ARC: syscall for userspace cmpxchg assist
[cascardo/linux.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/cacheflush.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20
21 static DEFINE_MUTEX(vmem_mutex);
22
23 struct memory_segment {
24         struct list_head list;
25         unsigned long start;
26         unsigned long size;
27 };
28
29 static LIST_HEAD(mem_segs);
30
31 static void __ref *vmem_alloc_pages(unsigned int order)
32 {
33         unsigned long size = PAGE_SIZE << order;
34
35         if (slab_is_available())
36                 return (void *)__get_free_pages(GFP_KERNEL, order);
37         return alloc_bootmem_align(size, size);
38 }
39
40 static inline pud_t *vmem_pud_alloc(void)
41 {
42         pud_t *pud = NULL;
43
44         pud = vmem_alloc_pages(2);
45         if (!pud)
46                 return NULL;
47         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
48         return pud;
49 }
50
51 pmd_t *vmem_pmd_alloc(void)
52 {
53         pmd_t *pmd = NULL;
54
55         pmd = vmem_alloc_pages(2);
56         if (!pmd)
57                 return NULL;
58         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59         return pmd;
60 }
61
62 pte_t __ref *vmem_pte_alloc(void)
63 {
64         pte_t *pte;
65
66         if (slab_is_available())
67                 pte = (pte_t *) page_table_alloc(&init_mm);
68         else
69                 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
70                                           PTRS_PER_PTE * sizeof(pte_t));
71         if (!pte)
72                 return NULL;
73         clear_table((unsigned long *) pte, _PAGE_INVALID,
74                     PTRS_PER_PTE * sizeof(pte_t));
75         return pte;
76 }
77
78 /*
79  * Add a physical memory range to the 1:1 mapping.
80  */
81 static int vmem_add_mem(unsigned long start, unsigned long size)
82 {
83         unsigned long pages4k, pages1m, pages2g;
84         unsigned long end = start + size;
85         unsigned long address = start;
86         pgd_t *pg_dir;
87         pud_t *pu_dir;
88         pmd_t *pm_dir;
89         pte_t *pt_dir;
90         int ret = -ENOMEM;
91
92         pages4k = pages1m = pages2g = 0;
93         while (address < end) {
94                 pg_dir = pgd_offset_k(address);
95                 if (pgd_none(*pg_dir)) {
96                         pu_dir = vmem_pud_alloc();
97                         if (!pu_dir)
98                                 goto out;
99                         pgd_populate(&init_mm, pg_dir, pu_dir);
100                 }
101                 pu_dir = pud_offset(pg_dir, address);
102                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
104                      !debug_pagealloc_enabled()) {
105                         pud_val(*pu_dir) = address | pgprot_val(REGION3_KERNEL);
106                         address += PUD_SIZE;
107                         pages2g++;
108                         continue;
109                 }
110                 if (pud_none(*pu_dir)) {
111                         pm_dir = vmem_pmd_alloc();
112                         if (!pm_dir)
113                                 goto out;
114                         pud_populate(&init_mm, pu_dir, pm_dir);
115                 }
116                 pm_dir = pmd_offset(pu_dir, address);
117                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
119                     !debug_pagealloc_enabled()) {
120                         pmd_val(*pm_dir) = address | pgprot_val(SEGMENT_KERNEL);
121                         address += PMD_SIZE;
122                         pages1m++;
123                         continue;
124                 }
125                 if (pmd_none(*pm_dir)) {
126                         pt_dir = vmem_pte_alloc();
127                         if (!pt_dir)
128                                 goto out;
129                         pmd_populate(&init_mm, pm_dir, pt_dir);
130                 }
131
132                 pt_dir = pte_offset_kernel(pm_dir, address);
133                 pte_val(*pt_dir) = address |  pgprot_val(PAGE_KERNEL);
134                 address += PAGE_SIZE;
135                 pages4k++;
136         }
137         ret = 0;
138 out:
139         update_page_count(PG_DIRECT_MAP_4K, pages4k);
140         update_page_count(PG_DIRECT_MAP_1M, pages1m);
141         update_page_count(PG_DIRECT_MAP_2G, pages2g);
142         return ret;
143 }
144
145 /*
146  * Remove a physical memory range from the 1:1 mapping.
