edev->pe || !of_device_is_available(dn))
217                 return NULL;
218
219         /* Retrieve class/vendor/device IDs */
220         classp = of_get_property(dn, "class-code", NULL);
221         vendorp = of_get_property(dn, "vendor-id", NULL);
222         devicep = of_get_property(dn, "device-id", NULL);
223
224         /* Skip for bad OF node or PCI-ISA bridge */
225         if (!classp || !vendorp || !devicep)
226                 return NULL;
227         if (dn->type && !strcmp(dn->type, "isa"))
228                 return NULL;
229
230         class_code = of_read_number(classp, 1);
231
232         /*
233          * Update class code and mode of eeh device. We need
234          * correctly reflects that current device is root port
235          * or PCIe switch downstream port.
236          */
237         edev->class_code = class_code;
238         edev->pcix_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_PCIX);
239         edev->pcie_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_EXP);
240         edev->aer_cap = pseries_eeh_find_ecap(dn, PCI_EXT_CAP_ID_ERR);
241         edev->mode &= 0xFFFFFF00;
242         if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
243                 edev->mode |= EEH_DEV_BRIDGE;
244                 if (edev->pcie_cap) {
245                         rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
246                                          2, &pcie_flags);
247                         pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
248                         if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
249                                 edev->mode |= EEH_DEV_ROOT_PORT;
250                         else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
251                                 edev->mode |= EEH_DEV_DS_PORT;
252                 }
253         }
254
255         /* Retrieve the device address */
256         regs = of_get_property(dn, "reg", NULL);
257         if (!regs) {
258                 pr_warn("%s: OF node property %s::reg not found\n",
259                         __func__, dn->full_name);
260                 return NULL;
261         }
262
263         /* Initialize the fake PE */
264         memset(&pe, 0, sizeof(struct eeh_pe));
265         pe.phb = edev->phb;
266         pe.config_addr = of_read_number(regs, 1);
267
268         /* Enable EEH on the device */
269         ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
270         if (!ret) {
271                 edev->config_addr = of_read_number(regs, 1);
272                 /* Retrieve PE address */
273                 edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
274                 pe.addr = edev->pe_config_addr;
275
276                 /* Some older systems (Power4) allow the ibm,set-eeh-option
277                  * call to succeed even on nodes where EEH is not supported.
278                  * Verify support explicitly.
279                  */
280                 ret = eeh_ops->get_state(&pe, NULL);
281                 if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
282                         enable = 1;
283
284                 if (enable) {
285                         eeh_add_flag(EEH_ENABLED);
286                         eeh_add_to_parent_pe(edev);
287
288                         pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
289                                 __func__, dn->full_name, pe.phb->global_number,
290                                 pe.addr, pe.config_addr);
291                 } else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
292                            (of_node_to_eeh_dev(dn->parent))->pe) {
293                         /* This device doesn't support EEH, but it may have an
294                          * EEH parent, in which case we mark it as supported.
295                          */
296                         edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
297                         edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
298                         eeh_add_to_parent_pe(edev);
299                 }
300         }
301
302         /* Save memory bars */
303         eeh_save_bars(edev);
304
305         return NULL;
306 }
307
308 /**
309  * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
310  * @pe: EEH PE
311  * @option: operation to be issued
312  *
313  * The function is used to control the EEH functionality globally.
314  * Currently, following options are support according to PAPR:
315  * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
316  */
317 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
318 {
319         int ret = 0;
320         int config_addr;
321
322         /*
323          * When we're enabling or disabling EEH functioality on
324          * the particular PE, the PE config address is possibly
325          * unavailable. Therefore, we have to figure it out from
326          * the FDT node.
