Merge branches 'acpi-pm' and 'pm-genirq'
[cascardo/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47 #ifdef CONFIG_64BIT
48         /* Take care of the enable/disable of transactional execution. */
49         if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
50                 unsigned long cr, cr_new;
51
52                 __ctl_store(cr, 0, 0);
53                 cr_new = cr;
54                 if (MACHINE_HAS_TE) {
55                         /* Set or clear transaction execution TXC bit 8. */
56                         cr_new |= (1UL << 55);
57                         if (task->thread.per_flags & PER_FLAG_NO_TE)
58                                 cr_new &= ~(1UL << 55);
59                 }
60                 if (MACHINE_HAS_VX) {
61                         /* Enable/disable of vector extension */
62                         cr_new &= ~(1UL << 17);
63                         if (task->thread.vxrs)
64                                 cr_new |= (1UL << 17);
65                 }
66                 if (cr_new != cr)
67                         __ctl_load(cr_new, 0, 0);
68                 if (MACHINE_HAS_TE) {
69                         /* Set/clear transaction execution TDC bits 62/63. */
70                         __ctl_store(cr, 2, 2);
71                         cr_new = cr & ~3UL;
72                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
73                                 if (task->thread.per_flags &
74                                     PER_FLAG_TE_ABORT_RAND_TEND)
75                                         cr_new |= 1UL;
76                                 else
77                                         cr_new |= 2UL;
78                         }
79                         if (cr_new != cr)
80                                 __ctl_load(cr_new, 2, 2);
81                 }
82         }
83 #endif
84         /* Copy user specified PER registers */
85         new.control = thread->per_user.control;
86         new.start = thread->per_user.start;
87         new.end = thread->per_user.end;
88
89         /* merge TIF_SINGLE_STEP into user specified PER registers. */
90         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93                         new.control |= PER_EVENT_BRANCH;
94                 else
95                         new.control |= PER_EVENT_IFETCH;
96 #ifdef CONFIG_64BIT
97                 new.control |= PER_CONTROL_SUSPENSION;
98                 new.control |= PER_EVENT_TRANSACTION_END;
99 #endif
100                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101                         new.control |= PER_EVENT_IFETCH;
102                 new.start = 0;
103                 new.end = PSW_ADDR_INSN;
104         }
105
106         /* Take care of the PER enablement bit in the PSW. */
107         if (!(new.control & PER_EVENT_MASK)) {
108                 regs->psw.mask &= ~PSW_MASK_PER;
109                 return;
110         }
111         regs->psw.mask |= PSW_MASK_PER;
112         __ctl_store(old, 9, 11);
113         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114                 __ctl_load(new, 9, 11);
115 }
116
117 void user_enable_single_step(struct task_struct *task)
118 {
119         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_disable_single_step(struct task_struct *task)
124 {
125         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 }
128
129 void user_enable_block_step(struct task_struct *task)
130 {
131         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133 }
134
135 /*
136  * Called by kernel/ptrace.c when detaching..
137  *
138  * Clear all debugging related fields.
139  */
140 void ptrace_disable(struct task_struct *task)
141 {
142         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146         task->thread.per_flags = 0;
147 }
148
149 #ifndef CONFIG_64BIT
150 # define __ADDR_MASK 3
151 #else
152 # define __ADDR_MASK 7
153 #endif
154
155 static inline unsigned long __peek_user_per(struct task_struct *child,
156                                             addr_t addr)
157 {
158         struct per_struct_kernel *dummy = NULL;
159
160         if (addr == (addr_t) &dummy->cr9)
161                 /* Control bits of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         PER_EVENT_IFETCH : child->thread.per_user.control;
164         else if (addr == (addr_t) &dummy->cr10)
165                 /* Start address of the active per set. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         0 : child->thread.per_user.start;
168         else if (addr == (addr_t) &dummy->cr11)
169                 /* End address of the active per set. */
170                 return test_thread_flag(TIF_SINGLE_STEP) ?
171                         PSW_ADDR_INSN : child->thread.per_user.end;
172         else if (addr == (addr_t) &dummy->bits)
173                 /* Single-step bit. */
174                 return test_thread_flag(TIF_SINGLE_STEP) ?
175                         (1UL << (BITS_PER_LONG - 1)) : 0;
176         else if (addr == (addr_t) &dummy->starting_addr)
177                 /* Start address of the user specified per set. */
178                 return child->thread.per_user.start;
179         else if (addr == (addr_t) &dummy->ending_addr)
180                 /* End address of the user specified per set. */
181                 return child->thread.per_user.end;
182         else if (addr == (addr_t) &dummy->perc_atmid)
183                 /* PER code, ATMID and AI of the last PER trap */
184                 return (unsigned long)
185                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
186         else if (addr == (addr_t) &dummy->address)
187                 /* Address of the last PER trap */
188                 return child->thread.per_event.address;
189         else if (addr == (addr_t) &dummy->access_id)
190                 /* Access id of the last PER trap */
191                 return (unsigned long)
192                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
193         return 0;
194 }
195
196 /*
197  * Read the word at offset addr from the user area of a process. The
198  * trouble here is that the information is littered over different
199  * locations. The process registers are found on the kernel stack,
200  * the floating point stuff and the trace settings are stored in
201  * the task structure. In addition the different structures in
202  * struct user contain pad bytes that should be read as zeroes.
203  * Lovely...
204  */
205 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
206 {
207         struct user *dummy = NULL;
208         addr_t offset, tmp;
209
210         if (addr < (addr_t) &dummy->regs.acrs) {
211                 /*
212                  * psw and gprs are stored on the stack
213                  */
214                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
215                 if (addr == (addr_t) &dummy->regs.psw.mask) {
216                         /* Return a clean psw mask. */
217                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
218                         tmp |= PSW_USER_BITS;
219                 }
220
221         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
222                 /*
223                  * access registers are stored in the thread structure
224                  */
225                 offset = addr - (addr_t) &dummy->regs.acrs;
226 #ifdef CONFIG_64BIT
227                 /*
228                  * Very special case: old & broken 64 bit gdb reading
229                  * from acrs[15]. Result is a 64 bit value. Read the
230                  * 32 bit acrs[15] value and shift it by 32. Sick...
