hrtimers: fix inconsistent lock state on resume in hres_timers_resume
[cascardo/linux.git] / arch / sparc / kernel / process_32.c
1 /*  linux/arch/sparc/kernel/process.c
2  *
3  *  Copyright (C) 1995, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996 Eddie C. Dost   (ecd@skynet.be)
5  */
6
7 /*
8  * This file handles the architecture-dependent parts of process handling..
9  */
10
11 #include <stdarg.h>
12
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/smp.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/init.h>
27
28 #include <asm/auxio.h>
29 #include <asm/oplib.h>
30 #include <asm/uaccess.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/delay.h>
36 #include <asm/processor.h>
37 #include <asm/psr.h>
38 #include <asm/elf.h>
39 #include <asm/prom.h>
40 #include <asm/unistd.h>
41
42 /* 
43  * Power management idle function 
44  * Set in pm platform drivers (apc.c and pmc.c)
45  */
46 void (*pm_idle)(void);
47
48 /* 
49  * Power-off handler instantiation for pm.h compliance
50  * This is done via auxio, but could be used as a fallback
51  * handler when auxio is not present-- unused for now...
52  */
53 void (*pm_power_off)(void) = machine_power_off;
54 EXPORT_SYMBOL(pm_power_off);
55
56 /*
57  * sysctl - toggle power-off restriction for serial console 
58  * systems in machine_power_off()
59  */
60 int scons_pwroff = 1;
61
62 extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *);
63
64 struct task_struct *last_task_used_math = NULL;
65 struct thread_info *current_set[NR_CPUS];
66
67 #ifndef CONFIG_SMP
68
69 #define SUN4C_FAULT_HIGH 100
70
71 /*
72  * the idle loop on a Sparc... ;)
73  */
74 void cpu_idle(void)
75 {
76         /* endless idle loop with no priority at all */
77         for (;;) {
78                 if (ARCH_SUN4C) {
79                         static int count = HZ;
80                         static unsigned long last_jiffies;
81                         static unsigned long last_faults;
82                         static unsigned long fps;
83                         unsigned long now;
84                         unsigned long faults;
85
86                         extern unsigned long sun4c_kernel_faults;
87                         extern void sun4c_grow_kernel_ring(void);
88
89                         local_irq_disable();
90                         now = jiffies;
91                         count -= (now - last_jiffies);
92                         last_jiffies = now;
93                         if (count < 0) {
94                                 count += HZ;
95                                 faults = sun4c_kernel_faults;
96                                 fps = (fps + (faults - last_faults)) >> 1;
97                                 last_faults = faults;
98 #if 0
99                                 printk("kernel faults / second = %ld\n", fps);
100 #endif
101                                 if (fps >= SUN4C_FAULT_HIGH) {
102                                         sun4c_grow_kernel_ring();
103                                 }
104                         }
105                         local_irq_enable();
106                 }
107
108                 if (pm_idle) {
109                         while (!need_resched())
110                                 (*pm_idle)();
111                 } else {
112                         while (!need_resched())
113                                 cpu_relax();
114                 }
115                 preempt_enable_no_resched();
116                 schedule();
117                 preempt_disable();
118                 check_pgt_cache();
119         }
120 }
121
122 #else
123
124 /* This is being executed in task 0 'user space'. */
125 void cpu_idle(void)
126 {
127         set_thread_flag(TIF_POLLING_NRFLAG);
128         /* endless idle loop with no priority at all */
129         while(1) {
130                 while (!need_resched())
131                         cpu_relax();
132                 preempt_enable_no_resched();
133                 schedule();
134                 preempt_disable();
135                 check_pgt_cache();
136         }
137 }
138
139 #endif
140
141 /* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */
142 void machine_halt(void)
143 {
144         local_irq_enable();
145         mdelay(8);
146         local_irq_disable();
147         prom_halt();
148         panic("Halt failed!");
149 }
150
151 void machine_restart(char * cmd)
152 {
153         char *p;
154         
155         local_irq_enable();
156         mdelay(8);
157         local_irq_disable();
158
159         p = strchr (reboot_command, '\n');
160         if (p) *p = 0;
161         if (cmd)
162                 prom_reboot(cmd);
163         if (*reboot_command)
164                 prom_reboot(reboot_command);
165         prom_feval ("reset");
166         panic("Reboot failed!");
167 }
168
169 void machine_power_off(void)
170 {
171         if (auxio_power_register &&
172             (strcmp(of_console_device->type, "serial") || scons_pwroff))
173                 *auxio_power_register |= AUXIO_POWER_OFF;
174         machine_halt();
175 }
176
177 #if 0
178
179 static DEFINE_SPINLOCK(sparc_backtrace_lock);
180
181 void __show_backtrace(unsigned long fp)
182 {
183         struct reg_window32 *rw;
184         unsigned long flags;
185         int cpu = smp_processor_id();
186
187         spin_lock_irqsave(&sparc_backtrace_lock, flags);
188
189         rw = (struct reg_window32 *)fp;
190         while(rw && (((unsigned long) rw) >= PAGE_OFFSET) &&
191             !(((unsigned long) rw) & 0x7)) {
192                 printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] "
