Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[cascardo/linux.git] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/facility.h>
51 #include <asm/smp.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cpcmd.h>
54 #include <asm/lowcore.h>
55 #include <asm/irq.h>
56 #include <asm/page.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/ebcdic.h>
60 #include <asm/kvm_virtio.h>
61 #include <asm/diag.h>
62 #include <asm/os_info.h>
63 #include <asm/sclp.h>
64 #include "entry.h"
65
66 /*
67  * Machine setup..
68  */
69 unsigned int console_mode = 0;
70 EXPORT_SYMBOL(console_mode);
71
72 unsigned int console_devno = -1;
73 EXPORT_SYMBOL(console_devno);
74
75 unsigned int console_irq = -1;
76 EXPORT_SYMBOL(console_irq);
77
78 unsigned long elf_hwcap = 0;
79 char elf_platform[ELF_PLATFORM_SIZE];
80
81 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
82
83 int __initdata memory_end_set;
84 unsigned long __initdata memory_end;
85
86 unsigned long VMALLOC_START;
87 EXPORT_SYMBOL(VMALLOC_START);
88
89 unsigned long VMALLOC_END;
90 EXPORT_SYMBOL(VMALLOC_END);
91
92 struct page *vmemmap;
93 EXPORT_SYMBOL(vmemmap);
94
95 #ifdef CONFIG_64BIT
96 unsigned long MODULES_VADDR;
97 unsigned long MODULES_END;
98 #endif
99
100 /* An array with a pointer to the lowcore of every CPU. */
101 struct _lowcore *lowcore_ptr[NR_CPUS];
102 EXPORT_SYMBOL(lowcore_ptr);
103
104 /*
105  * This is set up by the setup-routine at boot-time
106  * for S390 need to find out, what we have to setup
107  * using address 0x10400 ...
108  */
109
110 #include <asm/setup.h>
111
112 /*
113  * condev= and conmode= setup parameter.
114  */
115
116 static int __init condev_setup(char *str)
117 {
118         int vdev;
119
120         vdev = simple_strtoul(str, &str, 0);
121         if (vdev >= 0 && vdev < 65536) {
122                 console_devno = vdev;
123                 console_irq = -1;
124         }
125         return 1;
126 }
127
128 __setup("condev=", condev_setup);
129
130 static void __init set_preferred_console(void)
131 {
132         if (MACHINE_IS_KVM) {
133                 if (sclp_has_vt220())
134                         add_preferred_console("ttyS", 1, NULL);
135                 else if (sclp_has_linemode())
136                         add_preferred_console("ttyS", 0, NULL);
137                 else
138                         add_preferred_console("hvc", 0, NULL);
139         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
140                 add_preferred_console("ttyS", 0, NULL);
141         else if (CONSOLE_IS_3270)
142                 add_preferred_console("tty3270", 0, NULL);
143 }
144
145 static int __init conmode_setup(char *str)
146 {
147 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
148         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
149                 SET_CONSOLE_SCLP;
150 #endif
151 #if defined(CONFIG_TN3215_CONSOLE)
152         if (strncmp(str, "3215", 5) == 0)
153                 SET_CONSOLE_3215;
154 #endif
155 #if defined(CONFIG_TN3270_CONSOLE)
156         if (strncmp(str, "3270", 5) == 0)
157                 SET_CONSOLE_3270;
158 #endif
159         set_preferred_console();
160         return 1;
161 }
162
163 __setup("conmode=", conmode_setup);
164
165 static void __init conmode_default(void)
166 {
167         char query_buffer[1024];
168         char *ptr;
169
170         if (MACHINE_IS_VM) {
171                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
172                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
173                 ptr = strstr(query_buffer, "SUBCHANNEL =");
174                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
175                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
176                 ptr = strstr(query_buffer, "CONMODE");
177                 /*
178                  * Set the conmode to 3215 so that the device recognition 
179                  * will set the cu_type of the console to 3215. If the
180                  * conmode is 3270 and we don't set it back then both
181                  * 3215 and the 3270 driver will try to access the console
182                  * device (3215 as console and 3270 as normal tty).