231                  */
232                 if (addr == (addr_t) &dummy->regs.acrs[15])
233                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
234                 else
235 #endif
236                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
237
238         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
239                 /*
240                  * orig_gpr2 is stored on the kernel stack
241                  */
242                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
243
244         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
245                 /*
246                  * prevent reads of padding hole between
247                  * orig_gpr2 and fp_regs on s390.
248                  */
249                 tmp = 0;
250
251         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
252                 /* 
253                  * floating point regs. are stored in the thread structure
254                  */
255                 offset = addr - (addr_t) &dummy->regs.fp_regs;
256                 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
257                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
258                         tmp <<= BITS_PER_LONG - 32;
259
260         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
261                 /*
262                  * Handle access to the per_info structure.
263                  */
264                 addr -= (addr_t) &dummy->regs.per_info;
265                 tmp = __peek_user_per(child, addr);
266
267         } else
268                 tmp = 0;
269
270         return tmp;
271 }
272
273 static int
274 peek_user(struct task_struct *child, addr_t addr, addr_t data)
275 {
276         addr_t tmp, mask;
277
278         /*
279          * Stupid gdb peeks/pokes the access registers in 64 bit with
280          * an alignment of 4. Programmers from hell...
281          */
282         mask = __ADDR_MASK;
283 #ifdef CONFIG_64BIT
284         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286                 mask = 3;
287 #endif
288         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
289                 return -EIO;
290
291         tmp = __peek_user(child, addr);
292         return put_user(tmp, (addr_t __user *) data);
293 }
294
295 static inline void __poke_user_per(struct task_struct *child,
296                                    addr_t addr, addr_t data)
297 {
298         struct per_struct_kernel *dummy = NULL;
299
300         /*
301          * There are only three fields in the per_info struct that the
302          * debugger user can write to.
303          * 1) cr9: the debugger wants to set a new PER event mask
304          * 2) starting_addr: the debugger wants to set a new starting
305          *    address to use with the PER event mask.
306          * 3) ending_addr: the debugger wants to set a new ending
307          *    address to use with the PER event mask.
308          * The user specified PER event mask and the start and end
309          * addresses are used only if single stepping is not in effect.
310          * Writes to any other field in per_info are ignored.
311          */
312         if (addr == (addr_t) &dummy->cr9)
313                 /* PER event mask of the user specified per set. */
314                 child->thread.per_user.control =
315                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
316         else if (addr == (addr_t) &dummy->starting_addr)
317                 /* Starting address of the user specified per set. */
318                 child->thread.per_user.start = data;
319         else if (addr == (addr_t) &dummy->ending_addr)
320                 /* Ending address of the user specified per set. */
321                 child->thread.per_user.end = data;
322 }
323
324 /*
325  * Write a word to the user area of a process at location addr. This
326  * operation does have an additional problem compared to peek_user.
327  * Stores to the program status word and on the floating point
328  * control register needs to get checked for validity.
329  */
330 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
331 {
332         struct user *dummy = NULL;
333         addr_t offset;
334
335         if (addr < (addr_t) &dummy->regs.acrs) {
336                 /*
337                  * psw and gprs are stored on the stack
338                  */
339                 if (addr == (addr_t) &dummy->regs.psw.mask) {
340                         unsigned long mask = PSW_MASK_USER;
341
342                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
343                         if ((data ^ PSW_USER_BITS) & ~mask)
344                                 /* Invalid psw mask. */
345                                 return -EINVAL;
346                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
347                                 /* Invalid address-space-control bits */
348                                 return -EINVAL;
349                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
350                                 /* Invalid addressing mode bits */
351                                 return -EINVAL;
352                 }
353                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
354
355         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
356                 /*
357                  * access registers are stored in the thread structure
358                  */
359                 offset = addr - (addr_t) &dummy->regs.acrs;
360 #ifdef CONFIG_64BIT
361                 /*
362                  * Very special case: old & broken 64 bit gdb writing
363                  * to acrs[15] with a 64 bit value. Ignore the lower
364                  * half of the value and write the upper 32 bit to
365                  * acrs[15]. Sick...
366                  */
367                 if (addr == (addr_t) &dummy->regs.acrs[15])
368                         child->thread.acrs[15] = (unsigned int) (data >> 32);
369                 else
370 #endif
371                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
372
373         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
374                 /*
375                  * orig_gpr2 is stored on the kernel stack
376                  */
377                 task_pt_regs(child)->orig_gpr2 = data;
378
379         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
380                 /*
381                  * prevent writes of padding hole between
382                  * orig_gpr2 and fp_regs on s390.
383                  */
384                 return 0;
385
386         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
387                 /*
388                  * floating point regs. are stored in the thread structure
389                  */
390                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
391                         if ((unsigned int) data != 0 ||
392                             test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393                                 return -EINVAL;
394                 offset = addr - (addr_t) &dummy->regs.fp_regs;
395                 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
396
397         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
398                 /*
399                  * Handle access to the per_info structure.
400                  */
401                 addr -= (addr_t) &dummy->regs.per_info;
402                 __poke_user_per(child, addr, data);
403
404         }
405
406         return 0;
407 }
408
409 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
410 {
411         addr_t mask;
412
413         /*
414          * Stupid gdb peeks/pokes the access registers in 64 bit with
415          * an alignment of 4. Programmers from hell indeed...