327          */
328         switch (option) {
329         case EEH_OPT_DISABLE:
330         case EEH_OPT_ENABLE:
331         case EEH_OPT_THAW_MMIO:
332         case EEH_OPT_THAW_DMA:
333                 config_addr = pe->config_addr;
334                 if (pe->addr)
335                         config_addr = pe->addr;
336                 break;
337         case EEH_OPT_FREEZE_PE:
338                 /* Not support */
339                 return 0;
340         default:
341                 pr_err("%s: Invalid option %d\n",
342                         __func__, option);
343                 return -EINVAL;
344         }
345
346         ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
347                         config_addr, BUID_HI(pe->phb->buid),
348                         BUID_LO(pe->phb->buid), option);
349
350         return ret;
351 }
352
353 /**
354  * pseries_eeh_get_pe_addr - Retrieve PE address
355  * @pe: EEH PE
356  *
357  * Retrieve the assocated PE address. Actually, there're 2 RTAS
358  * function calls dedicated for the purpose. We need implement
359  * it through the new function and then the old one. Besides,
360  * you should make sure the config address is figured out from
361  * FDT node before calling the function.
362  *
363  * It's notable that zero'ed return value means invalid PE config
364  * address.
365  */
366 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
367 {
368         int ret = 0;
369         int rets[3];
370
371         if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
372                 /*
373                  * First of all, we need to make sure there has one PE
374                  * associated with the device. Otherwise, PE address is
375                  * meaningless.
376                  */
377                 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
378                                 pe->config_addr, BUID_HI(pe->phb->buid),
379                                 BUID_LO(pe->phb->buid), 1);
380                 if (ret || (rets[0] == 0))
381                         return 0;
382
383                 /* Retrieve the associated PE config address */
384                 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
385                                 pe->config_addr, BUID_HI(pe->phb->buid),
386                                 BUID_LO(pe->phb->buid), 0);
387                 if (ret) {
388                         pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
389                                 __func__, pe->phb->global_number, pe->config_addr);
390                         return 0;
391                 }
392
393                 return rets[0];
394         }
395
396         if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
397                 ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
398                                 pe->config_addr, BUID_HI(pe->phb->buid),
399                                 BUID_LO(pe->phb->buid), 0);
400                 if (ret) {
401                         pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
402                                 __func__, pe->phb->global_number, pe->config_addr);
403                         return 0;
404                 }
405
406                 return rets[0];
407         }
408
409         return ret;
410 }
411
412 /**
413  * pseries_eeh_get_state - Retrieve PE state
414  * @pe: EEH PE
415  * @state: return value
416  *
417  * Retrieve the state of the specified PE. On RTAS compliant
418  * pseries platform, there already has one dedicated RTAS function
419  * for the purpose. It's notable that the associated PE config address
420  * might be ready when calling the function. Therefore, endeavour to
421  * use the PE config address if possible. Further more, there're 2
422  * RTAS calls for the purpose, we need to try the new one and back
423  * to the old one if the new one couldn't work properly.
424  */
425 static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
426 {
427         int config_addr;
428         int ret;
429         int rets[4];
430         int result;
431
432         /* Figure out PE config address if possible */
433         config_addr = pe->config_addr;
434         if (pe->addr)
435                 config_addr = pe->addr;
436
437         if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
438                 ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
439                                 config_addr, BUID_HI(pe->phb->buid),
440                                 BUID_LO(pe->phb->buid));
441         } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
442                 /* Fake PE unavailable info */
443                 rets[2] = 0;
444                 ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
445                                 config_addr, BUID_HI(pe->phb->buid),
446                                 BUID_LO(pe->phb->buid));
447         } else {
448                 return EEH_STATE_NOT_SUPPORT;
449         }
450
451         if (ret)
452                 return ret;
453
454         /* Parse the result out */
455         result = 0;
456         if (rets[1]) {
457                 switch(rets[0]) {
458                 case 0:
459                         result &= ~EEH_STATE_RESET_ACTIVE;
460                         result |= EEH_STATE_MMIO_ACTIVE;
461                         result |= EEH_STATE_DMA_ACTIVE;
462                         break;