183                  */
184                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
185                 if (ptr == NULL) {
186 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
187                         SET_CONSOLE_SCLP;
188 #endif
189                         return;
190                 }
191                 if (strncmp(ptr + 8, "3270", 4) == 0) {
192 #if defined(CONFIG_TN3270_CONSOLE)
193                         SET_CONSOLE_3270;
194 #elif defined(CONFIG_TN3215_CONSOLE)
195                         SET_CONSOLE_3215;
196 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
197                         SET_CONSOLE_SCLP;
198 #endif
199                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
200 #if defined(CONFIG_TN3215_CONSOLE)
201                         SET_CONSOLE_3215;
202 #elif defined(CONFIG_TN3270_CONSOLE)
203                         SET_CONSOLE_3270;
204 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
205                         SET_CONSOLE_SCLP;
206 #endif
207                 }
208         } else {
209 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210                 SET_CONSOLE_SCLP;
211 #endif
212         }
213 }
214
215 #ifdef CONFIG_ZFCPDUMP
216 static void __init setup_zfcpdump(void)
217 {
218         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
219                 return;
220         if (OLDMEM_BASE)
221                 return;
222         strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
223         console_loglevel = 2;
224 }
225 #else
226 static inline void setup_zfcpdump(void) {}
227 #endif /* CONFIG_ZFCPDUMP */
228
229  /*
230  * Reboot, halt and power_off stubs. They just call _machine_restart,
231  * _machine_halt or _machine_power_off. 
232  */
233
234 void machine_restart(char *command)
235 {
236         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
237                 /*
238                  * Only unblank the console if we are called in enabled
239                  * context or a bust_spinlocks cleared the way for us.
240                  */
241                 console_unblank();
242         _machine_restart(command);
243 }
244
245 void machine_halt(void)
246 {
247         if (!in_interrupt() || oops_in_progress)
248                 /*
249                  * Only unblank the console if we are called in enabled
250                  * context or a bust_spinlocks cleared the way for us.
251                  */
252                 console_unblank();
253         _machine_halt();
254 }
255
256 void machine_power_off(void)
257 {
258         if (!in_interrupt() || oops_in_progress)
259                 /*
260                  * Only unblank the console if we are called in enabled
261                  * context or a bust_spinlocks cleared the way for us.
262                  */
263                 console_unblank();
264         _machine_power_off();
265 }
266
267 /*
268  * Dummy power off function.
269  */
270 void (*pm_power_off)(void) = machine_power_off;
271 EXPORT_SYMBOL_GPL(pm_power_off);
272
273 static int __init early_parse_mem(char *p)
274 {
275         memory_end = memparse(p, &p);
276         memory_end_set = 1;
277         return 0;
278 }
279 early_param("mem", early_parse_mem);
280
281 static int __init parse_vmalloc(char *arg)
282 {
283         if (!arg)
284                 return -EINVAL;
285         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
286         return 0;
287 }
288 early_param("vmalloc", parse_vmalloc);
289
290 void *restart_stack __attribute__((__section__(".data")));
291
292 static void __init setup_lowcore(void)
293 {
294         struct _lowcore *lc;
295
296         /*
297          * Setup lowcore for boot cpu
298          */
299         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
300         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
301         lc->restart_psw.mask = PSW_KERNEL_BITS;
302         lc->restart_psw.addr =
303                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
304         lc->external_new_psw.mask = PSW_KERNEL_BITS |
305                 PSW_MASK_DAT | PSW_MASK_MCHECK;
306         lc->external_new_psw.addr =
307                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
308         lc->svc_new_psw.mask = PSW_KERNEL_BITS |
309                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
310         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
311         lc->program_new_psw.mask = PSW_KERNEL_BITS |
312                 PSW_MASK_DAT | PSW_MASK_MCHECK;
313         lc->program_new_psw.addr =
314                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
315         lc->mcck_new_psw.mask = PSW_KERNEL_BITS;
316         lc->mcck_new_psw.addr =
317                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
318         lc->io_new_psw.mask = PSW_KERNEL_BITS |
319                 PSW_MASK_DAT | PSW_MASK_MCHECK;
320         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
321         lc->clock_comparator = -1ULL;
322         lc->kernel_stack = ((unsigned long) &init_thread_union)
323                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
324         lc->async_stack = (unsigned long)
325                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0)
326                 + ASYNC_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
327         lc->panic_stack = (unsigned long)
328                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0)
329                 + PAGE_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
330         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
331         lc->thread_info = (unsigned long) &init_thread_union;
332         lc->machine_flags = S390_lowcore.machine_flags;