416          */
417         mask = __ADDR_MASK;
418 #ifdef CONFIG_64BIT
419         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
420             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
421                 mask = 3;
422 #endif
423         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
424                 return -EIO;
425
426         return __poke_user(child, addr, data);
427 }
428
429 long arch_ptrace(struct task_struct *child, long request,
430                  unsigned long addr, unsigned long data)
431 {
432         ptrace_area parea; 
433         int copied, ret;
434
435         switch (request) {
436         case PTRACE_PEEKUSR:
437                 /* read the word at location addr in the USER area. */
438                 return peek_user(child, addr, data);
439
440         case PTRACE_POKEUSR:
441                 /* write the word at location addr in the USER area */
442                 return poke_user(child, addr, data);
443
444         case PTRACE_PEEKUSR_AREA:
445         case PTRACE_POKEUSR_AREA:
446                 if (copy_from_user(&parea, (void __force __user *) addr,
447                                                         sizeof(parea)))
448                         return -EFAULT;
449                 addr = parea.kernel_addr;
450                 data = parea.process_addr;
451                 copied = 0;
452                 while (copied < parea.len) {
453                         if (request == PTRACE_PEEKUSR_AREA)
454                                 ret = peek_user(child, addr, data);
455                         else {
456                                 addr_t utmp;
457                                 if (get_user(utmp,
458                                              (addr_t __force __user *) data))
459                                         return -EFAULT;
460                                 ret = poke_user(child, addr, utmp);
461                         }
462                         if (ret)
463                                 return ret;
464                         addr += sizeof(unsigned long);
465                         data += sizeof(unsigned long);
466                         copied += sizeof(unsigned long);
467                 }
468                 return 0;
469         case PTRACE_GET_LAST_BREAK:
470                 put_user(task_thread_info(child)->last_break,
471                          (unsigned long __user *) data);
472                 return 0;
473         case PTRACE_ENABLE_TE:
474                 if (!MACHINE_HAS_TE)
475                         return -EIO;
476                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
477                 return 0;
478         case PTRACE_DISABLE_TE:
479                 if (!MACHINE_HAS_TE)
480                         return -EIO;
481                 child->thread.per_flags |= PER_FLAG_NO_TE;
482                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
483                 return 0;
484         case PTRACE_TE_ABORT_RAND:
485                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
486                         return -EIO;
487                 switch (data) {
488                 case 0UL:
489                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490                         break;
491                 case 1UL:
492                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
493                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
494                         break;
495                 case 2UL:
496                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
497                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
498                         break;
499                 default:
500                         return -EINVAL;
501                 }
502                 return 0;
503         default:
504                 /* Removing high order bit from addr (only for 31 bit). */
505                 addr &= PSW_ADDR_INSN;
506                 return ptrace_request(child, request, addr, data);
507         }
508 }
509
510 #ifdef CONFIG_COMPAT
511 /*
512  * Now the fun part starts... a 31 bit program running in the
513  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
514  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
515  * to handle, the difference to the 64 bit versions of the requests
516  * is that the access is done in multiples of 4 byte instead of
517  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
518  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
519  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
520  * is a 31 bit program too, the content of struct user can be
521  * emulated. A 31 bit program peeking into the struct user of
522  * a 64 bit program is a no-no.
523  */
524
525 /*
526  * Same as peek_user_per but for a 31 bit program.
527  */
528 static inline __u32 __peek_user_per_compat(struct task_struct *child,
529                                            addr_t addr)
530 {
531         struct compat_per_struct_kernel *dummy32 = NULL;
532
533         if (addr == (addr_t) &dummy32->cr9)
534                 /* Control bits of the active per set. */
535                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
536                         PER_EVENT_IFETCH : child->thread.per_user.control;
537         else if (addr == (addr_t) &dummy32->cr10)
538                 /* Start address of the active per set. */
539                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540                         0 : child->thread.per_user.start;
541         else if (addr == (addr_t) &dummy32->cr11)
542                 /* End address of the active per set. */
543                 return test_thread_flag(TIF_SINGLE_STEP) ?
544                         PSW32_ADDR_INSN : child->thread.per_user.end;
545         else if (addr == (addr_t) &dummy32->bits)
546                 /* Single-step bit. */
547                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548                         0x80000000 : 0;
549         else if (addr == (addr_t) &dummy32->starting_addr)
550                 /* Start address of the user specified per set. */
551                 return (__u32) child->thread.per_user.start;
552         else if (addr == (addr_t) &dummy32->ending_addr)
553                 /* End address of the user specified per set. */
554                 return (__u32) child->thread.per_user.end;
555         else if (addr == (addr_t) &dummy32->perc_atmid)
556                 /* PER code, ATMID and AI of the last PER trap */
557                 return (__u32) child->thread.per_event.cause << 16;
558         else if (addr == (addr_t) &dummy32->address)
559                 /* Address of the last PER trap */
560                 return (__u32) child->thread.per_event.address;
561         else if (addr == (addr_t) &dummy32->access_id)
562                 /* Access id of the last PER trap */
563                 return (__u32) child->thread.per_event.paid << 24;
564         return 0;
565 }
566
567 /*
568  * Same as peek_user but for a 31 bit program.
569  */
570 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
571 {
572         struct compat_user *dummy32 = NULL;
573         addr_t offset;
574         __u32 tmp;
575
576         if (addr < (addr_t) &dummy32->regs.acrs) {
577                 struct pt_regs *regs = task_pt_regs(child);
578                 /*
579                  * psw and gprs are stored on the stack
580                  */
581                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
582                         /* Fake a 31 bit psw mask. */
583                         tmp = (__u32)(regs->psw.mask >> 32);
584                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
585                         tmp |= PSW32_USER_BITS;
586                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
587                         /* Fake a 31 bit psw address. */
588                         tmp = (__u32) regs->psw.addr |
589                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
590                 } else {
591                         /* gpr 0-15 */
592                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
593                 }
594         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
595                 /*
596                  * access registers are stored in the thread structure
597                  */
598                 offset = addr - (addr_t) &dummy32->regs.acrs;
599                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
600
601         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
602                 /*
603                  * orig_gpr2 is stored on the kernel stack
604                  */
605                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
606
607         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
608                 /*
609                  * prevent reads of padding hole between
610                  * orig_gpr2 and fp_regs on s390.
