x86: minor polishing to top-level arch Makefile
[cascardo/linux.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/elf.h>
32 #include <asm/sections.h>
33 #include <asm/irq.h>
34 #include <asm/setup.h>
35 #include <asm/clock.h>
36 #include <asm/mmu_context.h>
37
38 /*
39  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
40  * This value will be used at the very early stage of serial setup.
41  * The bigger value means no problem.
42  */
43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
44         [0] = {
45                 .type                   = CPU_SH_NONE,
46                 .loops_per_jiffy        = 10000000,
47         },
48 };
49 EXPORT_SYMBOL(cpu_data);
50
51 /*
52  * The machine vector. First entry in .machvec.init, or clobbered by
53  * sh_mv= on the command line, prior to .machvec.init teardown.
54  */
55 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
56 EXPORT_SYMBOL(sh_mv);
57
58 #ifdef CONFIG_VT
59 struct screen_info screen_info;
60 #endif
61
62 extern int root_mountflags;
63
64 #define RAMDISK_IMAGE_START_MASK        0x07FF
65 #define RAMDISK_PROMPT_FLAG             0x8000
66 #define RAMDISK_LOAD_FLAG               0x4000
67
68 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
69
70 static struct resource code_resource = {
71         .name = "Kernel code",
72         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
73 };
74
75 static struct resource data_resource = {
76         .name = "Kernel data",
77         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
78 };
79
80 static struct resource bss_resource = {
81         .name   = "Kernel bss",
82         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
83 };
84
85 unsigned long memory_start;
86 EXPORT_SYMBOL(memory_start);
87 unsigned long memory_end = 0;
88 EXPORT_SYMBOL(memory_end);
89
90 static struct resource mem_resources[MAX_NUMNODES];
91
92 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
93
94 static int __init early_parse_mem(char *p)
95 {
96         unsigned long size;
97
98         memory_start = (unsigned long)__va(__MEMORY_START);
99         size = memparse(p, &p);
100
101         if (size > __MEMORY_SIZE) {
102                 static char msg[] __initdata = KERN_ERR
103                         "Using mem= to increase the size of kernel memory "
104                         "is not allowed.\n"
105                         "  Recompile the kernel with the correct value for "
106                         "CONFIG_MEMORY_SIZE.\n";
107                 printk(msg);
108                 return 0;
109         }
110
111         memory_end = memory_start + size;
112
113         return 0;
114 }
115 early_param("mem", early_parse_mem);
116
117 /*
118  * Register fully available low RAM pages with the bootmem allocator.
119  */
120 static void __init register_bootmem_low_pages(void)
121 {
122         unsigned long curr_pfn, last_pfn, pages;
123
124         /*
125          * We are rounding up the start address of usable memory:
126          */
127         curr_pfn = PFN_UP(__MEMORY_START);
128
129         /*
130          * ... and at the end of the usable range downwards:
131          */
132         last_pfn = PFN_DOWN(__pa(memory_end));
133
134         if (last_pfn > max_low_pfn)
135                 last_pfn = max_low_pfn;
136
137         pages = last_pfn - curr_pfn;
138         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
139 }
140
141 #ifdef CONFIG_KEXEC
142 static void __init reserve_crashkernel(void)
143 {
144         unsigned long long free_mem;
145         unsigned long long crash_size, crash_base;
146         int ret;
147
148         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
149
150         ret = parse_crashkernel(boot_command_line, free_mem,
151                         &crash_size, &crash_base);
152         if (ret == 0 && crash_size) {
153                 if (crash_base <= 0) {
154                         printk(KERN_INFO "crashkernel reservation failed - "
155                                         "you have to specify a base address\n");
156                         return;
157                 }
158
159                 if (reserve_bootmem(crash_base, crash_size,
160                                         BOOTMEM_EXCLUSIVE) < 0) {
161                         printk(KERN_INFO "crashkernel reservation failed - "
162                                         "memory is in use\n");
163                         return;
164                 }
165
166                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
167                                 "for crashkernel (System RAM: %ldMB)\n",
168                                 (unsigned long)(crash_size >> 20),
169                                 (unsigned long)(crash_base >> 20),
170                                 (unsigned long)(free_mem >> 20));
171                 crashk_res.start = crash_base;
172                 crashk_res.end   = crash_base + crash_size - 1;
173         }
174 }
175 #else
176 static inline void __init reserve_crashkernel(void)
177 {}
178 #endif
179
180 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
181                                                 unsigned long end_pfn)
182 {
183         struct resource *res = &mem_resources[nid];
184
185         WARN_ON(res->name); /* max one active range per node for now */
186
187         res->name = "System RAM";
188         res->start = start_pfn << PAGE_SHIFT;
189         res->end = (end_pfn << PAGE_SHIFT) - 1;
190         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191         if (request_resource(&iomem_resource, res)) {
192                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
193                        start_pfn, end_pfn);
194                 return;
195         }
196
197         /*
198          *  We don't know which RAM region contains kernel data,
199          *  so we try it repeatedly and let the resource manager
200          *  test it.