333         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
334         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
335                MAX_FACILITY_BIT/8);
336 #ifndef CONFIG_64BIT
337         if (MACHINE_HAS_IEEE) {
338                 lc->extended_save_area_addr = (__u32)
339                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
340                 /* enable extended save area */
341                 __ctl_set_bit(14, 29);
342         }
343 #else
344         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
345 #endif
346         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
347         lc->async_enter_timer = S390_lowcore.async_enter_timer;
348         lc->exit_timer = S390_lowcore.exit_timer;
349         lc->user_timer = S390_lowcore.user_timer;
350         lc->system_timer = S390_lowcore.system_timer;
351         lc->steal_timer = S390_lowcore.steal_timer;
352         lc->last_update_timer = S390_lowcore.last_update_timer;
353         lc->last_update_clock = S390_lowcore.last_update_clock;
354         lc->ftrace_func = S390_lowcore.ftrace_func;
355
356         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
357         restart_stack += ASYNC_SIZE;
358
359         /*
360          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
361          * restart data to the absolute zero lowcore. This is necessary if
362          * PSW restart is done on an offline CPU that has lowcore zero.
363          */
364         lc->restart_stack = (unsigned long) restart_stack;
365         lc->restart_fn = (unsigned long) do_restart;
366         lc->restart_data = 0;
367         lc->restart_source = -1UL;
368
369         /* Setup absolute zero lowcore */
370         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
371         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
372         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
373         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
374         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
375
376         set_prefix((u32)(unsigned long) lc);
377         lowcore_ptr[0] = lc;
378 }
379
380 static struct resource code_resource = {
381         .name  = "Kernel code",
382         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
383 };
384
385 static struct resource data_resource = {
386         .name = "Kernel data",
387         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
388 };
389
390 static struct resource bss_resource = {
391         .name = "Kernel bss",
392         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
393 };
394
395 static struct resource __initdata *standard_resources[] = {
396         &code_resource,
397         &data_resource,
398         &bss_resource,
399 };
400
401 static void __init setup_resources(void)
402 {
403         struct resource *res, *std_res, *sub_res;
404         int i, j;
405
406         code_resource.start = (unsigned long) &_text;
407         code_resource.end = (unsigned long) &_etext - 1;
408         data_resource.start = (unsigned long) &_etext;
409         data_resource.end = (unsigned long) &_edata - 1;
410         bss_resource.start = (unsigned long) &__bss_start;
411         bss_resource.end = (unsigned long) &__bss_stop - 1;
412
413         for (i = 0; i < MEMORY_CHUNKS; i++) {
414                 if (!memory_chunk[i].size)
415                         continue;
416                 res = alloc_bootmem_low(sizeof(*res));
417                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
418                 switch (memory_chunk[i].type) {
419                 case CHUNK_READ_WRITE:
420                         res->name = "System RAM";
421                         break;
422                 case CHUNK_READ_ONLY:
423                         res->name = "System ROM";
424                         res->flags |= IORESOURCE_READONLY;
425                         break;
426                 default:
427                         res->name = "reserved";
428                 }
429                 res->start = memory_chunk[i].addr;
430                 res->end = res->start + memory_chunk[i].size - 1;
431                 request_resource(&iomem_resource, res);
432
433                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
434                         std_res = standard_resources[j];
435                         if (std_res->start < res->start ||
436                             std_res->start > res->end)
437                                 continue;
438                         if (std_res->end > res->end) {
439                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
440                                 *sub_res = *std_res;
441                                 sub_res->end = res->end;
442                                 std_res->start = res->end + 1;
443                                 request_resource(res, sub_res);
444                         } else {
445                                 request_resource(res, std_res);
446                         }
447                 }
448         }
449 }
450
451 static void __init setup_memory_end(void)
452 {
453         unsigned long vmax, vmalloc_size, tmp;
454         unsigned long real_memory_size = 0;
455         int i;
456
457
458 #ifdef CONFIG_ZFCPDUMP
459         if (ipl_info.type == IPL_TYPE_FCP_DUMP &&
460             !OLDMEM_BASE && sclp_get_hsa_size()) {
461                 memory_end = sclp_get_hsa_size();
462                 memory_end_set = 1;
463         }
464 #endif
465         memory_end &= PAGE_MASK;
466
467         /*
468          * Make sure all chunks are MAX_ORDER aligned so we don't need the
469          * extra checks that HOLES_IN_ZONE would require.