463                 case 1:
464                         result |= EEH_STATE_RESET_ACTIVE;
465                         result |= EEH_STATE_MMIO_ACTIVE;
466                         result |= EEH_STATE_DMA_ACTIVE;
467                         break;
468                 case 2:
469                         result &= ~EEH_STATE_RESET_ACTIVE;
470                         result &= ~EEH_STATE_MMIO_ACTIVE;
471                         result &= ~EEH_STATE_DMA_ACTIVE;
472                         break;
473                 case 4:
474                         result &= ~EEH_STATE_RESET_ACTIVE;
475                         result &= ~EEH_STATE_MMIO_ACTIVE;
476                         result &= ~EEH_STATE_DMA_ACTIVE;
477                         result |= EEH_STATE_MMIO_ENABLED;
478                         break;
479                 case 5:
480                         if (rets[2]) {
481                                 if (state) *state = rets[2];
482                                 result = EEH_STATE_UNAVAILABLE;
483                         } else {
484                                 result = EEH_STATE_NOT_SUPPORT;
485                         }
486                         break;
487                 default:
488                         result = EEH_STATE_NOT_SUPPORT;
489                 }
490         } else {
491                 result = EEH_STATE_NOT_SUPPORT;
492         }
493
494         return result;
495 }
496
497 /**
498  * pseries_eeh_reset - Reset the specified PE
499  * @pe: EEH PE
500  * @option: reset option
501  *
502  * Reset the specified PE
503  */
504 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
505 {
506         int config_addr;
507         int ret;
508
509         /* Figure out PE address */
510         config_addr = pe->config_addr;
511         if (pe->addr)
512                 config_addr = pe->addr;
513
514         /* Reset PE through RTAS call */
515         ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
516                         config_addr, BUID_HI(pe->phb->buid),
517                         BUID_LO(pe->phb->buid), option);
518
519         /* If fundamental-reset not supported, try hot-reset */
520         if (option == EEH_RESET_FUNDAMENTAL &&
521             ret == -8) {
522                 option = EEH_RESET_HOT;
523                 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
524                                 config_addr, BUID_HI(pe->phb->buid),
525                                 BUID_LO(pe->phb->buid), option);
526         }
527
528         /* We need reset hold or settlement delay */
529         if (option == EEH_RESET_FUNDAMENTAL ||
530             option == EEH_RESET_HOT)
531                 msleep(EEH_PE_RST_HOLD_TIME);
532         else
533                 msleep(EEH_PE_RST_SETTLE_TIME);
534
535         return ret;
536 }
537
538 /**
539  * pseries_eeh_wait_state - Wait for PE state
540  * @pe: EEH PE
541  * @max_wait: maximal period in microsecond
542  *
543  * Wait for the state of associated PE. It might take some time
544  * to retrieve the PE's state.
545  */
546 static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
547 {
548         int ret;
549         int mwait;
550
551         /*
552          * According to PAPR, the state of PE might be temporarily
553          * unavailable. Under the circumstance, we have to wait
554          * for indicated time determined by firmware. The maximal
555          * wait time is 5 minutes, which is acquired from the original
556          * EEH implementation. Also, the original implementation
557          * also defined the minimal wait time as 1 second.
558          */
559 #define EEH_STATE_MIN_WAIT_TIME (1000)
560 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
561
562         while (1) {
563                 ret = pseries_eeh_get_state(pe, &mwait);
564
565                 /*
566                  * If the PE's state is temporarily unavailable,
567                  * we have to wait for the specified time. Otherwise,
568                  * the PE's state will be returned immediately.
569                  */
570                 if (ret != EEH_STATE_UNAVAILABLE)
571                         return ret;
572
573                 if (max_wait <= 0) {
574                         pr_warn("%s: Timeout when getting PE's state (%d)\n",
575                                 __func__, max_wait);
576                         return EEH_STATE_NOT_SUPPORT;
577                 }
578
579                 if (mwait <= 0) {
580                         pr_warn("%s: Firmware returned bad wait value %d\n",
581                                 __func__, mwait);
582                         mwait = EEH_STATE_MIN_WAIT_TIME;
583                 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
584                         pr_warn("%s: Firmware returned too long wait value %d\n",
585                                 __func__, mwait);
586                         mwait = EEH_STATE_MAX_WAIT_TIME;
587                 }
588
589                 max_wait -= mwait;
590                 msleep(mwait);
591         }
592
593         return EEH_STATE_NOT_SUPPORT;
594 }
595
596 /**
597  * pseries_eeh_get_log - Retrieve error log
598  * @pe: EEH PE
599  * @severity: temporary or permanent error log
600  * @drv_log: driver log to be combined with retrieved error log
601  * @len: length of driver log
602  *
603  * Retrieve the temporary or permanent error from the PE.