147  * Currently only invalidates page table entries.
148  */
149 static void vmem_remove_range(unsigned long start, unsigned long size)
150 {
151         unsigned long pages4k, pages1m, pages2g;
152         unsigned long end = start + size;
153         unsigned long address = start;
154         pgd_t *pg_dir;
155         pud_t *pu_dir;
156         pmd_t *pm_dir;
157         pte_t *pt_dir;
158
159         pages4k = pages1m = pages2g = 0;
160         while (address < end) {
161                 pg_dir = pgd_offset_k(address);
162                 if (pgd_none(*pg_dir)) {
163                         address += PGDIR_SIZE;
164                         continue;
165                 }
166                 pu_dir = pud_offset(pg_dir, address);
167                 if (pud_none(*pu_dir)) {
168                         address += PUD_SIZE;
169                         continue;
170                 }
171                 if (pud_large(*pu_dir)) {
172                         pud_clear(pu_dir);
173                         address += PUD_SIZE;
174                         pages2g++;
175                         continue;
176                 }
177                 pm_dir = pmd_offset(pu_dir, address);
178                 if (pmd_none(*pm_dir)) {
179                         address += PMD_SIZE;
180                         continue;
181                 }
182                 if (pmd_large(*pm_dir)) {
183                         pmd_clear(pm_dir);
184                         address += PMD_SIZE;
185                         pages1m++;
186                         continue;
187                 }
188                 pt_dir = pte_offset_kernel(pm_dir, address);
189                 pte_clear(&init_mm, address, pt_dir);
190                 address += PAGE_SIZE;
191                 pages4k++;
192         }
193         flush_tlb_kernel_range(start, end);
194         update_page_count(PG_DIRECT_MAP_4K, -pages4k);
195         update_page_count(PG_DIRECT_MAP_1M, -pages1m);
196         update_page_count(PG_DIRECT_MAP_2G, -pages2g);
197 }
198
199 /*
200  * Add a backed mem_map array to the virtual mem_map array.
201  */
202 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
203 {
204         unsigned long address = start;
205         pgd_t *pg_dir;
206         pud_t *pu_dir;
207         pmd_t *pm_dir;
208         pte_t *pt_dir;
209         int ret = -ENOMEM;
210
211         for (address = start; address < end;) {
212                 pg_dir = pgd_offset_k(address);
213                 if (pgd_none(*pg_dir)) {
214                         pu_dir = vmem_pud_alloc();
215                         if (!pu_dir)
216                                 goto out;
217                         pgd_populate(&init_mm, pg_dir, pu_dir);
218                 }
219
220                 pu_dir = pud_offset(pg_dir, address);
221                 if (pud_none(*pu_dir)) {
222                         pm_dir = vmem_pmd_alloc();
223                         if (!pm_dir)
224                                 goto out;
225                         pud_populate(&init_mm, pu_dir, pm_dir);
226                 }
227
228                 pm_dir = pmd_offset(pu_dir, address);
229                 if (pmd_none(*pm_dir)) {
230                         /* Use 1MB frames for vmemmap if available. We always
231                          * use large frames even if they are only partially
232                          * used.
233                          * Otherwise we would have also page tables since
234                          * vmemmap_populate gets called for each section
235                          * separately. */
236                         if (MACHINE_HAS_EDAT1) {
237                                 void *new_page;
238
239                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
240                                 if (!new_page)
241                                         goto out;
242                                 pmd_val(*pm_dir) = __pa(new_page) |
243                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
244                                 address = (address + PMD_SIZE) & PMD_MASK;
245                                 continue;
246                         }
247                         pt_dir = vmem_pte_alloc();
248                         if (!pt_dir)
249                                 goto out;
250                         pmd_populate(&init_mm, pm_dir, pt_dir);
251                 } else if (pmd_large(*pm_dir)) {
252                         address = (address + PMD_SIZE) & PMD_MASK;
253                         continue;
254                 }
255
256                 pt_dir = pte_offset_kernel(pm_dir, address);
257                 if (pte_none(*pt_dir)) {
258                         void *new_page;
259
260                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
261                         if (!new_page)
262                                 goto out;
263                         pte_val(*pt_dir) =
264                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
265                 }
266                 address += PAGE_SIZE;
267         }
268         ret = 0;
269 out:
270         return ret;
271 }
272
273 void vmemmap_free(unsigned long start, unsigned long end)
274 {
275 }
276
277 /*
278  * Add memory segment to the segment list if it doesn't overlap with
279  * an already present segment.