470          */
471         for (i = 0; i < MEMORY_CHUNKS; i++) {
472                 unsigned long start, end;
473                 struct mem_chunk *chunk;
474                 unsigned long align;
475
476                 chunk = &memory_chunk[i];
477                 if (!chunk->size)
478                         continue;
479                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
480                 start = (chunk->addr + align - 1) & ~(align - 1);
481                 end = (chunk->addr + chunk->size) & ~(align - 1);
482                 if (start >= end)
483                         memset(chunk, 0, sizeof(*chunk));
484                 else {
485                         chunk->addr = start;
486                         chunk->size = end - start;
487                 }
488                 real_memory_size = max(real_memory_size,
489                                        chunk->addr + chunk->size);
490         }
491
492         /* Choose kernel address space layout: 2, 3, or 4 levels. */
493 #ifdef CONFIG_64BIT
494         vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
495         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
496         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
497         if (tmp <= (1UL << 42))
498                 vmax = 1UL << 42;       /* 3-level kernel page table */
499         else
500                 vmax = 1UL << 53;       /* 4-level kernel page table */
501         /* module area is at the end of the kernel address space. */
502         MODULES_END = vmax;
503         MODULES_VADDR = MODULES_END - MODULES_LEN;
504         VMALLOC_END = MODULES_VADDR;
505 #else
506         vmalloc_size = VMALLOC_END ?: 96UL << 20;
507         vmax = 1UL << 31;               /* 2-level kernel page table */
508         /* vmalloc area is at the end of the kernel address space. */
509         VMALLOC_END = vmax;
510 #endif
511         VMALLOC_START = vmax - vmalloc_size;
512
513         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
514         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
515         /* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
516         tmp = SECTION_ALIGN_UP(tmp);
517         tmp = VMALLOC_START - tmp * sizeof(struct page);
518         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
519         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
520         vmemmap = (struct page *) tmp;
521
522         /* Take care that memory_end is set and <= vmemmap */
523         memory_end = min(memory_end ?: real_memory_size, tmp);
524
525         /* Fixup memory chunk array to fit into 0..memory_end */
526         for (i = 0; i < MEMORY_CHUNKS; i++) {
527                 struct mem_chunk *chunk = &memory_chunk[i];
528
529                 if (!chunk->size)
530                         continue;
531                 if (chunk->addr >= memory_end) {
532                         memset(chunk, 0, sizeof(*chunk));
533                         continue;
534                 }
535                 if (chunk->addr + chunk->size > memory_end)
536                         chunk->size = memory_end - chunk->addr;
537         }
538 }
539
540 static void __init setup_vmcoreinfo(void)
541 {
542         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
543 }
544
545 #ifdef CONFIG_CRASH_DUMP
546
547 /*
548  * Find suitable location for crashkernel memory
549  */
550 static unsigned long __init find_crash_base(unsigned long crash_size,
551                                             char **msg)
552 {
553         unsigned long crash_base;
554         struct mem_chunk *chunk;
555         int i;
556
557         if (memory_chunk[0].size < crash_size) {
558                 *msg = "first memory chunk must be at least crashkernel size";
559                 return 0;
560         }
561         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
562                 return OLDMEM_BASE;
563
564         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
565                 chunk = &memory_chunk[i];
566                 if (chunk->size == 0)
567                         continue;
568                 if (chunk->type != CHUNK_READ_WRITE)
569                         continue;
570                 if (chunk->size < crash_size)
571                         continue;
572                 crash_base = (chunk->addr + chunk->size) - crash_size;
573                 if (crash_base < crash_size)
574                         continue;
575                 if (crash_base < sclp_get_hsa_size())