201          */
202         request_resource(res, &code_resource);
203         request_resource(res, &data_resource);
204         request_resource(res, &bss_resource);
205
206 #ifdef CONFIG_KEXEC
207         if (crashk_res.start != crashk_res.end)
208                 request_resource(res, &crashk_res);
209 #endif
210
211         add_active_range(nid, start_pfn, end_pfn);
212 }
213
214 void __init setup_bootmem_allocator(unsigned long free_pfn)
215 {
216         unsigned long bootmap_size;
217
218         /*
219          * Find a proper area for the bootmem bitmap. After this
220          * bootstrap step all allocations (until the page allocator
221          * is intact) must be done via bootmem_alloc().
222          */
223         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
224                                          min_low_pfn, max_low_pfn);
225
226         __add_active_range(0, min_low_pfn, max_low_pfn);
227         register_bootmem_low_pages();
228
229         node_set_online(0);
230
231         /*
232          * Reserve the kernel text and
233          * Reserve the bootmem bitmap. We do this in two steps (first step
234          * was init_bootmem()), because this catches the (definitely buggy)
235          * case of us accidentally initializing the bootmem allocator with
236          * an invalid RAM area.
237          */
238         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
239                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
240                 BOOTMEM_DEFAULT);
241
242         /*
243          * reserve physical page 0 - it's a special BIOS page on many boxes,
244          * enabling clean reboots, SMP operation, laptop functions.
245          */
246         reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
247
248         sparse_memory_present_with_active_regions(0);
249
250 #ifdef CONFIG_BLK_DEV_INITRD
251         ROOT_DEV = Root_RAM0;
252
253         if (LOADER_TYPE && INITRD_START) {
254                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
255                         reserve_bootmem(INITRD_START + __MEMORY_START,
256                                         INITRD_SIZE, BOOTMEM_DEFAULT);
257                         initrd_start = INITRD_START + PAGE_OFFSET +
258                                         __MEMORY_START;
259                         initrd_end = initrd_start + INITRD_SIZE;
260                 } else {
261                         printk("initrd extends beyond end of memory "
262                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
263                                     INITRD_START + INITRD_SIZE,
264                                     max_low_pfn << PAGE_SHIFT);
265                         initrd_start = 0;
266                 }
267         }
268 #endif
269
270         reserve_crashkernel();
271 }
272
273 #ifndef CONFIG_NEED_MULTIPLE_NODES
274 static void __init setup_memory(void)
275 {
276         unsigned long start_pfn;
277
278         /*
279          * Partially used pages are not usable - thus
280          * we are rounding upwards:
281          */
282         start_pfn = PFN_UP(__pa(_end));
283         setup_bootmem_allocator(start_pfn);
284 }
285 #else
286 extern void __init setup_memory(void);
287 #endif
288
289 void __init setup_arch(char **cmdline_p)
290 {
291         enable_mmu();
292
293         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
294
295 #ifdef CONFIG_BLK_DEV_RAM
296         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
297         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
298         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
299 #endif
300
301         if (!MOUNT_ROOT_RDONLY)
302                 root_mountflags &= ~MS_RDONLY;
303         init_mm.start_code = (unsigned long) _text;
304         init_mm.end_code = (unsigned long) _etext;
305         init_mm.end_data = (unsigned long) _edata;
306         init_mm.brk = (unsigned long) _end;
307
308         code_resource.start = virt_to_phys(_text);
309         code_resource.end = virt_to_phys(_etext)-1;
310         data_resource.start = virt_to_phys(_etext);
311         data_resource.end = virt_to_phys(_edata)-1;
312         bss_resource.start = virt_to_phys(__bss_start);
313         bss_resource.end = virt_to_phys(_ebss)-1;
314
315         memory_start = (unsigned long)__va(__MEMORY_START);
316         if (!memory_end)
317                 memory_end = memory_start + __MEMORY_SIZE;
318
319 #ifdef CONFIG_CMDLINE_BOOL
320         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
321 #else
322         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
323 #endif
324
325         /* Save unparsed command line copy for /proc/cmdline */
326         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
327         *cmdline_p = command_line;
328
329         parse_early_param();
330
331         sh_mv_setup();
332
333         /*
334          * Find the highest page frame number we have available
335          */
336         max_pfn = PFN_DOWN(__pa(memory_end));
337
338         /*
339          * Determine low and high memory ranges:
340          */
341         max_low_pfn = max_pfn;
342         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
343
344         nodes_clear(node_online_map);
345
346         /* Setup bootmem with available RAM */