611                  */
612                 tmp = 0;
613
614         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615                 /*
616                  * floating point regs. are stored in the thread structure 
617                  */
618                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
619                 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
620
621         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
622                 /*
623                  * Handle access to the per_info structure.
624                  */
625                 addr -= (addr_t) &dummy32->regs.per_info;
626                 tmp = __peek_user_per_compat(child, addr);
627
628         } else
629                 tmp = 0;
630
631         return tmp;
632 }
633
634 static int peek_user_compat(struct task_struct *child,
635                             addr_t addr, addr_t data)
636 {
637         __u32 tmp;
638
639         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
640                 return -EIO;
641
642         tmp = __peek_user_compat(child, addr);
643         return put_user(tmp, (__u32 __user *) data);
644 }
645
646 /*
647  * Same as poke_user_per but for a 31 bit program.
648  */
649 static inline void __poke_user_per_compat(struct task_struct *child,
650                                           addr_t addr, __u32 data)
651 {
652         struct compat_per_struct_kernel *dummy32 = NULL;
653
654         if (addr == (addr_t) &dummy32->cr9)
655                 /* PER event mask of the user specified per set. */
656                 child->thread.per_user.control =
657                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
658         else if (addr == (addr_t) &dummy32->starting_addr)
659                 /* Starting address of the user specified per set. */
660                 child->thread.per_user.start = data;
661         else if (addr == (addr_t) &dummy32->ending_addr)
662                 /* Ending address of the user specified per set. */
663                 child->thread.per_user.end = data;
664 }
665
666 /*
667  * Same as poke_user but for a 31 bit program.
668  */
669 static int __poke_user_compat(struct task_struct *child,
670                               addr_t addr, addr_t data)
671 {
672         struct compat_user *dummy32 = NULL;
673         __u32 tmp = (__u32) data;
674         addr_t offset;
675
676         if (addr < (addr_t) &dummy32->regs.acrs) {
677                 struct pt_regs *regs = task_pt_regs(child);
678                 /*
679                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
680                  */
681                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
682                         __u32 mask = PSW32_MASK_USER;
683
684                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
685                         /* Build a 64 bit psw mask from 31 bit mask. */
686                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
687                                 /* Invalid psw mask. */
688                                 return -EINVAL;
689                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
690                                 /* Invalid address-space-control bits */
691                                 return -EINVAL;
692                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
693                                 (regs->psw.mask & PSW_MASK_BA) |
694                                 (__u64)(tmp & mask) << 32;
695                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
696                         /* Build a 64 bit psw address from 31 bit address. */
697                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
698                         /* Transfer 31 bit amode bit to psw mask. */
699                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
700                                 (__u64)(tmp & PSW32_ADDR_AMODE);
701                 } else {
702                         /* gpr 0-15 */
703                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
704                 }
705         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
706                 /*
707                  * access registers are stored in the thread structure
708                  */
709                 offset = addr - (addr_t) &dummy32->regs.acrs;
710                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
711
712         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
713                 /*
714                  * orig_gpr2 is stored on the kernel stack
715                  */
716                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
717
718         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
719                 /*
720                  * prevent writess of padding hole between
721                  * orig_gpr2 and fp_regs on s390.
722                  */
723                 return 0;
724
725         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
726                 /*
727                  * floating point regs. are stored in the thread structure 
728                  */
729                 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
730                     test_fp_ctl(tmp))
731                         return -EINVAL;
732                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
733                 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
734
735         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
736                 /*
737                  * Handle access to the per_info structure.
738                  */
739                 addr -= (addr_t) &dummy32->regs.per_info;
740                 __poke_user_per_compat(child, addr, data);
741         }
742
743         return 0;
744 }
745
746 static int poke_user_compat(struct task_struct *child,
747                             addr_t addr, addr_t data)
748 {
749         if (!is_compat_task() || (addr & 3) ||
750             addr > sizeof(struct compat_user) - 3)
751                 return -EIO;
752
753         return __poke_user_compat(child, addr, data);
754 }
755
756 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
757                         compat_ulong_t caddr, compat_ulong_t cdata)
758 {
759         unsigned long addr = caddr;
760         unsigned long data = cdata;
761         compat_ptrace_area parea;
762         int copied, ret;
763
764         switch (request) {
765         case PTRACE_PEEKUSR:
766                 /* read the word at location addr in the USER area. */
767                 return peek_user_compat(child, addr, data);
768
769         case PTRACE_POKEUSR:
770                 /* write the word at location addr in the USER area */
771                 return poke_user_compat(child, addr, data);
772
773         case PTRACE_PEEKUSR_AREA:
774         case PTRACE_POKEUSR_AREA:
775                 if (copy_from_user(&parea, (void __force __user *) addr,
776                                                         sizeof(parea)))
777                         return -EFAULT;
778                 addr = parea.kernel_addr;
779                 data = parea.process_addr;
780                 copied = 0;
781                 while (copied < parea.len) {
782                         if (request == PTRACE_PEEKUSR_AREA)
783                                 ret = peek_user_compat(child, addr, data);
784                         else {
785                                 __u32 utmp;
786                                 if (get_user(utmp,
787                                              (__u32 __force __user *) data))
788                                         return -EFAULT;
789                                 ret = poke_user_compat(child, addr, utmp);
790                         }
791                         if (ret)
792                                 return ret;
793                         addr += sizeof(unsigned int);
794                         data += sizeof(unsigned int);
795                         copied += sizeof(unsigned int);
796                 }
797                 return 0;
798         case PTRACE_GET_LAST_BREAK:
799                 put_user(task_thread_info(child)->last_break,
800                          (unsigned int __user *) data);
801                 return 0;
802         }
803         return compat_ptrace_request(child, request, addr, data);
804 }
805 #endif
806
807 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
808 {
809         long ret = 0;
810
811         /* Do the secure computing check first. */
812         if (secure_computing()) {
813                 /* seccomp failures shouldn't expose any additional code. */
814                 ret = -1;
815                 goto out;
816         }
817
818         /*
819          * The sysc_tracesys code in entry.S stored the system
820          * call number to gprs[2].