576                         continue;
577                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
578                         continue;
579                 return crash_base;
580         }
581         *msg = "no suitable area found";
582         return 0;
583 }
584
585 /*
586  * Check if crash_base and crash_size is valid
587  */
588 static int __init verify_crash_base(unsigned long crash_base,
589                                     unsigned long crash_size,
590                                     char **msg)
591 {
592         struct mem_chunk *chunk;
593         int i;
594
595         /*
596          * Because we do the swap to zero, we must have at least 'crash_size'
597          * bytes free space before crash_base
598          */
599         if (crash_size > crash_base) {
600                 *msg = "crashkernel offset must be greater than size";
601                 return -EINVAL;
602         }
603
604         /* First memory chunk must be at least crash_size */
605         if (memory_chunk[0].size < crash_size) {
606                 *msg = "first memory chunk must be at least crashkernel size";
607                 return -EINVAL;
608         }
609         /* Check if we fit into the respective memory chunk */
610         for (i = 0; i < MEMORY_CHUNKS; i++) {
611                 chunk = &memory_chunk[i];
612                 if (chunk->size == 0)
613                         continue;
614                 if (crash_base < chunk->addr)
615                         continue;
616                 if (crash_base >= chunk->addr + chunk->size)
617                         continue;
618                 /* we have found the memory chunk */
619                 if (crash_base + crash_size > chunk->addr + chunk->size) {
620                         *msg = "selected memory chunk is too small for "
621                                 "crashkernel memory";
622                         return -EINVAL;
623                 }
624                 return 0;
625         }
626         *msg = "invalid memory range specified";
627         return -EINVAL;
628 }
629
630 /*
631  * When kdump is enabled, we have to ensure that no memory from
632  * the area [0 - crashkernel memory size] and
633  * [crashk_res.start - crashk_res.end] is set offline.
634  */
635 static int kdump_mem_notifier(struct notifier_block *nb,
636                               unsigned long action, void *data)
637 {
638         struct memory_notify *arg = data;
639
640         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
641                 return NOTIFY_BAD;
642         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
643                 return NOTIFY_OK;
644         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
645                 return NOTIFY_OK;
646         return NOTIFY_BAD;
647 }
648
649 static struct notifier_block kdump_mem_nb = {
650         .notifier_call = kdump_mem_notifier,
651 };
652
653 #endif
654
655 /*
656  * Make sure that oldmem, where the dump is stored, is protected
657  */
658 static void reserve_oldmem(void)
659 {
660 #ifdef CONFIG_CRASH_DUMP
661         unsigned long real_size = 0;
662         int i;
663
664         if (!OLDMEM_BASE)
665                 return;
666         for (i = 0; i < MEMORY_CHUNKS; i++) {
667                 struct mem_chunk *chunk = &memory_chunk[i];
668
669                 real_size = max(real_size, chunk->addr + chunk->size);
670         }
671         create_mem_hole(memory_chunk, OLDMEM_BASE, OLDMEM_SIZE);
672         create_mem_hole(memory_chunk, OLDMEM_SIZE, real_size - OLDMEM_SIZE);
673 #endif
674 }
675
676 /*
677  * Reserve memory for kdump kernel to be loaded with kexec
678  */
679 static void __init reserve_crashkernel(void)
680 {
681 #ifdef CONFIG_CRASH_DUMP
682         unsigned long long crash_base, crash_size;
683         char *msg = NULL;
684         int rc;
685
686         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
687                                &crash_base);
688         if (rc || crash_size == 0)
689                 return;
690         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
691         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
692         if (register_memory_notifier(&kdump_mem_nb))
693                 return;
694         if (!crash_base)
695                 crash_base = find_crash_base(crash_size, &msg);
696         if (!crash_base) {
697                 pr_info("crashkernel reservation failed: %s\n", msg);
698                 unregister_memory_notifier(&kdump_mem_nb);