193                        "FP[%08lx] CALLER[%08lx]: ", cpu,
194                        rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
195                        rw->ins[4], rw->ins[5],
196                        rw->ins[6],
197                        rw->ins[7]);
198                 printk("%pS\n", (void *) rw->ins[7]);
199                 rw = (struct reg_window32 *) rw->ins[6];
200         }
201         spin_unlock_irqrestore(&sparc_backtrace_lock, flags);
202 }
203
204 #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t")
205 #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t")
206 #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp))
207
208 void show_backtrace(void)
209 {
210         unsigned long fp;
211
212         __SAVE; __SAVE; __SAVE; __SAVE;
213         __SAVE; __SAVE; __SAVE; __SAVE;
214         __RESTORE; __RESTORE; __RESTORE; __RESTORE;
215         __RESTORE; __RESTORE; __RESTORE; __RESTORE;
216
217         __GET_FP(fp);
218
219         __show_backtrace(fp);
220 }
221
222 #ifdef CONFIG_SMP
223 void smp_show_backtrace_all_cpus(void)
224 {
225         xc0((smpfunc_t) show_backtrace);
226         show_backtrace();
227 }
228 #endif
229
230 void show_stackframe(struct sparc_stackf *sf)
231 {
232         unsigned long size;
233         unsigned long *stk;
234         int i;
235
236         printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
237                "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
238                sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
239                sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
240         printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
241                "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
242                sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
243                sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
244         printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx "
245                "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n",
246                (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
247                sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
248                sf->xxargs[0]);
249         size = ((unsigned long)sf->fp) - ((unsigned long)sf);
250         size -= STACKFRAME_SZ;
251         stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
252         i = 0;
253         do {
254                 printk("s%d: %08lx\n", i++, *stk++);
255         } while ((size -= sizeof(unsigned long)));
256 }
257 #endif
258
259 void show_regs(struct pt_regs *r)
260 {
261         struct reg_window32 *rw = (struct reg_window32 *) r->u_regs[14];
262
263         printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx    %s\n",
264                r->psr, r->pc, r->npc, r->y, print_tainted());
265         printk("PC: <%pS>\n", (void *) r->pc);
266         printk("%%G: %08lx %08lx  %08lx %08lx  %08lx %08lx  %08lx %08lx\n",
267                r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3],
268                r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]);
269         printk("%%O: %08lx %08lx  %08lx %08lx  %08lx %08lx  %08lx %08lx\n",
270                r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11],
271                r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]);
272         printk("RPC: <%pS>\n", (void *) r->u_regs[15]);
273
274         printk("%%L: %08lx %08lx  %08lx %08lx  %08lx %08lx  %08lx %08lx\n",
275                rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3],
276                rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]);
277         printk("%%I: %08lx %08lx  %08lx %08lx  %08lx %08lx  %08lx %08lx\n",
278                rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
279                rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]);
280 }
281
282 /*
283  * The show_stack is an external API which we do not use ourselves.
284  * The oops is printed in die_if_kernel.
285  */
286 void show_stack(struct task_struct *tsk, unsigned long *_ksp)
287 {
288         unsigned long pc, fp;
289         unsigned long task_base;
290         struct reg_window32 *rw;
291         int count = 0;
292
293         if (tsk != NULL)
294                 task_base = (unsigned long) task_stack_page(tsk);
295         else
296                 task_base = (unsigned long) current_thread_info();
297
298         fp = (unsigned long) _ksp;
299         do {
300                 /* Bogus frame pointer? */
301                 if (fp < (task_base + sizeof(struct thread_info)) ||
302                     fp >= (task_base + (PAGE_SIZE << 1)))
303                         break;
304                 rw = (struct reg_window32 *) fp;
305                 pc = rw->ins[7];
306                 printk("[%08lx : ", pc);
307                 printk("%pS ] ", (void *) pc);
308                 fp = rw->ins[6];
309         } while (++count < 16);
310         printk("\n");
311 }
312
313 void dump_stack(void)
314 {
315         unsigned long *ksp;
316
317         __asm__ __volatile__("mov       %%fp, %0"
318                              : "=r" (ksp));
319         show_stack(current, ksp);
320 }
321
322 EXPORT_SYMBOL(dump_stack);
323
324 /*
325  * Note: sparc64 has a pretty intricated thread_saved_pc, check it out.
326  */
327 unsigned long thread_saved_pc(struct task_struct *tsk)
328 {
329         return task_thread_info(tsk)->kpc;
330 }
331
332 /*
333  * Free current thread data structures etc..
