Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[cascardo/linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47         /* Take care of the enable/disable of transactional execution. */
48         if (MACHINE_HAS_TE) {
49                 unsigned long cr, cr_new;
50
51                 __ctl_store(cr, 0, 0);
52                 /* Set or clear transaction execution TXC bit 8. */
53                 cr_new = cr | (1UL << 55);
54                 if (task->thread.per_flags & PER_FLAG_NO_TE)
55                         cr_new &= ~(1UL << 55);
56                 if (cr_new != cr)
57                         __ctl_load(cr_new, 0, 0);
58                 /* Set or clear transaction execution TDC bits 62 and 63. */
59                 __ctl_store(cr, 2, 2);
60                 cr_new = cr & ~3UL;
61                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63                                 cr_new |= 1UL;
64                         else
65                                 cr_new |= 2UL;
66                 }
67                 if (cr_new != cr)
68                         __ctl_load(cr_new, 2, 2);
69         }
70         /* Copy user specified PER registers */
71         new.control = thread->per_user.control;
72         new.start = thread->per_user.start;
73         new.end = thread->per_user.end;
74
75         /* merge TIF_SINGLE_STEP into user specified PER registers. */
76         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79                         new.control |= PER_EVENT_BRANCH;
80                 else
81                         new.control |= PER_EVENT_IFETCH;
82                 new.control |= PER_CONTROL_SUSPENSION;
83                 new.control |= PER_EVENT_TRANSACTION_END;
84                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85                         new.control |= PER_EVENT_IFETCH;
86                 new.start = 0;
87                 new.end = PSW_ADDR_INSN;
88         }
89
90         /* Take care of the PER enablement bit in the PSW. */
91         if (!(new.control & PER_EVENT_MASK)) {
92                 regs->psw.mask &= ~PSW_MASK_PER;
93                 return;
94         }
95         regs->psw.mask |= PSW_MASK_PER;
96         __ctl_store(old, 9, 11);
97         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98                 __ctl_load(new, 9, 11);
99 }
100
101 void user_enable_single_step(struct task_struct *task)
102 {
103         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106
107 void user_disable_single_step(struct task_struct *task)
108 {
109         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112
113 void user_enable_block_step(struct task_struct *task)
114 {
115         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118
119 /*
120  * Called by kernel/ptrace.c when detaching..
121  *
122  * Clear all debugging related fields.
123  */
124 void ptrace_disable(struct task_struct *task)
125 {
126         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130         task->thread.per_flags = 0;
131 }
132
133 #define __ADDR_MASK 7
134
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136                                             addr_t addr)
137 {
138         struct per_struct_kernel *dummy = NULL;
139
140         if (addr == (addr_t) &dummy->cr9)
141                 /* Control bits of the active per set. */
142                 return test_thread_flag(TIF_SINGLE_STEP) ?
143                         PER_EVENT_IFETCH : child->thread.per_user.control;
144         else if (addr == (addr_t) &dummy->cr10)
145                 /* Start address of the active per set. */
146                 return test_thread_flag(TIF_SINGLE_STEP) ?
147                         0 : child->thread.per_user.start;
148         else if (addr == (addr_t) &dummy->cr11)
149                 /* End address of the active per set. */
150                 return test_thread_flag(TIF_SINGLE_STEP) ?
151                         PSW_ADDR_INSN : child->thread.per_user.end;
152         else if (addr == (addr_t) &dummy->bits)
153                 /* Single-step bit. */
154                 return test_thread_flag(TIF_SINGLE_STEP) ?
155                         (1UL << (BITS_PER_LONG - 1)) : 0;
156         else if (addr == (addr_t) &dummy->starting_addr)
157                 /* Start address of the user specified per set. */
158                 return child->thread.per_user.start;
159         else if (addr == (addr_t) &dummy->ending_addr)
160                 /* End address of the user specified per set. */
161                 return child->thread.per_user.end;
162         else if (addr == (addr_t) &dummy->perc_atmid)
163                 /* PER code, ATMID and AI of the last PER trap */
164                 return (unsigned long)
165                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
166         else if (addr == (addr_t) &dummy->address)
167                 /* Address of the last PER trap */
168                 return child->thread.per_event.address;
169         else if (addr == (addr_t) &dummy->access_id)
170                 /* Access id of the last PER trap */
171                 return (unsigned long)
172                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
173         return 0;
174 }
175
176 /*
177  * Read the word at offset addr from the user area of a process. The
178  * trouble here is that the information is littered over different
179  * locations. The process registers are found on the kernel stack,
180  * the floating point stuff and the trace settings are stored in
181  * the task structure. In addition the different structures in
182  * struct user contain pad bytes that should be read as zeroes.
183  * Lovely...
184  */
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187         struct user *dummy = NULL;
188         addr_t offset, tmp;
189
190         if (addr < (addr_t) &dummy->regs.acrs) {
191                 /*
192                  * psw and gprs are stored on the stack
193                  */
194                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195                 if (addr == (addr_t) &dummy->regs.psw.mask) {
196                         /* Return a clean psw mask. */
197                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
198                         tmp |= PSW_USER_BITS;
199                 }
200
201         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202                 /*
203                  * access registers are stored in the thread structure
204                  */
205                 offset = addr - (addr_t) &dummy->regs.acrs;
206                 /*
207                  * Very special case: old & broken 64 bit gdb reading
208                  * from acrs[15]. Result is a 64 bit value. Read the
209                  * 32 bit acrs[15] value and shift it by 32. Sick...
210                  */
211                 if (addr == (addr_t) &dummy->regs.acrs[15])
212                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213                 else
214                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217                 /*
218                  * orig_gpr2 is stored on the kernel stack
219                  */
220                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223                 /*
224                  * prevent reads of padding hole between
225                  * orig_gpr2 and fp_regs on s390.