821          */
822         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
823             (tracehook_report_syscall_entry(regs) ||
824              regs->gprs[2] >= NR_syscalls)) {
825                 /*
826                  * Tracing decided this syscall should not happen or the
827                  * debugger stored an invalid system call number. Skip
828                  * the system call and the system call restart handling.
829                  */
830                 clear_pt_regs_flag(regs, PIF_SYSCALL);
831                 ret = -1;
832         }
833
834         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
835                 trace_sys_enter(regs, regs->gprs[2]);
836
837         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
838                             regs->gprs[3], regs->gprs[4],
839                             regs->gprs[5]);
840 out:
841         return ret ?: regs->gprs[2];
842 }
843
844 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
845 {
846         audit_syscall_exit(regs);
847
848         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
849                 trace_sys_exit(regs, regs->gprs[2]);
850
851         if (test_thread_flag(TIF_SYSCALL_TRACE))
852                 tracehook_report_syscall_exit(regs, 0);
853 }
854
855 /*
856  * user_regset definitions.
857  */
858
859 static int s390_regs_get(struct task_struct *target,
860                          const struct user_regset *regset,
861                          unsigned int pos, unsigned int count,
862                          void *kbuf, void __user *ubuf)
863 {
864         if (target == current)
865                 save_access_regs(target->thread.acrs);
866
867         if (kbuf) {
868                 unsigned long *k = kbuf;
869                 while (count > 0) {
870                         *k++ = __peek_user(target, pos);
871                         count -= sizeof(*k);
872                         pos += sizeof(*k);
873                 }
874         } else {
875                 unsigned long __user *u = ubuf;
876                 while (count > 0) {
877                         if (__put_user(__peek_user(target, pos), u++))
878                                 return -EFAULT;
879                         count -= sizeof(*u);
880                         pos += sizeof(*u);
881                 }
882         }
883         return 0;
884 }
885
886 static int s390_regs_set(struct task_struct *target,
887                          const struct user_regset *regset,
888                          unsigned int pos, unsigned int count,
889                          const void *kbuf, const void __user *ubuf)
890 {
891         int rc = 0;
892
893         if (target == current)
894                 save_access_regs(target->thread.acrs);
895
896         if (kbuf) {
897                 const unsigned long *k = kbuf;
898                 while (count > 0 && !rc) {
899                         rc = __poke_user(target, pos, *k++);
900                         count -= sizeof(*k);
901                         pos += sizeof(*k);
902                 }
903         } else {
904                 const unsigned long  __user *u = ubuf;
905                 while (count > 0 && !rc) {
906                         unsigned long word;
907                         rc = __get_user(word, u++);
908                         if (rc)
909                                 break;
910                         rc = __poke_user(target, pos, word);
911                         count -= sizeof(*u);
912                         pos += sizeof(*u);
913                 }
914         }
915
916         if (rc == 0 && target == current)
917                 restore_access_regs(target->thread.acrs);
918
919         return rc;
920 }
921
922 static int s390_fpregs_get(struct task_struct *target,
923                            const struct user_regset *regset, unsigned int pos,
924                            unsigned int count, void *kbuf, void __user *ubuf)
925 {
926         if (target == current) {
927                 save_fp_ctl(&target->thread.fp_regs.fpc);
928                 save_fp_regs(target->thread.fp_regs.fprs);
929         }
930 #ifdef CONFIG_64BIT
931         else if (target->thread.vxrs) {
932                 int i;
933
934                 for (i = 0; i < __NUM_VXRS_LOW; i++)
935                         target->thread.fp_regs.fprs[i] =
936                                 *(freg_t *)(target->thread.vxrs + i);
937         }
938 #endif
939         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
940                                    &target->thread.fp_regs, 0, -1);
941 }
942
943 static int s390_fpregs_set(struct task_struct *target,
944                            const struct user_regset *regset, unsigned int pos,
945                            unsigned int count, const void *kbuf,
946                            const void __user *ubuf)
947 {
948         int rc = 0;
949
950         if (target == current) {
951                 save_fp_ctl(&target->thread.fp_regs.fpc);
952                 save_fp_regs(target->thread.fp_regs.fprs);
953         }
954
955         /* If setting FPC, must validate it first. */
956         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
957                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
958                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
959                                         0, offsetof(s390_fp_regs, fprs));
960                 if (rc)
961                         return rc;
962                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
963                         return -EINVAL;
964                 target->thread.fp_regs.fpc = ufpc[0];
965         }
966
967         if (rc == 0 && count > 0)
968                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969                                         target->thread.fp_regs.fprs,
970                                         offsetof(s390_fp_regs, fprs), -1);
971
972         if (rc == 0) {
973                 if (target == current) {
974                         restore_fp_ctl(&target->thread.fp_regs.fpc);
975                         restore_fp_regs(target->thread.fp_regs.fprs);
976                 }
977 #ifdef CONFIG_64BIT
978                 else if (target->thread.vxrs) {
979                         int i;
980
981                         for (i = 0; i < __NUM_VXRS_LOW; i++)
982                                 *(freg_t *)(target->thread.vxrs + i) =
983                                         target->thread.fp_regs.fprs[i];
984                 }
985 #endif
986         }
987
988         return rc;
989 }
990
991 #ifdef CONFIG_64BIT
992
993 static int s390_last_break_get(struct task_struct *target,
994                                const struct user_regset *regset,
995                                unsigned int pos, unsigned int count,