347         setup_memory();
348         sparse_init();
349
350 #ifdef CONFIG_DUMMY_CONSOLE
351         conswitchp = &dummy_con;
352 #endif
353
354         /* Perform the machine specific initialisation */
355         if (likely(sh_mv.mv_setup))
356                 sh_mv.mv_setup(cmdline_p);
357
358         paging_init();
359
360 #ifdef CONFIG_SMP
361         plat_smp_setup();
362 #endif
363 }
364
365 static const char *cpu_name[] = {
366         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
367         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
368         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
369         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
370         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
371         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
372         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
373         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
374         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
375         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
376         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
377         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
378         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
379         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
380         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
381         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
382         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
383         [CPU_SH7366]    = "SH7366",     [CPU_SH_NONE]   = "Unknown"
384 };
385
386 const char *get_cpu_subtype(struct sh_cpuinfo *c)
387 {
388         return cpu_name[c->type];
389 }
390
391 #ifdef CONFIG_PROC_FS
392 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
393 static const char *cpu_flags[] = {
394         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
395         "ptea", "llsc", "l2", "op32", NULL
396 };
397
398 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
399 {
400         unsigned long i;
401
402         seq_printf(m, "cpu flags\t:");
403
404         if (!c->flags) {
405                 seq_printf(m, " %s\n", cpu_flags[0]);
406                 return;
407         }
408
409         for (i = 0; cpu_flags[i]; i++)
410                 if ((c->flags & (1 << i)))
411                         seq_printf(m, " %s", cpu_flags[i+1]);
412
413         seq_printf(m, "\n");
414 }
415
416 static void show_cacheinfo(struct seq_file *m, const char *type,
417                            struct cache_info info)
418 {
419         unsigned int cache_size;
420
421         cache_size = info.ways * info.sets * info.linesz;
422
423         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
424                    type, cache_size >> 10, info.ways);
425 }
426
427 /*
428  *      Get CPU information for use by the procfs.
429  */
430 static int show_cpuinfo(struct seq_file *m, void *v)
431 {
432         struct sh_cpuinfo *c = v;
433         unsigned int cpu = c - cpu_data;
434
435         if (!cpu_online(cpu))
436                 return 0;
437
438         if (cpu == 0)
439                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
440
441         seq_printf(m, "processor\t: %d\n", cpu);
442         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
443         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
444
445         show_cpuflags(m, c);
446
447         seq_printf(m, "cache type\t: ");
448
449         /*
450          * Check for what type of cache we have, we support both the
451          * unified cache on the SH-2 and SH-3, as well as the harvard
452          * style cache on the SH-4.
453          */
454         if (c->icache.flags & SH_CACHE_COMBINED) {
455                 seq_printf(m, "unified\n");
456                 show_cacheinfo(m, "cache", c->icache);
457         } else {
458                 seq_printf(m, "split (harvard)\n");
459                 show_cacheinfo(m, "icache", c->icache);
460                 show_cacheinfo(m, "dcache", c->dcache);
461         }
462
463         /* Optional secondary cache */
464         if (c->flags & CPU_HAS_L2_CACHE)
465                 show_cacheinfo(m, "scache", c->scache);
466
467         seq_printf(m, "bogomips\t: %lu.%02lu\n",
468                      c->loops_per_jiffy/(500000/HZ),
469                      (c->loops_per_jiffy/(5000/HZ)) % 100);
470
471         return 0;
472 }
473
474 static void *c_start(struct seq_file *m, loff_t *pos)
475 {
476         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
477 }
478 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
479 {
480         ++*pos;
481         return c_start(m, pos);
482 }
483 static void c_stop(struct seq_file *m, void *v)
484 {
485 }
486 const struct seq_operations cpuinfo_op = {
487         .start  = c_start,
488         .next   = c_next,
489         .stop   = c_stop,
490         .show   = show_cpuinfo,
491 };
492 #endif /* CONFIG_PROC_FS */
493
494 struct dentry *sh_debugfs_root;
495
496 static int __init sh_debugfs_init(void)
497 {
498         sh_debugfs_root = debugfs_create_dir("sh", NULL);
499         if (IS_ERR(sh_debugfs_root))
500                 return PTR_ERR(sh_debugfs_root);
501
502         return 0;
503 }
504 arch_initcall(sh_debugfs_init);