226                  */
227                 tmp = 0;
228
229         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230                 /*
231                  * floating point control reg. is in the thread structure
232                  */
233                 tmp = child->thread.fpu.fpc;
234                 tmp <<= BITS_PER_LONG - 32;
235
236         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237                 /*
238                  * floating point regs. are either in child->thread.fpu
239                  * or the child->thread.fpu.vxrs array
240                  */
241                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242                 if (is_vx_task(child))
243                         tmp = *(addr_t *)
244                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
245                 else
246                         tmp = *(addr_t *)
247                                ((addr_t) &child->thread.fpu.fprs + offset);
248
249         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250                 /*
251                  * Handle access to the per_info structure.
252                  */
253                 addr -= (addr_t) &dummy->regs.per_info;
254                 tmp = __peek_user_per(child, addr);
255
256         } else
257                 tmp = 0;
258
259         return tmp;
260 }
261
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265         addr_t tmp, mask;
266
267         /*
268          * Stupid gdb peeks/pokes the access registers in 64 bit with
269          * an alignment of 4. Programmers from hell...
270          */
271         mask = __ADDR_MASK;
272         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274                 mask = 3;
275         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276                 return -EIO;
277
278         tmp = __peek_user(child, addr);
279         return put_user(tmp, (addr_t __user *) data);
280 }
281
282 static inline void __poke_user_per(struct task_struct *child,
283                                    addr_t addr, addr_t data)
284 {
285         struct per_struct_kernel *dummy = NULL;
286
287         /*
288          * There are only three fields in the per_info struct that the
289          * debugger user can write to.
290          * 1) cr9: the debugger wants to set a new PER event mask
291          * 2) starting_addr: the debugger wants to set a new starting
292          *    address to use with the PER event mask.
293          * 3) ending_addr: the debugger wants to set a new ending
294          *    address to use with the PER event mask.
295          * The user specified PER event mask and the start and end
296          * addresses are used only if single stepping is not in effect.
297          * Writes to any other field in per_info are ignored.
298          */
299         if (addr == (addr_t) &dummy->cr9)
300                 /* PER event mask of the user specified per set. */
301                 child->thread.per_user.control =
302                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303         else if (addr == (addr_t) &dummy->starting_addr)
304                 /* Starting address of the user specified per set. */
305                 child->thread.per_user.start = data;
306         else if (addr == (addr_t) &dummy->ending_addr)
307                 /* Ending address of the user specified per set. */
308                 child->thread.per_user.end = data;
309 }
310
311 /*
312  * Write a word to the user area of a process at location addr. This
313  * operation does have an additional problem compared to peek_user.
314  * Stores to the program status word and on the floating point
315  * control register needs to get checked for validity.
316  */
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319         struct user *dummy = NULL;
320         addr_t offset;
321
322         if (addr < (addr_t) &dummy->regs.acrs) {
323                 /*
324                  * psw and gprs are stored on the stack
325                  */
326                 if (addr == (addr_t) &dummy->regs.psw.mask) {
327                         unsigned long mask = PSW_MASK_USER;
328
329                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330                         if ((data ^ PSW_USER_BITS) & ~mask)
331                                 /* Invalid psw mask. */
332                                 return -EINVAL;
333                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334                                 /* Invalid address-space-control bits */
335                                 return -EINVAL;
336                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337                                 /* Invalid addressing mode bits */
338                                 return -EINVAL;
339                 }
340                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343                 /*
344                  * access registers are stored in the thread structure
345                  */
346                 offset = addr - (addr_t) &dummy->regs.acrs;
347                 /*
348                  * Very special case: old & broken 64 bit gdb writing
349                  * to acrs[15] with a 64 bit value. Ignore the lower
350                  * half of the value and write the upper 32 bit to
351                  * acrs[15]. Sick...
352                  */
353                 if (addr == (addr_t) &dummy->regs.acrs[15])
354                         child->thread.acrs[15] = (unsigned int) (data >> 32);
355                 else
356                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359                 /*
360                  * orig_gpr2 is stored on the kernel stack
361                  */
362                 task_pt_regs(child)->orig_gpr2 = data;
363
364         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365                 /*
366                  * prevent writes of padding hole between
367                  * orig_gpr2 and fp_regs on s390.
368                  */
369                 return 0;
370
371         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372                 /*
373                  * floating point control reg. is in the thread structure
374                  */
375                 if ((unsigned int) data != 0 ||
376                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377                         return -EINVAL;
378                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381                 /*
382                  * floating point regs. are either in child->thread.fpu
383                  * or the child->thread.fpu.vxrs array
384                  */
385                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386                 if (is_vx_task(child))
387                         *(addr_t *)((addr_t)
388                                 child->thread.fpu.vxrs + 2*offset) = data;
389                 else
390                         *(addr_t *)((addr_t)
391                                 &child->thread.fpu.fprs + offset) = data;
392
393         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394                 /*
395                  * Handle access to the per_info structure.
396                  */
397                 addr -= (addr_t) &dummy->regs.per_info;
398                 __poke_user_per(child, addr, data);
399
400         }
401
402         return 0;
403 }
404
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407         addr_t mask;
408
409         /*
410          * Stupid gdb peeks/pokes the access registers in 64 bit with
411          * an alignment of 4. Programmers from hell indeed...