996                                void *kbuf, void __user *ubuf)
997 {
998         if (count > 0) {
999                 if (kbuf) {
1000                         unsigned long *k = kbuf;
1001                         *k = task_thread_info(target)->last_break;
1002                 } else {
1003                         unsigned long  __user *u = ubuf;
1004                         if (__put_user(task_thread_info(target)->last_break, u))
1005                                 return -EFAULT;
1006                 }
1007         }
1008         return 0;
1009 }
1010
1011 static int s390_last_break_set(struct task_struct *target,
1012                                const struct user_regset *regset,
1013                                unsigned int pos, unsigned int count,
1014                                const void *kbuf, const void __user *ubuf)
1015 {
1016         return 0;
1017 }
1018
1019 static int s390_tdb_get(struct task_struct *target,
1020                         const struct user_regset *regset,
1021                         unsigned int pos, unsigned int count,
1022                         void *kbuf, void __user *ubuf)
1023 {
1024         struct pt_regs *regs = task_pt_regs(target);
1025         unsigned char *data;
1026
1027         if (!(regs->int_code & 0x200))
1028                 return -ENODATA;
1029         data = target->thread.trap_tdb;
1030         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1031 }
1032
1033 static int s390_tdb_set(struct task_struct *target,
1034                         const struct user_regset *regset,
1035                         unsigned int pos, unsigned int count,
1036                         const void *kbuf, const void __user *ubuf)
1037 {
1038         return 0;
1039 }
1040
1041 static int s390_vxrs_active(struct task_struct *target,
1042                               const struct user_regset *regset)
1043 {
1044         return !!target->thread.vxrs;
1045 }
1046
1047 static int s390_vxrs_low_get(struct task_struct *target,
1048                              const struct user_regset *regset,
1049                              unsigned int pos, unsigned int count,
1050                              void *kbuf, void __user *ubuf)
1051 {
1052         __u64 vxrs[__NUM_VXRS_LOW];
1053         int i;
1054
1055         if (target->thread.vxrs) {
1056                 if (target == current)
1057                         save_vx_regs(target->thread.vxrs);
1058                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1059                         vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1060         } else
1061                 memset(vxrs, 0, sizeof(vxrs));
1062         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1063 }
1064
1065 static int s390_vxrs_low_set(struct task_struct *target,
1066                              const struct user_regset *regset,
1067                              unsigned int pos, unsigned int count,
1068                              const void *kbuf, const void __user *ubuf)
1069 {
1070         __u64 vxrs[__NUM_VXRS_LOW];
1071         int i, rc;
1072
1073         if (!target->thread.vxrs) {
1074                 rc = alloc_vector_registers(target);
1075                 if (rc)
1076                         return rc;
1077         } else if (target == current)
1078                 save_vx_regs(target->thread.vxrs);
1079
1080         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1081         if (rc == 0) {
1082                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1083                         *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1084                 if (target == current)
1085                         restore_vx_regs(target->thread.vxrs);
1086         }
1087
1088         return rc;
1089 }
1090
1091 static int s390_vxrs_high_get(struct task_struct *target,
1092                               const struct user_regset *regset,
1093                               unsigned int pos, unsigned int count,
1094                               void *kbuf, void __user *ubuf)
1095 {
1096         __vector128 vxrs[__NUM_VXRS_HIGH];
1097
1098         if (target->thread.vxrs) {
1099                 if (target == current)
1100                         save_vx_regs(target->thread.vxrs);
1101                 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1102                        sizeof(vxrs));
1103         } else
1104                 memset(vxrs, 0, sizeof(vxrs));
1105         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1106 }
1107
1108 static int s390_vxrs_high_set(struct task_struct *target,
1109                               const struct user_regset *regset,
1110                               unsigned int pos, unsigned int count,
1111                               const void *kbuf, const void __user *ubuf)
1112 {
1113         int rc;
1114
1115         if (!target->thread.vxrs) {
1116                 rc = alloc_vector_registers(target);
1117                 if (rc)
1118                         return rc;
1119         } else if (target == current)
1120                 save_vx_regs(target->thread.vxrs);
1121
1122         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1123                                 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1124         if (rc == 0 && target == current)
1125                 restore_vx_regs(target->thread.vxrs);
1126
1127         return rc;
1128 }
1129
1130 #endif
1131
1132 static int s390_system_call_get(struct task_struct *target,
1133                                 const struct user_regset *regset,
1134                                 unsigned int pos, unsigned int count,
1135                                 void *kbuf, void __user *ubuf)
1136 {
1137         unsigned int *data = &task_thread_info(target)->system_call;
1138         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1139                                    data, 0, sizeof(unsigned int));
1140 }
1141
1142 static int s390_system_call_set(struct task_struct *target,
1143                                 const struct user_regset *regset,
1144                                 unsigned int pos, unsigned int count,
1145                                 const void *kbuf, const void __user *ubuf)
1146 {
1147         unsigned int *data = &task_thread_info(target)->system_call;
1148         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1149                                   data, 0, sizeof(unsigned int));
1150 }
1151
1152 static const struct user_regset s390_regsets[] = {
1153         {
1154                 .core_note_type = NT_PRSTATUS,
1155                 .n = sizeof(s390_regs) / sizeof(long),
1156                 .size = sizeof(long),
1157                 .align = sizeof(long),
1158                 .get = s390_regs_get,