699                 return;
700         }
701         if (verify_crash_base(crash_base, crash_size, &msg)) {
702                 pr_info("crashkernel reservation failed: %s\n", msg);
703                 unregister_memory_notifier(&kdump_mem_nb);
704                 return;
705         }
706         if (!OLDMEM_BASE && MACHINE_IS_VM)
707                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
708         crashk_res.start = crash_base;
709         crashk_res.end = crash_base + crash_size - 1;
710         insert_resource(&iomem_resource, &crashk_res);
711         create_mem_hole(memory_chunk, crash_base, crash_size);
712         pr_info("Reserving %lluMB of memory at %lluMB "
713                 "for crashkernel (System RAM: %luMB)\n",
714                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
715         os_info_crashkernel_add(crash_base, crash_size);
716 #endif
717 }
718
719 static void __init setup_memory(void)
720 {
721         unsigned long bootmap_size;
722         unsigned long start_pfn, end_pfn;
723         int i;
724
725         /*
726          * partially used pages are not usable - thus
727          * we are rounding upwards:
728          */
729         start_pfn = PFN_UP(__pa(&_end));
730         end_pfn = max_pfn = PFN_DOWN(memory_end);
731
732 #ifdef CONFIG_BLK_DEV_INITRD
733         /*
734          * Move the initrd in case the bitmap of the bootmem allocater
735          * would overwrite it.
736          */
737
738         if (INITRD_START && INITRD_SIZE) {
739                 unsigned long bmap_size;
740                 unsigned long start;
741
742                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
743                 bmap_size = PFN_PHYS(bmap_size);
744
745                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
746                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
747
748 #ifdef CONFIG_CRASH_DUMP
749                         if (OLDMEM_BASE) {
750                                 /* Move initrd behind kdump oldmem */
751                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
752                                     start < OLDMEM_BASE + OLDMEM_SIZE)
753                                         start = OLDMEM_BASE + OLDMEM_SIZE;
754                         }
755 #endif
756                         if (start + INITRD_SIZE > memory_end) {
757                                 pr_err("initrd extends beyond end of "
758                                        "memory (0x%08lx > 0x%08lx) "
759                                        "disabling initrd\n",
760                                        start + INITRD_SIZE, memory_end);
761                                 INITRD_START = INITRD_SIZE = 0;
762                         } else {
763                                 pr_info("Moving initrd (0x%08lx -> "
764                                         "0x%08lx, size: %ld)\n",
765                                         INITRD_START, start, INITRD_SIZE);
766                                 memmove((void *) start, (void *) INITRD_START,
767                                         INITRD_SIZE);
768                                 INITRD_START = start;
769                         }
770                 }
771         }
772 #endif
773
774         /*
775          * Initialize the boot-time allocator
776          */
777         bootmap_size = init_bootmem(start_pfn, end_pfn);
778
779         /*
780          * Register RAM areas with the bootmem allocator.
781          */
782
783         for (i = 0; i < MEMORY_CHUNKS; i++) {
784                 unsigned long start_chunk, end_chunk, pfn;
785
786                 if (!memory_chunk[i].size)
787                         continue;
788                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
789                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
790                 end_chunk = min(end_chunk, end_pfn);
791                 if (start_chunk >= end_chunk)
792                         continue;
793                 memblock_add_node(PFN_PHYS(start_chunk),
794                                   PFN_PHYS(end_chunk - start_chunk), 0);
795                 pfn = max(start_chunk, start_pfn);
796                 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
797         }
798
799         psw_set_key(PAGE_DEFAULT_KEY);
800
801         free_bootmem_with_active_regions(0, max_pfn);
802
803         /*
804          * Reserve memory used for lowcore/command line/kernel image.