280  */
281 static int insert_memory_segment(struct memory_segment *seg)
282 {
283         struct memory_segment *tmp;
284
285         if (seg->start + seg->size > VMEM_MAX_PHYS ||
286             seg->start + seg->size < seg->start)
287                 return -ERANGE;
288
289         list_for_each_entry(tmp, &mem_segs, list) {
290                 if (seg->start >= tmp->start + tmp->size)
291                         continue;
292                 if (seg->start + seg->size <= tmp->start)
293                         continue;
294                 return -ENOSPC;
295         }
296         list_add(&seg->list, &mem_segs);
297         return 0;
298 }
299
300 /*
301  * Remove memory segment from the segment list.
302  */
303 static void remove_memory_segment(struct memory_segment *seg)
304 {
305         list_del(&seg->list);
306 }
307
308 static void __remove_shared_memory(struct memory_segment *seg)
309 {
310         remove_memory_segment(seg);
311         vmem_remove_range(seg->start, seg->size);
312 }
313
314 int vmem_remove_mapping(unsigned long start, unsigned long size)
315 {
316         struct memory_segment *seg;
317         int ret;
318
319         mutex_lock(&vmem_mutex);
320
321         ret = -ENOENT;
322         list_for_each_entry(seg, &mem_segs, list) {
323                 if (seg->start == start && seg->size == size)
324                         break;
325         }
326
327         if (seg->start != start || seg->size != size)
328                 goto out;
329
330         ret = 0;
331         __remove_shared_memory(seg);
332         kfree(seg);
333 out:
334         mutex_unlock(&vmem_mutex);
335         return ret;
336 }
337
338 int vmem_add_mapping(unsigned long start, unsigned long size)
339 {
340         struct memory_segment *seg;
341         int ret;
342
343         mutex_lock(&vmem_mutex);
344         ret = -ENOMEM;
345         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
346         if (!seg)
347                 goto out;
348         seg->start = start;
349         seg->size = size;
350
351         ret = insert_memory_segment(seg);
352         if (ret)
353                 goto out_free;
354
355         ret = vmem_add_mem(start, size);
356         if (ret)
357                 goto out_remove;
358         goto out;
359
360 out_remove:
361         __remove_shared_memory(seg);
362 out_free:
363         kfree(seg);
364 out:
365         mutex_unlock(&vmem_mutex);
366         return ret;
367 }
368
369 /*
370  * map whole physical memory to virtual memory (identity mapping)
371  * we reserve enough space in the vmalloc area for vmemmap to hotplug
372  * additional memory segments.
373  */
374 void __init vmem_map_init(void)
375 {
376         unsigned long size = _eshared - _stext;
377         struct memblock_region *reg;
378
379         for_each_memblock(memory, reg)
380                 vmem_add_mem(reg->base, reg->size);
381         set_memory_ro((unsigned long)_stext, size >> PAGE_SHIFT);
382         pr_info("Write protected kernel read-only data: %luk\n", size >> 10);
383 }
384
385 /*
386  * Convert memblock.memory  to a memory segment list so there is a single
387  * list that contains all memory segments.
388  */
389 static int __init vmem_convert_memory_chunk(void)
390 {
391         struct memblock_region *reg;
392         struct memory_segment *seg;
393
394         mutex_lock(&vmem_mutex);
395         for_each_memblock(memory, reg) {
396                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
397                 if (!seg)
398                         panic("Out of memory...\n");
399                 seg->start = reg->base;
400                 seg->size = reg->size;
401                 insert_memory_segment(seg);
402         }
403         mutex_unlock(&vmem_mutex);
404         return 0;
405 }
406
407 core_initcall(vmem_convert_memory_chunk);