604  * Actually, the error will be retrieved through the dedicated
605  * RTAS call.
606  */
607 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
608 {
609         int config_addr;
610         unsigned long flags;
611         int ret;
612
613         spin_lock_irqsave(&slot_errbuf_lock, flags);
614         memset(slot_errbuf, 0, eeh_error_buf_size);
615
616         /* Figure out the PE address */
617         config_addr = pe->config_addr;
618         if (pe->addr)
619                 config_addr = pe->addr;
620
621         ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
622                         BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
623                         virt_to_phys(drv_log), len,
624                         virt_to_phys(slot_errbuf), eeh_error_buf_size,
625                         severity);
626         if (!ret)
627                 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
628         spin_unlock_irqrestore(&slot_errbuf_lock, flags);
629
630         return ret;
631 }
632
633 /**
634  * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
635  * @pe: EEH PE
636  *
637  * The function will be called to reconfigure the bridges included
638  * in the specified PE so that the mulfunctional PE would be recovered
639  * again.
640  */
641 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
642 {
643         int config_addr;
644         int ret;
645
646         /* Figure out the PE address */
647         config_addr = pe->config_addr;
648         if (pe->addr)
649                 config_addr = pe->addr;
650
651         /* Use new configure-pe function, if supported */
652         if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
653                 ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
654                                 config_addr, BUID_HI(pe->phb->buid),
655                                 BUID_LO(pe->phb->buid));
656         } else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
657                 ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
658                                 config_addr, BUID_HI(pe->phb->buid),
659                                 BUID_LO(pe->phb->buid));
660         } else {
661                 return -EFAULT;
662         }
663
664         if (ret)
665                 pr_warn("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
666                         __func__, pe->phb->global_number, pe->addr, ret);
667
668         return ret;
669 }
670
671 /**
672  * pseries_eeh_read_config - Read PCI config space
673  * @dn: device node
674  * @where: PCI address
675  * @size: size to read
676  * @val: return value
677  *
678  * Read config space from the speicifed device
679  */
680 static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
681 {
682         struct pci_dn *pdn;
683
684         pdn = PCI_DN(dn);
685
686         return rtas_read_config(pdn, where, size, val);
687 }
688
689 /**
690  * pseries_eeh_write_config - Write PCI config space
691  * @dn: device node
692  * @where: PCI address
693  * @size: size to write
694  * @val: value to be written
695  *
696  * Write config space to the specified device
697  */
698 static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
699 {
700         struct pci_dn *pdn;
701
702         pdn = PCI_DN(dn);
703
704         return rtas_write_config(pdn, where, size, val);
705 }
706
707 static struct eeh_ops pseries_eeh_ops = {
708         .name                   = "pseries",
709         .init                   = pseries_eeh_init,
710         .of_probe               = pseries_eeh_of_probe,
711         .dev_probe              = NULL,
712         .set_option             = pseries_eeh_set_option,
713         .get_pe_addr            = pseries_eeh_get_pe_addr,
714         .get_state              = pseries_eeh_get_state,
715         .reset                  = pseries_eeh_reset,
716         .wait_state             = pseries_eeh_wait_state,
717         .get_log                = pseries_eeh_get_log,
718         .configure_bridge       = pseries_eeh_configure_bridge,
719         .err_inject             = NULL,
720         .read_config            = pseries_eeh_read_config,
721         .write_config           = pseries_eeh_write_config,
722         .next_error             = NULL,
723         .restore_config         = NULL
724 };
725
726 /**
727  * eeh_pseries_init - Register platform dependent EEH operations
728  *
729  * EEH initialization on pseries platform. This function should be
730  * called before any EEH related functions.
731  */
732 static int __init eeh_pseries_init(void)
733 {
734         int ret;
735
736         ret = eeh_ops_register(&pseries_eeh_ops);
737         if (!ret)
738                 pr_info("EEH: pSeries platform initialized\n");
739         else
740                 pr_info("EEH: pSeries platform initialization failure (%d)\n",
741                         ret);
742
743         return ret;
744 }
745 machine_early_initcall(pseries, eeh_pseries_init);