805          */
806         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
807         reserve_bootmem((unsigned long)_stext,
808                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
809                         BOOTMEM_DEFAULT);
810         /*
811          * Reserve the bootmem bitmap itself as well. We do this in two
812          * steps (first step was init_bootmem()) because this catches
813          * the (very unlikely) case of us accidentally initializing the
814          * bootmem allocator with an invalid RAM area.
815          */
816         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
817                         BOOTMEM_DEFAULT);
818
819 #ifdef CONFIG_CRASH_DUMP
820         if (crashk_res.start)
821                 reserve_bootmem(crashk_res.start,
822                                 crashk_res.end - crashk_res.start + 1,
823                                 BOOTMEM_DEFAULT);
824         if (is_kdump_kernel())
825                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
826                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
827 #endif
828 #ifdef CONFIG_BLK_DEV_INITRD
829         if (INITRD_START && INITRD_SIZE) {
830                 if (INITRD_START + INITRD_SIZE <= memory_end) {
831                         reserve_bootmem(INITRD_START, INITRD_SIZE,
832                                         BOOTMEM_DEFAULT);
833                         initrd_start = INITRD_START;
834                         initrd_end = initrd_start + INITRD_SIZE;
835                 } else {
836                         pr_err("initrd extends beyond end of "
837                                "memory (0x%08lx > 0x%08lx) "
838                                "disabling initrd\n",
839                                initrd_start + INITRD_SIZE, memory_end);
840                         initrd_start = initrd_end = 0;
841                 }
842         }
843 #endif
844 }
845
846 /*
847  * Setup hardware capabilities.
848  */
849 static void __init setup_hwcaps(void)
850 {
851         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
852         struct cpuid cpu_id;
853         int i;
854
855         /*
856          * The store facility list bits numbers as found in the principles
857          * of operation are numbered with bit 1UL<<31 as number 0 to
858          * bit 1UL<<0 as number 31.
859          *   Bit 0: instructions named N3, "backported" to esa-mode
860          *   Bit 2: z/Architecture mode is active
861          *   Bit 7: the store-facility-list-extended facility is installed
862          *   Bit 17: the message-security assist is installed
863          *   Bit 19: the long-displacement facility is installed
864          *   Bit 21: the extended-immediate facility is installed
865          *   Bit 22: extended-translation facility 3 is installed
866          *   Bit 30: extended-translation facility 3 enhancement facility
867          * These get translated to:
868          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
869          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
870          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
871          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
872          */
873         for (i = 0; i < 6; i++)
874                 if (test_facility(stfl_bits[i]))
875                         elf_hwcap |= 1UL << i;
876
877         if (test_facility(22) && test_facility(30))
878                 elf_hwcap |= HWCAP_S390_ETF3EH;
879
880         /*
881          * Check for additional facilities with store-facility-list-extended.
882          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
883          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
884          * as stored by stfl, bits 32-xxx contain additional facilities.
885          * How many facility words are stored depends on the number of
886          * doublewords passed to the instruction. The additional facilities
887          * are:
888          *   Bit 42: decimal floating point facility is installed
889          *   Bit 44: perform floating point operation facility is installed
890          * translated to:
891          *   HWCAP_S390_DFP bit 6 (42 && 44).
892          */
893         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
894                 elf_hwcap |= HWCAP_S390_DFP;
895
896         /*
897          * Huge page support HWCAP_S390_HPAGE is bit 7.
898          */
899         if (MACHINE_HAS_HPAGE)
900                 elf_hwcap |= HWCAP_S390_HPAGE;
901
902 #if defined(CONFIG_64BIT)
903         /*
904          * 64-bit register support for 31-bit processes
905          * HWCAP_S390_HIGH_GPRS is bit 9.