1159                 .set = s390_regs_set,
1160         },
1161         {
1162                 .core_note_type = NT_PRFPREG,
1163                 .n = sizeof(s390_fp_regs) / sizeof(long),
1164                 .size = sizeof(long),
1165                 .align = sizeof(long),
1166                 .get = s390_fpregs_get,
1167                 .set = s390_fpregs_set,
1168         },
1169         {
1170                 .core_note_type = NT_S390_SYSTEM_CALL,
1171                 .n = 1,
1172                 .size = sizeof(unsigned int),
1173                 .align = sizeof(unsigned int),
1174                 .get = s390_system_call_get,
1175                 .set = s390_system_call_set,
1176         },
1177 #ifdef CONFIG_64BIT
1178         {
1179                 .core_note_type = NT_S390_LAST_BREAK,
1180                 .n = 1,
1181                 .size = sizeof(long),
1182                 .align = sizeof(long),
1183                 .get = s390_last_break_get,
1184                 .set = s390_last_break_set,
1185         },
1186         {
1187                 .core_note_type = NT_S390_TDB,
1188                 .n = 1,
1189                 .size = 256,
1190                 .align = 1,
1191                 .get = s390_tdb_get,
1192                 .set = s390_tdb_set,
1193         },
1194         {
1195                 .core_note_type = NT_S390_VXRS_LOW,
1196                 .n = __NUM_VXRS_LOW,
1197                 .size = sizeof(__u64),
1198                 .align = sizeof(__u64),
1199                 .active = s390_vxrs_active,
1200                 .get = s390_vxrs_low_get,
1201                 .set = s390_vxrs_low_set,
1202         },
1203         {
1204                 .core_note_type = NT_S390_VXRS_HIGH,
1205                 .n = __NUM_VXRS_HIGH,
1206                 .size = sizeof(__vector128),
1207                 .align = sizeof(__vector128),
1208                 .active = s390_vxrs_active,
1209                 .get = s390_vxrs_high_get,
1210                 .set = s390_vxrs_high_set,
1211         },
1212 #endif
1213 };
1214
1215 static const struct user_regset_view user_s390_view = {
1216         .name = UTS_MACHINE,
1217         .e_machine = EM_S390,
1218         .regsets = s390_regsets,
1219         .n = ARRAY_SIZE(s390_regsets)
1220 };
1221
1222 #ifdef CONFIG_COMPAT
1223 static int s390_compat_regs_get(struct task_struct *target,
1224                                 const struct user_regset *regset,
1225                                 unsigned int pos, unsigned int count,
1226                                 void *kbuf, void __user *ubuf)
1227 {
1228         if (target == current)
1229                 save_access_regs(target->thread.acrs);
1230
1231         if (kbuf) {
1232                 compat_ulong_t *k = kbuf;
1233                 while (count > 0) {
1234                         *k++ = __peek_user_compat(target, pos);
1235                         count -= sizeof(*k);
1236                         pos += sizeof(*k);
1237                 }
1238         } else {
1239                 compat_ulong_t __user *u = ubuf;
1240                 while (count > 0) {
1241                         if (__put_user(__peek_user_compat(target, pos), u++))
1242                                 return -EFAULT;
1243                         count -= sizeof(*u);
1244                         pos += sizeof(*u);
1245                 }
1246         }
1247         return 0;
1248 }
1249
1250 static int s390_compat_regs_set(struct task_struct *target,
1251                                 const struct user_regset *regset,
1252                                 unsigned int pos, unsigned int count,
1253                                 const void *kbuf, const void __user *ubuf)
1254 {
1255         int rc = 0;
1256
1257         if (target == current)
1258                 save_access_regs(target->thread.acrs);
1259
1260         if (kbuf) {
1261                 const compat_ulong_t *k = kbuf;
1262                 while (count > 0 && !rc) {
1263                         rc = __poke_user_compat(target, pos, *k++);
1264                         count -= sizeof(*k);
1265                         pos += sizeof(*k);
1266                 }
1267         } else {
1268                 const compat_ulong_t  __user *u = ubuf;
1269                 while (count > 0 && !rc) {
1270                         compat_ulong_t word;
1271                         rc = __get_user(word, u++);
1272                         if (rc)
1273                                 break;
1274                         rc = __poke_user_compat(target, pos, word);
1275                         count -= sizeof(*u);
1276                         pos += sizeof(*u);
1277                 }
1278         }
1279
1280         if (rc == 0 && target == current)
1281                 restore_access_regs(target->thread.acrs);
1282
1283         return rc;
1284 }
1285
1286 static int s390_compat_regs_high_get(struct task_struct *target,
1287                                      const struct user_regset *regset,
1288                                      unsigned int pos, unsigned int count,
1289                                      void *kbuf, void __user *ubuf)
1290 {
1291         compat_ulong_t *gprs_high;
1292
1293         gprs_high = (compat_ulong_t *)
1294                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1295         if (kbuf) {
1296                 compat_ulong_t *k = kbuf;
1297                 while (count > 0) {
1298                         *k++ = *gprs_high;
1299                         gprs_high += 2;
1300                         count -= sizeof(*k);
1301                 }
1302         } else {
1303                 compat_ulong_t __user *u = ubuf;
1304                 while (count > 0) {
1305                         if (__put_user(*gprs_high, u++))
1306                                 return -EFAULT;
1307                         gprs_high += 2;
1308                         count -= sizeof(*u);
1309                 }
1310         }
1311         return 0;
1312 }
1313
1314 static int s390_compat_regs_high_set(struct task_struct *target,
1315                                      const struct user_regset *regset,
1316                                      unsigned int pos, unsigned int count,
1317                                      const void *kbuf, const void __user *ubuf)
1318 {
1319         compat_ulong_t *gprs_high;
1320         int rc = 0;
1321
1322         gprs_high = (compat_ulong_t *)
1323                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1324         if (kbuf) {
1325                 const compat_ulong_t *k = kbuf;
1326                 while (count > 0) {
1327                         *gprs_high = *k++;
1328                         *gprs_high += 2;
1329                         count -= sizeof(*k);
1330                 }
1331         } else {