412          */
413         mask = __ADDR_MASK;
414         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416                 mask = 3;
417         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418                 return -EIO;
419
420         return __poke_user(child, addr, data);
421 }
422
423 long arch_ptrace(struct task_struct *child, long request,
424                  unsigned long addr, unsigned long data)
425 {
426         ptrace_area parea; 
427         int copied, ret;
428
429         switch (request) {
430         case PTRACE_PEEKUSR:
431                 /* read the word at location addr in the USER area. */
432                 return peek_user(child, addr, data);
433
434         case PTRACE_POKEUSR:
435                 /* write the word at location addr in the USER area */
436                 return poke_user(child, addr, data);
437
438         case PTRACE_PEEKUSR_AREA:
439         case PTRACE_POKEUSR_AREA:
440                 if (copy_from_user(&parea, (void __force __user *) addr,
441                                                         sizeof(parea)))
442                         return -EFAULT;
443                 addr = parea.kernel_addr;
444                 data = parea.process_addr;
445                 copied = 0;
446                 while (copied < parea.len) {
447                         if (request == PTRACE_PEEKUSR_AREA)
448                                 ret = peek_user(child, addr, data);
449                         else {
450                                 addr_t utmp;
451                                 if (get_user(utmp,
452                                              (addr_t __force __user *) data))
453                                         return -EFAULT;
454                                 ret = poke_user(child, addr, utmp);
455                         }
456                         if (ret)
457                                 return ret;
458                         addr += sizeof(unsigned long);
459                         data += sizeof(unsigned long);
460                         copied += sizeof(unsigned long);
461                 }
462                 return 0;
463         case PTRACE_GET_LAST_BREAK:
464                 put_user(task_thread_info(child)->last_break,
465                          (unsigned long __user *) data);
466                 return 0;
467         case PTRACE_ENABLE_TE:
468                 if (!MACHINE_HAS_TE)
469                         return -EIO;
470                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471                 return 0;
472         case PTRACE_DISABLE_TE:
473                 if (!MACHINE_HAS_TE)
474                         return -EIO;
475                 child->thread.per_flags |= PER_FLAG_NO_TE;
476                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477                 return 0;
478         case PTRACE_TE_ABORT_RAND:
479                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480                         return -EIO;
481                 switch (data) {
482                 case 0UL:
483                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484                         break;
485                 case 1UL:
486                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488                         break;
489                 case 2UL:
490                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492                         break;
493                 default:
494                         return -EINVAL;
495                 }
496                 return 0;
497         default:
498                 /* Removing high order bit from addr (only for 31 bit). */
499                 addr &= PSW_ADDR_INSN;
500                 return ptrace_request(child, request, addr, data);
501         }
502 }
503
504 #ifdef CONFIG_COMPAT
505 /*
506  * Now the fun part starts... a 31 bit program running in the
507  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509  * to handle, the difference to the 64 bit versions of the requests
510  * is that the access is done in multiples of 4 byte instead of
511  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514  * is a 31 bit program too, the content of struct user can be
515  * emulated. A 31 bit program peeking into the struct user of
516  * a 64 bit program is a no-no.
517  */
518
519 /*
520  * Same as peek_user_per but for a 31 bit program.
521  */
522 static inline __u32 __peek_user_per_compat(struct task_struct *child,
523                                            addr_t addr)
524 {
525         struct compat_per_struct_kernel *dummy32 = NULL;
526
527         if (addr == (addr_t) &dummy32->cr9)
528                 /* Control bits of the active per set. */
529                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
530                         PER_EVENT_IFETCH : child->thread.per_user.control;
531         else if (addr == (addr_t) &dummy32->cr10)
532                 /* Start address of the active per set. */
533                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
534                         0 : child->thread.per_user.start;
535         else if (addr == (addr_t) &dummy32->cr11)
536                 /* End address of the active per set. */
537                 return test_thread_flag(TIF_SINGLE_STEP) ?
538                         PSW32_ADDR_INSN : child->thread.per_user.end;
539         else if (addr == (addr_t) &dummy32->bits)
540                 /* Single-step bit. */
541                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542                         0x80000000 : 0;
543         else if (addr == (addr_t) &dummy32->starting_addr)
544                 /* Start address of the user specified per set. */
545                 return (__u32) child->thread.per_user.start;
546         else if (addr == (addr_t) &dummy32->ending_addr)
547                 /* End address of the user specified per set. */
548                 return (__u32) child->thread.per_user.end;
549         else if (addr == (addr_t) &dummy32->perc_atmid)
550                 /* PER code, ATMID and AI of the last PER trap */
551                 return (__u32) child->thread.per_event.cause << 16;
552         else if (addr == (addr_t) &dummy32->address)
553                 /* Address of the last PER trap */
554                 return (__u32) child->thread.per_event.address;
555         else if (addr == (addr_t) &dummy32->access_id)
556                 /* Access id of the last PER trap */
557                 return (__u32) child->thread.per_event.paid << 24;
558         return 0;
559 }
560
561 /*
562  * Same as peek_user but for a 31 bit program.
563  */
564 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
565 {
566         struct compat_user *dummy32 = NULL;
567         addr_t offset;
568         __u32 tmp;
569
570         if (addr < (addr_t) &dummy32->regs.acrs) {
571                 struct pt_regs *regs = task_pt_regs(child);
572                 /*
573                  * psw and gprs are stored on the stack
574                  */
575                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
576                         /* Fake a 31 bit psw mask. */
577                         tmp = (__u32)(regs->psw.mask >> 32);
578                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
579                         tmp |= PSW32_USER_BITS;
580                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
581                         /* Fake a 31 bit psw address. */
582                         tmp = (__u32) regs->psw.addr |
583                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
584                 } else {
585                         /* gpr 0-15 */
586                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
587                 }
588         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
589                 /*
590                  * access registers are stored in the thread structure
591                  */
592                 offset = addr - (addr_t) &dummy32->regs.acrs;
593                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
594
595         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
596                 /*
597                  * orig_gpr2 is stored on the kernel stack
598                  */
599                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
600
601         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
602                 /*
603                  * prevent reads of padding hole between
604                  * orig_gpr2 and fp_regs on s390.