906          */
907         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
908
909         /*
910          * Transactional execution support HWCAP_S390_TE is bit 10.
911          */
912         if (test_facility(50) && test_facility(73))
913                 elf_hwcap |= HWCAP_S390_TE;
914 #endif
915
916         get_cpu_id(&cpu_id);
917         switch (cpu_id.machine) {
918         case 0x9672:
919 #if !defined(CONFIG_64BIT)
920         default:        /* Use "g5" as default for 31 bit kernels. */
921 #endif
922                 strcpy(elf_platform, "g5");
923                 break;
924         case 0x2064:
925         case 0x2066:
926 #if defined(CONFIG_64BIT)
927         default:        /* Use "z900" as default for 64 bit kernels. */
928 #endif
929                 strcpy(elf_platform, "z900");
930                 break;
931         case 0x2084:
932         case 0x2086:
933                 strcpy(elf_platform, "z990");
934                 break;
935         case 0x2094:
936         case 0x2096:
937                 strcpy(elf_platform, "z9-109");
938                 break;
939         case 0x2097:
940         case 0x2098:
941                 strcpy(elf_platform, "z10");
942                 break;
943         case 0x2817:
944         case 0x2818:
945                 strcpy(elf_platform, "z196");
946                 break;
947         case 0x2827:
948         case 0x2828:
949                 strcpy(elf_platform, "zEC12");
950                 break;
951         }
952 }
953
954 /*
955  * Setup function called from init/main.c just after the banner
956  * was printed.
957  */
958
959 void __init setup_arch(char **cmdline_p)
960 {
961         /*
962          * print what head.S has found out about the machine
963          */
964 #ifndef CONFIG_64BIT
965         if (MACHINE_IS_VM)
966                 pr_info("Linux is running as a z/VM "
967                         "guest operating system in 31-bit mode\n");
968         else if (MACHINE_IS_LPAR)
969                 pr_info("Linux is running natively in 31-bit mode\n");
970         if (MACHINE_HAS_IEEE)
971                 pr_info("The hardware system has IEEE compatible "
972                         "floating point units\n");
973         else
974                 pr_info("The hardware system has no IEEE compatible "
975                         "floating point units\n");
976 #else /* CONFIG_64BIT */
977         if (MACHINE_IS_VM)
978                 pr_info("Linux is running as a z/VM "
979                         "guest operating system in 64-bit mode\n");
980         else if (MACHINE_IS_KVM)
981                 pr_info("Linux is running under KVM in 64-bit mode\n");
982         else if (MACHINE_IS_LPAR)
983                 pr_info("Linux is running natively in 64-bit mode\n");
984 #endif /* CONFIG_64BIT */
985
986         /* Have one command line that is parsed and saved in /proc/cmdline */
987         /* boot_command_line has been already set up in early.c */
988         *cmdline_p = boot_command_line;
989
990         ROOT_DEV = Root_RAM0;
991
992         init_mm.start_code = PAGE_OFFSET;
993         init_mm.end_code = (unsigned long) &_etext;
994         init_mm.end_data = (unsigned long) &_edata;
995         init_mm.brk = (unsigned long) &_end;
996
997         parse_early_param();
998         detect_memory_layout(memory_chunk, memory_end);
999         os_info_init();
1000         setup_ipl();
1001         reserve_oldmem();
1002         setup_memory_end();
1003         reserve_crashkernel();
1004         setup_memory();
1005         setup_resources();
1006         setup_vmcoreinfo();
1007         setup_lowcore();
1008
1009         smp_fill_possible_mask();
1010         cpu_init();
1011         s390_init_cpu_topology();
1012
1013         /*
1014          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1015          */
1016         setup_hwcaps();
1017
1018         /*
1019          * Create kernel page tables and switch to virtual addressing.
1020          */
1021         paging_init();
1022
1023         /* Setup default console */
1024         conmode_default();
1025         set_preferred_console();
1026
1027         /* Setup zfcpdump support */
1028         setup_zfcpdump();
1029 }