1332                 const compat_ulong_t  __user *u = ubuf;
1333                 while (count > 0 && !rc) {
1334                         unsigned long word;
1335                         rc = __get_user(word, u++);
1336                         if (rc)
1337                                 break;
1338                         *gprs_high = word;
1339                         *gprs_high += 2;
1340                         count -= sizeof(*u);
1341                 }
1342         }
1343
1344         return rc;
1345 }
1346
1347 static int s390_compat_last_break_get(struct task_struct *target,
1348                                       const struct user_regset *regset,
1349                                       unsigned int pos, unsigned int count,
1350                                       void *kbuf, void __user *ubuf)
1351 {
1352         compat_ulong_t last_break;
1353
1354         if (count > 0) {
1355                 last_break = task_thread_info(target)->last_break;
1356                 if (kbuf) {
1357                         unsigned long *k = kbuf;
1358                         *k = last_break;
1359                 } else {
1360                         unsigned long  __user *u = ubuf;
1361                         if (__put_user(last_break, u))
1362                                 return -EFAULT;
1363                 }
1364         }
1365         return 0;
1366 }
1367
1368 static int s390_compat_last_break_set(struct task_struct *target,
1369                                       const struct user_regset *regset,
1370                                       unsigned int pos, unsigned int count,
1371                                       const void *kbuf, const void __user *ubuf)
1372 {
1373         return 0;
1374 }
1375
1376 static const struct user_regset s390_compat_regsets[] = {
1377         {
1378                 .core_note_type = NT_PRSTATUS,
1379                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1380                 .size = sizeof(compat_long_t),
1381                 .align = sizeof(compat_long_t),
1382                 .get = s390_compat_regs_get,
1383                 .set = s390_compat_regs_set,
1384         },
1385         {
1386                 .core_note_type = NT_PRFPREG,
1387                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1388                 .size = sizeof(compat_long_t),
1389                 .align = sizeof(compat_long_t),
1390                 .get = s390_fpregs_get,
1391                 .set = s390_fpregs_set,
1392         },
1393         {
1394                 .core_note_type = NT_S390_SYSTEM_CALL,
1395                 .n = 1,
1396                 .size = sizeof(compat_uint_t),
1397                 .align = sizeof(compat_uint_t),
1398                 .get = s390_system_call_get,
1399                 .set = s390_system_call_set,
1400         },
1401         {
1402                 .core_note_type = NT_S390_LAST_BREAK,
1403                 .n = 1,
1404                 .size = sizeof(long),
1405                 .align = sizeof(long),
1406                 .get = s390_compat_last_break_get,
1407                 .set = s390_compat_last_break_set,
1408         },
1409         {
1410                 .core_note_type = NT_S390_TDB,
1411                 .n = 1,
1412                 .size = 256,
1413                 .align = 1,
1414                 .get = s390_tdb_get,
1415                 .set = s390_tdb_set,
1416         },
1417         {
1418                 .core_note_type = NT_S390_VXRS_LOW,
1419                 .n = __NUM_VXRS_LOW,
1420                 .size = sizeof(__u64),
1421                 .align = sizeof(__u64),
1422                 .active = s390_vxrs_active,
1423                 .get = s390_vxrs_low_get,
1424                 .set = s390_vxrs_low_set,
1425         },
1426         {
1427                 .core_note_type = NT_S390_VXRS_HIGH,
1428                 .n = __NUM_VXRS_HIGH,
1429                 .size = sizeof(__vector128),
1430                 .align = sizeof(__vector128),
1431                 .active = s390_vxrs_active,
1432                 .get = s390_vxrs_high_get,
1433                 .set = s390_vxrs_high_set,
1434         },
1435         {
1436                 .core_note_type = NT_S390_HIGH_GPRS,
1437                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1438                 .size = sizeof(compat_long_t),
1439                 .align = sizeof(compat_long_t),
1440                 .get = s390_compat_regs_high_get,
1441                 .set = s390_compat_regs_high_set,
1442         },
1443 };
1444
1445 static const struct user_regset_view user_s390_compat_view = {
1446         .name = "s390",
1447         .e_machine = EM_S390,
1448         .regsets = s390_compat_regsets,
1449         .n = ARRAY_SIZE(s390_compat_regsets)
1450 };
1451 #endif
1452
1453 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1454 {
1455 #ifdef CONFIG_COMPAT
1456         if (test_tsk_thread_flag(task, TIF_31BIT))
1457                 return &user_s390_compat_view;
1458 #endif
1459         return &user_s390_view;
1460 }
1461
1462 static const char *gpr_names[NUM_GPRS] = {
1463         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1464         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1465 };
1466
1467 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1468 {
1469         if (offset >= NUM_GPRS)
1470                 return 0;
1471         return regs->gprs[offset];
1472 }
1473
1474 int regs_query_register_offset(const char *name)
1475 {
1476         unsigned long offset;
1477
1478         if (!name || *name != 'r')
1479                 return -EINVAL;
1480         if (kstrtoul(name + 1, 10, &offset))
1481                 return -EINVAL;
1482         if (offset >= NUM_GPRS)
1483                 return -EINVAL;
1484         return offset;
1485 }
1486
1487 const char *regs_query_register_name(unsigned int offset)
1488 {
1489         if (offset >= NUM_GPRS)
1490                 return NULL;
1491         return gpr_names[offset];
1492 }
1493
1494 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1495 {
1496         unsigned long ksp = kernel_stack_pointer(regs);
1497
1498         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1499 }
1500
1501 /**
1502  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1503  * @regs:pt_regs which contains kernel stack pointer.
1504  * @n:stack entry number.
1505  *
1506  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1507  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1508  * this returns 0.
1509  */
1510 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1511 {
1512         unsigned long addr;
1513
1514         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1515         if (!regs_within_kernel_stack(regs, addr))
1516                 return 0;
1517         return *(unsigned long *)addr;
1518 }