605                  */
606                 tmp = 0;
607
608         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
609                 /*
610                  * floating point control reg. is in the thread structure
611                  */
612                 tmp = child->thread.fpu.fpc;
613
614         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615                 /*
616                  * floating point regs. are either in child->thread.fpu
617                  * or the child->thread.fpu.vxrs array
618                  */
619                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
620                 if (is_vx_task(child))
621                         tmp = *(__u32 *)
622                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
623                 else
624                         tmp = *(__u32 *)
625                                ((addr_t) &child->thread.fpu.fprs + offset);
626
627         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
628                 /*
629                  * Handle access to the per_info structure.
630                  */
631                 addr -= (addr_t) &dummy32->regs.per_info;
632                 tmp = __peek_user_per_compat(child, addr);
633
634         } else
635                 tmp = 0;
636
637         return tmp;
638 }
639
640 static int peek_user_compat(struct task_struct *child,
641                             addr_t addr, addr_t data)
642 {
643         __u32 tmp;
644
645         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
646                 return -EIO;
647
648         tmp = __peek_user_compat(child, addr);
649         return put_user(tmp, (__u32 __user *) data);
650 }
651
652 /*
653  * Same as poke_user_per but for a 31 bit program.
654  */
655 static inline void __poke_user_per_compat(struct task_struct *child,
656                                           addr_t addr, __u32 data)
657 {
658         struct compat_per_struct_kernel *dummy32 = NULL;
659
660         if (addr == (addr_t) &dummy32->cr9)
661                 /* PER event mask of the user specified per set. */
662                 child->thread.per_user.control =
663                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
664         else if (addr == (addr_t) &dummy32->starting_addr)
665                 /* Starting address of the user specified per set. */
666                 child->thread.per_user.start = data;
667         else if (addr == (addr_t) &dummy32->ending_addr)
668                 /* Ending address of the user specified per set. */
669                 child->thread.per_user.end = data;
670 }
671
672 /*
673  * Same as poke_user but for a 31 bit program.
674  */
675 static int __poke_user_compat(struct task_struct *child,
676                               addr_t addr, addr_t data)
677 {
678         struct compat_user *dummy32 = NULL;
679         __u32 tmp = (__u32) data;
680         addr_t offset;
681
682         if (addr < (addr_t) &dummy32->regs.acrs) {
683                 struct pt_regs *regs = task_pt_regs(child);
684                 /*
685                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
686                  */
687                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
688                         __u32 mask = PSW32_MASK_USER;
689
690                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
691                         /* Build a 64 bit psw mask from 31 bit mask. */
692                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
693                                 /* Invalid psw mask. */
694                                 return -EINVAL;
695                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
696                                 /* Invalid address-space-control bits */
697                                 return -EINVAL;
698                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
699                                 (regs->psw.mask & PSW_MASK_BA) |
700                                 (__u64)(tmp & mask) << 32;
701                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
702                         /* Build a 64 bit psw address from 31 bit address. */
703                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
704                         /* Transfer 31 bit amode bit to psw mask. */
705                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
706                                 (__u64)(tmp & PSW32_ADDR_AMODE);
707                 } else {
708                         /* gpr 0-15 */
709                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
710                 }
711         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
712                 /*
713                  * access registers are stored in the thread structure
714                  */
715                 offset = addr - (addr_t) &dummy32->regs.acrs;
716                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
717
718         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
719                 /*
720                  * orig_gpr2 is stored on the kernel stack
721                  */
722                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
723
724         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
725                 /*
726                  * prevent writess of padding hole between
727                  * orig_gpr2 and fp_regs on s390.
728                  */
729                 return 0;
730
731         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
732                 /*
733                  * floating point control reg. is in the thread structure
734                  */
735                 if (test_fp_ctl(tmp))
736                         return -EINVAL;
737                 child->thread.fpu.fpc = data;
738
739         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
740                 /*
741                  * floating point regs. are either in child->thread.fpu
742                  * or the child->thread.fpu.vxrs array
743                  */
744                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
745                 if (is_vx_task(child))
746                         *(__u32 *)((addr_t)
747                                 child->thread.fpu.vxrs + 2*offset) = tmp;
748                 else
749                         *(__u32 *)((addr_t)
750                                 &child->thread.fpu.fprs + offset) = tmp;
751
752         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
753                 /*
754                  * Handle access to the per_info structure.
755                  */
756                 addr -= (addr_t) &dummy32->regs.per_info;
757                 __poke_user_per_compat(child, addr, data);
758         }
759
760         return 0;
761 }
762
763 static int poke_user_compat(struct task_struct *child,
764                             addr_t addr, addr_t data)
765 {
766         if (!is_compat_task() || (addr & 3) ||
767             addr > sizeof(struct compat_user) - 3)
768                 return -EIO;
769
770         return __poke_user_compat(child, addr, data);
771 }
772
773 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
774                         compat_ulong_t caddr, compat_ulong_t cdata)
775 {
776         unsigned long addr = caddr;
777         unsigned long data = cdata;
778         compat_ptrace_area parea;
779         int copied, ret;
780
781         switch (request) {
782         case PTRACE_PEEKUSR:
783                 /* read the word at location addr in the USER area. */
784                 return peek_user_compat(child, addr, data);
785
786         case PTRACE_POKEUSR:
787                 /* write the word at location addr in the USER area */
788                 return poke_user_compat(child, addr, data);
789
790         case PTRACE_PEEKUSR_AREA:
791         case PTRACE_POKEUSR_AREA:
792                 if (copy_from_user(&parea, (void __force __user *) addr,
793                                                         sizeof(parea)))
794                         return -EFAULT;
795                 addr = parea.kernel_addr;
796                 data = parea.process_addr;
797                 copied = 0;
798                 while (copied < parea.len) {
799                         if (request == PTRACE_PEEKUSR_AREA)
800                                 ret = peek_user_compat(child, addr, data);
801                         else {
802                                 __u32 utmp;
803                                 if (get_user(utmp,
804                                              (__u32 __force __user *) data))
805                                         return -EFAULT;
806                                 ret = poke_user_compat(child, addr, utmp);
807                         }
808                         if (ret)
809                                 return ret;
810                         addr += sizeof(unsigned int);
811                         data += sizeof(unsigned int);
812                         copied += sizeof(unsigned int);
813                 }
814                 return 0;
815         case PTRACE_GET_LAST_BREAK:
816                 put_user(task_thread_info(child)->last_break,
817                          (unsigned int __user *) data);
818                 return 0;
819         }
820         return compat_ptrace_request(child, request, addr, data);
821 }
822 #endif
823
824 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
825 {
826         long ret = 0;
827
828         /* Do the secure computing check first. */
829         if (secure_computing()) {
830                 /* seccomp failures shouldn't expose any additional code. */
831                 ret = -1;
832                 goto out;
833         }
834
835         /*
836          * The sysc_tracesys code in entry.S stored the system
837          * call number to gprs[2].
838          */
839         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
840             (tracehook_report_syscall_entry(regs) ||
841              regs->gprs[2] >= NR_syscalls)) {
842                 /*
843                  * Tracing decided this syscall should not happen or the
844                  * debugger stored an invalid system call number. Skip
845                  * the system call and the system call restart handling.
846                  */
847                 clear_pt_regs_flag(regs, PIF_SYSCALL);
848                 ret = -1;
849         }
850
851         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
852                 trace_sys_enter(regs, regs->gprs[2]);
853
854         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
855                             regs->gprs[3], regs->gprs[4],
856                             regs->gprs[5]);
857 out:
858         return ret ?: regs->gprs[2];
859 }
860
861 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
862 {
863         audit_syscall_exit(regs);
864
865         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
866                 trace_sys_exit(regs, regs->gprs[2]);
867
868         if (test_thread_flag(TIF_SYSCALL_TRACE))
869                 tracehook_report_syscall_exit(regs, 0);
870 }
871
872 /*
873  * user_regset definitions.
874  */
875
876 static int s390_regs_get(struct task_struct *target,
877                          const struct user_regset *regset,
878                          unsigned int pos, unsigned int count,
879                          void *kbuf, void __user *ubuf)
880 {
881         if (target == current)
882                 save_access_regs(target->thread.acrs);
883
884         if (kbuf) {
885                 unsigned long *k = kbuf;
886                 while (count > 0) {
887                         *k++ = __peek_user(target, pos);
888                         count -= sizeof(*k);
889                         pos += sizeof(*k);
890                 }
891         } else {
892                 unsigned long __user *u = ubuf;
893                 while (count > 0) {
894                         if (__put_user(__peek_user(target, pos), u++))
895                                 return -EFAULT;
896                         count -= sizeof(*u);
897                         pos += sizeof(*u);
898                 }
899         }
900         return 0;
901 }
902
903 static int s390_regs_set(struct task_struct *target,
904                          const struct user_regset *regset,
905                          unsigned int pos, unsigned int count,
906                          const void *kbuf, const void __user *ubuf)
907 {
908         int rc = 0;
909
910         if (target == current)
911                 save_access_regs(target->thread.acrs);
912
913         if (kbuf) {
914                 const unsigned long *k = kbuf;
915                 while (count > 0 && !rc) {
916                         rc = __poke_user(target, pos, *k++);
917                         count -= sizeof(*k);
918                         pos += sizeof(*k);
919                 }
920         } else {
921                 const unsigned long  __user *u = ubuf;
922                 while (count > 0 && !rc) {
923                         unsigned long word;
924                         rc = __get_user(word, u++);
925                         if (rc)
926                                 break;
927                         rc = __poke_user(target, pos, word);
928                         count -= sizeof(*u);
929                         pos += sizeof(*u);
930                 }
931         }
932
933         if (rc == 0 && target == current)
934                 restore_access_regs(target->thread.acrs);
935
936         return rc;
937 }
938
939 static int s390_fpregs_get(struct task_struct *target,
940                            const struct user_regset *regset, unsigned int pos,
941                            unsigned int count, void *kbuf, void __user *ubuf)
942 {
943         _s390_fp_regs fp_regs;
944
945         if (target == current)
946                 save_fpu_regs();
947
948         fp_regs.fpc = target->thread.fpu.fpc;
949         fpregs_store(&fp_regs, &target->thread.fpu);
950
951         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
952                                    &fp_regs, 0, -1);
953 }
954
955 static int s390_fpregs_set(struct task_struct *target,
956                            const struct user_regset *regset, unsigned int pos,
957                            unsigned int count, const void *kbuf,
958                            const void __user *ubuf)
959 {
960         int rc = 0;
961         freg_t fprs[__NUM_FPRS];
962
963         if (target == current)
964                 save_fpu_regs();
965
966         /* If setting FPC, must validate it first. */
967         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
968                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
969                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
970                                         0, offsetof(s390_fp_regs, fprs));
971                 if (rc)
972                         return rc;
973                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
974                         return -EINVAL;
975                 target->thread.fpu.fpc = ufpc[0];
976         }
977
978         if (rc == 0 && count > 0)
979                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
980                                         fprs, offsetof(s390_fp_regs, fprs), -1);
981         if (rc)
982                 return rc;
983
984         if (is_vx_task(target))
985                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
986         else
987                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
988
989         return rc;
990 }
991
992 static int s390_last_break_get(struct task_struct *target,
993                                const struct user_regset *regset,
994                                unsigned int pos, unsigned int count,
995                                void *kbuf, void __user *ubuf)
996 {
997         if (count > 0) {
998                 if (kbuf) {
999                         unsigned long *k = kbuf;
1000                         *k = task_thread_info(target)->last_break;
1001                 } else {
1002                         unsigned long  __user *u = ubuf;
1003                         if (__put_user(task_thread_info(target)->last_break, u))
1004                                 return -EFAULT;
1005                 }
1006         }
1007         return 0;
1008 }
1009
1010 static int s390_last_break_set(struct task_struct *target,
1011                                const struct user_regset *regset,
1012                                unsigned int pos, unsigned int count,
1013                                const void *kbuf, const void __user *ubuf)
1014 {
1015         return 0;
1016 }
1017
1018 static int s390_tdb_get(struct task_struct *target,
1019                         const struct user_regset *regset,
1020                         unsigned int pos, unsigned int count,
1021                         void *kbuf, void __user *ubuf)
1022 {
1023         struct pt_regs *regs = task_pt_regs(target);
1024         unsigned char *data;
1025
1026         if (!(regs->int_code & 0x200))
1027                 return -ENODATA;
1028         data = target->thread.trap_tdb;
1029         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1030 }
1031
1032 static int s390_tdb_set(struct task_struct *target,
1033                         const struct user_regset *regset,
1034                         unsigned int pos, unsigned int count,
1035                         const void *kbuf, const void __user *ubuf)
1036 {
1037         return 0;
1038 }
1039
1040 static int s390_vxrs_low_get(struct task_struct *target,
1041                              const struct user_regset *regset,
1042                              unsigned int pos, unsigned int count,
1043                              void *kbuf, void __user *ubuf)
1044 {
1045         __u64 vxrs[__NUM_VXRS_LOW];
1046         int i;
1047
1048         if (!MACHINE_HAS_VX)
1049                 return -ENODEV;
1050         if (is_vx_task(target)) {
1051                 if (target == current)
1052                         save_fpu_regs();
1053                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1054                         vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1055         } else
1056                 memset(vxrs, 0, sizeof(vxrs));
1057         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1058 }
1059
1060 static int s390_vxrs_low_set(struct task_struct *target,
1061                              const struct user_regset *regset,
1062                              unsigned int pos, unsigned int count,
1063                              const void *kbuf, const void __user *ubuf)
1064 {
1065         __u64 vxrs[__NUM_VXRS_LOW];
1066         int i, rc;
1067
1068         if (!MACHINE_HAS_VX)
1069                 return -ENODEV;
1070         if (!is_vx_task(target)) {
1071                 rc = alloc_vector_registers(target);
1072                 if (rc)
1073                         return rc;
1074         } else if (target == current)
1075                 save_fpu_regs();
1076
1077         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1078         if (rc == 0)
1079                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1080                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1081
1082         return rc;
1083 }
1084
1085 static int s390_vxrs_high_get(struct task_struct *target,
1086                               const struct user_regset *regset,
1087                               unsigned int pos, unsigned int count,
1088                               void *kbuf, void __user *ubuf)
1089 {
1090         __vector128 vxrs[__NUM_VXRS_HIGH];
1091
1092         if (!MACHINE_HAS_VX)
1093                 return -ENODEV;
1094         if (is_vx_task(target)) {
1095                 if (target == current)
1096                         save_fpu_regs();
1097                 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1098                        sizeof(vxrs));
1099         } else
1100                 memset(vxrs, 0, sizeof(vxrs));
1101         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1102 }
1103
1104 static int s390_vxrs_high_set(struct task_struct *target,
1105                               const struct user_regset *regset,
1106                               unsigned int pos, unsigned int count,
1107                               const void *kbuf, const void __user *ubuf)
1108 {
1109         int rc;
1110
1111         if (!MACHINE_HAS_VX)
1112                 return -ENODEV;
1113         if (!is_vx_task(target)) {
1114                 rc = alloc_vector_registers(target);
1115                 if (rc)
1116                         return rc;
1117         } else if (target == current)
1118                 save_fpu_regs();
1119
1120         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1121                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1122         return rc;
1123 }
1124
1125 static int s390_system_call_get(struct task_struct *target,
1126                                 const struct user_regset *regset,
1127                                 unsigned int pos, unsigned int count,
1128                                 void *kbuf, void __user *ubuf)
1129 {
1130         unsigned int *data = &task_thread_info(target)->system_call;
1131         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1132                                    data, 0, sizeof(unsigned int));
1133 }
1134
1135 static int s390_system_call_set(struct task_struct *target,
1136                                 const struct user_regset *regset,
1137                                 unsigned int pos, unsigned int count,
1138                                 const void *kbuf, const void __user *ubuf)
1139 {
1140         unsigned int *data = &task_thread_info(target)->system_call;
1141         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1142                                   data, 0, sizeof(unsigned int));
1143 }
1144
1145 static const struct user_regset s390_regsets[] = {
1146         {
1147                 .core_note_type = NT_PRSTATUS,
1148                 .n = sizeof(s390_regs) / sizeof(long),
1149                 .size = sizeof(long),
1150                 .align = sizeof(long),
1151                 .get = s390_regs_get,
1152                 .set = s390_regs_set,
1153         },
1154         {
1155                 .core_note_type = NT_PRFPREG,
1156                 .n = sizeof(s390_fp_regs) / sizeof(long),
1157                 .size = sizeof(long),
1158                 .align = sizeof(long),
1159                 .get = s390_fpregs_get,
1160                 .set = s390_fpregs_set,
1161         },
1162         {
1163                 .core_note_type = NT_S390_SYSTEM_CALL,
1164                 .n = 1,
1165                 .size = sizeof(unsigned int),
1166                 .align = sizeof(unsigned int),
1167                 .get = s390_system_call_get,
1168                 .set = s390_system_call_set,
1169         },
1170         {
1171                 .core_note_type = NT_S390_LAST_BREAK,
1172                 .n = 1,
1173                 .size = sizeof(long),
1174                 .align = sizeof(long),
1175                 .get = s390_last_break_get,
1176                 .set = s390_last_break_set,
1177         },
1178         {
1179                 .core_note_type = NT_S390_TDB,
1180                 .n = 1,
1181                 .size = 256,
1182                 .align = 1,
1183                 .get = s390_tdb_get,
1184                 .set = s390_tdb_set,
1185         },
1186         {
1187                 .core_note_type = NT_S390_VXRS_LOW,
1188                 .n = __NUM_VXRS_LOW,
1189                 .size = sizeof(__u64),
1190                 .align = sizeof(__u64),
1191                 .get = s390_vxrs_low_get,
1192                 .set = s390_vxrs_low_set,
1193         },
1194         {
1195                 .core_note_type = NT_S390_VXRS_HIGH,
1196                 .n = __NUM_VXRS_HIGH,
1197                 .size = sizeof(__vector128),
1198                 .align = sizeof(__vector128),
1199                 .get = s390_vxrs_high_get,
1200                 .set = s390_vxrs_high_set,
1201         },
1202 };
1203
1204 static const struct user_regset_view user_s390_view = {
1205         .name = UTS_MACHINE,
1206         .e_machine = EM_S390,
1207         .regsets = s390_regsets,
1208         .n = ARRAY_SIZE(s390_regsets)
1209 };
1210
1211 #ifdef CONFIG_COMPAT
1212 static int s390_compat_regs_get(struct task_struct *target,
1213                                 const struct user_regset *regset,
1214                                 unsigned int pos, unsigned int count,
1215                                 void *kbuf, void __user *ubuf)
1216 {
1217         if (target == current)
1218                 save_access_regs(target->thread.acrs);
1219
1220         if (kbuf) {
1221                 compat_ulong_t *k = kbuf;
1222                 while (count > 0) {
1223                         *k++ = __peek_user_compat(target, pos);
1224                         count -= sizeof(*k);
1225                         pos += sizeof(*k);
1226                 }
1227         } else {
1228                 compat_ulong_t __user *u = ubuf;
1229                 while (count > 0) {
1230                         if (__put_user(__peek_user_compat(target, pos), u++))
1231                                 return -EFAULT;
1232                         count -= sizeof(*u);
1233                         pos += sizeof(*u);
1234                 }
1235         }
1236         return 0;
1237 }
1238
1239 static int s390_compat_regs_set(struct task_struct *target,
1240                                 const struct user_regset *regset,
1241                                 unsigned int pos, unsigned int count,
1242                                 const void *kbuf, const void __user *ubuf)
1243 {
1244         int rc = 0;
1245
1246         if (target == current)
1247                 save_access_regs(target->thread.acrs);
1248
1249         if (kbuf) {
1250                 const compat_ulong_t *k = kbuf;
1251                 while (count > 0 && !rc) {
1252                         rc = __poke_user_compat(target, pos, *k++);
1253                         count -= sizeof(*k);
1254                         pos += sizeof(*k);
1255                 }
1256         } else {
1257                 const compat_ulong_t  __user *u = ubuf;
1258                 while (count > 0 && !rc) {
1259                         compat_ulong_t word;
1260                         rc = __get_user(word, u++);
1261                         if (rc)
1262                                 break;
1263                         rc = __poke_user_compat(target, pos, word);
1264                         count -= sizeof(*u);
1265                         pos += sizeof(*u);
1266                 }
1267         }
1268
1269         if (rc == 0 && target == current)
1270                 restore_access_regs(target->thread.acrs);
1271
1272         return rc;
1273 }
1274
1275 static int s390_compat_regs_high_get(struct task_struct *target,
1276                                      const struct user_regset *regset,
1277                                      unsigned int pos, unsigned int count,
1278                                      void *kbuf, void __user *ubuf)
1279 {
1280         compat_ulong_t *gprs_high;
1281
1282         gprs_high = (compat_ulong_t *)
1283                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1284         if (kbuf) {
1285                 compat_ulong_t *k = kbuf;
1286                 while (count > 0) {
1287                         *k++ = *gprs_high;
1288                         gprs_high += 2;
1289                         count -= sizeof(*k);
1290                 }
1291         } else {
1292                 compat_ulong_t __user *u = ubuf;
1293                 while (count > 0) {
1294                         if (__put_user(*gprs_high, u++))
1295                                 return -EFAULT;
1296                         gprs_high += 2;
1297                         count -= sizeof(*u);
1298                 }
1299         }
1300         return 0;
1301 }
1302
1303 static int s390_compat_regs_high_set(struct task_struct *target,
1304                                      const struct user_regset *regset,
1305                                      unsigned int pos, unsigned int count,
1306                                      const void *kbuf, const void __user *ubuf)
1307 {
1308         compat_ulong_t *gprs_high;
1309         int rc = 0;
1310
1311         gprs_high = (compat_ulong_t *)
1312                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1313         if (kbuf) {
1314                 const compat_ulong_t *k = kbuf;
1315                 while (count > 0) {
1316                         *gprs_high = *k++;
1317                         *gprs_high += 2;
1318                         count -= sizeof(*k);
1319                 }
1320         } else {
1321                 const compat_ulong_t  __user *u = ubuf;
1322                 while (count > 0 && !rc) {
1323                         unsigned long word;
1324                         rc = __get_user(word, u++);
1325                         if (rc)
1326                                 break;
1327                         *gprs_high = word;
1328                         *gprs_high += 2;
1329                         count -= sizeof(*u);
1330                 }
1331         }
1332
1333         return rc;
1334 }
1335
1336 static int s390_compat_last_break_get(struct task_struct *target,
1337                                       const struct user_regset *regset,
1338                                       unsigned int pos, unsigned int count,
1339                                       void *kbuf, void __user *ubuf)
1340 {
1341         compat_ulong_t last_break;
1342
1343         if (count > 0) {
1344                 last_break = task_thread_info(target)->last_break;
1345                 if (kbuf) {
1346                         unsigned long *k = kbuf;
1347                         *k = last_break;
1348                 } else {
1349                         unsigned long  __user *u = ubuf;
1350                         if (__put_user(last_break, u))
1351                                 return -EFAULT;
1352                 }
1353         }
1354         return 0;
1355 }
1356
1357 static int s390_compat_last_break_set(struct task_struct *target,
1358                                       const struct user_regset *regset,
1359                                       unsigned int pos, unsigned int count,
1360                                       const void *kbuf, const void __user *ubuf)
1361 {
1362         return 0;
1363 }
1364
1365 static const struct user_regset s390_compat_regsets[] = {
1366         {
1367                 .core_note_type = NT_PRSTATUS,
1368                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1369                 .size = sizeof(compat_long_t),
1370                 .align = sizeof(compat_long_t),
1371                 .get = s390_compat_regs_get,
1372                 .set = s390_compat_regs_set,
1373         },
1374         {
1375                 .core_note_type = NT_PRFPREG,
1376                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1377                 .size = sizeof(compat_long_t),
1378                 .align = sizeof(compat_long_t),
1379                 .get = s390_fpregs_get,
1380                 .set = s390_fpregs_set,
1381         },
1382         {
1383                 .core_note_type = NT_S390_SYSTEM_CALL,
1384                 .n = 1,
1385                 .size = sizeof(compat_uint_t),
1386                 .align = sizeof(compat_uint_t),
1387                 .get = s390_system_call_get,
1388                 .set = s390_system_call_set,
1389         },
1390         {
1391                 .core_note_type = NT_S390_LAST_BREAK,
1392                 .n = 1,
1393                 .size = sizeof(long),
1394                 .align = sizeof(long),
1395                 .get = s390_compat_last_break_get,
1396                 .set = s390_compat_last_break_set,
1397         },
1398         {
1399                 .core_note_type = NT_S390_TDB,
1400                 .n = 1,
1401                 .size = 256,
1402                 .align = 1,
1403                 .get = s390_tdb_get,
1404                 .set = s390_tdb_set,
1405         },
1406         {
1407                 .core_note_type = NT_S390_VXRS_LOW,
1408                 .n = __NUM_VXRS_LOW,
1409                 .size = sizeof(__u64),
1410                 .align = sizeof(__u64),
1411                 .get = s390_vxrs_low_get,
1412                 .set = s390_vxrs_low_set,
1413         },
1414         {
1415                 .core_note_type = NT_S390_VXRS_HIGH,
1416                 .n = __NUM_VXRS_HIGH,
1417                 .size = sizeof(__vector128),
1418                 .align = sizeof(__vector128),
1419                 .get = s390_vxrs_high_get,
1420                 .set = s390_vxrs_high_set,
1421         },
1422         {
1423                 .core_note_type = NT_S390_HIGH_GPRS,
1424                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1425                 .size = sizeof(compat_long_t),
1426                 .align = sizeof(compat_long_t),
1427                 .get = s390_compat_regs_high_get,
1428                 .set = s390_compat_regs_high_set,
1429         },
1430 };
1431
1432 static const struct user_regset_view user_s390_compat_view = {
1433         .name = "s390",
1434         .e_machine = EM_S390,
1435         .regsets = s390_compat_regsets,
1436         .n = ARRAY_SIZE(s390_compat_regsets)
1437 };
1438 #endif
1439
1440 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1441 {
1442 #ifdef CONFIG_COMPAT
1443         if (test_tsk_thread_flag(task, TIF_31BIT))
1444                 return &user_s390_compat_view;
1445 #endif
1446         return &user_s390_view;
1447 }
1448
1449 static const char *gpr_names[NUM_GPRS] = {
1450         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1451         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1452 };
1453
1454 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1455 {
1456         if (offset >= NUM_GPRS)
1457                 return 0;
1458         return regs->gprs[offset];
1459 }
1460
1461 int regs_query_register_offset(const char *name)
1462 {
1463         unsigned long offset;
1464
1465         if (!name || *name != 'r')
1466                 return -EINVAL;
1467         if (kstrtoul(name + 1, 10, &offset))
1468                 return -EINVAL;
1469         if (offset >= NUM_GPRS)
1470                 return -EINVAL;
1471         return offset;
1472 }
1473
1474 const char *regs_query_register_name(unsigned int offset)
1475 {
1476         if (offset >= NUM_GPRS)
1477                 return NULL;
1478         return gpr_names[offset];
1479 }
1480
1481 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1482 {
1483         unsigned long ksp = kernel_stack_pointer(regs);
1484
1485         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1486 }
1487
1488 /**
1489  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1490  * @regs:pt_regs which contains kernel stack pointer.
1491  * @n:stack entry number.
1492  *
1493  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1494  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1495  * this returns 0.
1496  */
1497 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1498 {
1499         unsigned long addr;
1500
1501         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1502         if (!regs_within_kernel_stack(regs, addr))
1503                 return 0;
1504         return *(unsigned long *)addr;
1505 }