334  */
335 void exit_thread(void)
336 {
337 #ifndef CONFIG_SMP
338         if(last_task_used_math == current) {
339 #else
340         if (test_thread_flag(TIF_USEDFPU)) {
341 #endif
342                 /* Keep process from leaving FPU in a bogon state. */
343                 put_psr(get_psr() | PSR_EF);
344                 fpsave(&current->thread.float_regs[0], &current->thread.fsr,
345                        &current->thread.fpqueue[0], &current->thread.fpqdepth);
346 #ifndef CONFIG_SMP
347                 last_task_used_math = NULL;
348 #else
349                 clear_thread_flag(TIF_USEDFPU);
350 #endif
351         }
352 }
353
354 void flush_thread(void)
355 {
356         current_thread_info()->w_saved = 0;
357
358 #ifndef CONFIG_SMP
359         if(last_task_used_math == current) {
360 #else
361         if (test_thread_flag(TIF_USEDFPU)) {
362 #endif
363                 /* Clean the fpu. */
364                 put_psr(get_psr() | PSR_EF);
365                 fpsave(&current->thread.float_regs[0], &current->thread.fsr,
366                        &current->thread.fpqueue[0], &current->thread.fpqdepth);
367 #ifndef CONFIG_SMP
368                 last_task_used_math = NULL;
369 #else
370                 clear_thread_flag(TIF_USEDFPU);
371 #endif
372         }
373
374         /* Now, this task is no longer a kernel thread. */
375         current->thread.current_ds = USER_DS;
376         if (current->thread.flags & SPARC_FLAG_KTHREAD) {
377                 current->thread.flags &= ~SPARC_FLAG_KTHREAD;
378
379                 /* We must fixup kregs as well. */
380                 /* XXX This was not fixed for ti for a while, worked. Unused? */
381                 current->thread.kregs = (struct pt_regs *)
382                     (task_stack_page(current) + (THREAD_SIZE - TRACEREG_SZ));
383         }
384 }
385
386 static inline struct sparc_stackf __user *
387 clone_stackframe(struct sparc_stackf __user *dst,
388                  struct sparc_stackf __user *src)
389 {
390         unsigned long size, fp;
391         struct sparc_stackf *tmp;
392         struct sparc_stackf __user *sp;
393
394         if (get_user(tmp, &src->fp))
395                 return NULL;
396
397         fp = (unsigned long) tmp;
398         size = (fp - ((unsigned long) src));
399         fp = (unsigned long) dst;
400         sp = (struct sparc_stackf __user *)(fp - size); 
401
402         /* do_fork() grabs the parent semaphore, we must release it
403          * temporarily so we can build the child clone stack frame
404          * without deadlocking.
405          */
406         if (__copy_user(sp, src, size))
407                 sp = NULL;
408         else if (put_user(fp, &sp->fp))
409                 sp = NULL;
410
411         return sp;
412 }
413
414 asmlinkage int sparc_do_fork(unsigned long clone_flags,
415                              unsigned long stack_start,
416                              struct pt_regs *regs,
417                              unsigned long stack_size)
418 {
419         unsigned long parent_tid_ptr, child_tid_ptr;
420         unsigned long orig_i1 = regs->u_regs[UREG_I1];
421         long ret;
422
423         parent_tid_ptr = regs->u_regs[UREG_I2];
424         child_tid_ptr = regs->u_regs[UREG_I4];
425
426         ret = do_fork(clone_flags, stack_start,
427                       regs, stack_size,
428                       (int __user *) parent_tid_ptr,
429                       (int __user *) child_tid_ptr);
430
431         /* If we get an error and potentially restart the system
432          * call, we're screwed because copy_thread() clobbered
433          * the parent's %o1.  So detect that case and restore it
434          * here.
435          */
436         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
437                 regs->u_regs[UREG_I1] = orig_i1;
438
439         return ret;
440 }
441
442 /* Copy a Sparc thread.  The fork() return value conventions
443  * under SunOS are nothing short of bletcherous:
444  * Parent -->  %o0 == childs  pid, %o1 == 0
445  * Child  -->  %o0 == parents pid, %o1 == 1
446  *
447  * NOTE: We have a separate fork kpsr/kwim because
448  *       the parent could change these values between
449  *       sys_fork invocation and when we reach here
450  *       if the parent should sleep while trying to
451  *       allocate the task_struct and kernel stack in
452  *       do_fork().
453  * XXX See comment above sys_vfork in sparc64. todo.
454  */
455 extern void ret_from_fork(void);
456
457 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
458                 unsigned long unused,
459                 struct task_struct *p, struct pt_regs *regs)
460 {
461         struct thread_info *ti = task_thread_info(p);
462         struct pt_regs *childregs;
463         char *new_stack;
464
465 #ifndef CONFIG_SMP
466         if(last_task_used_math == current) {
467 #else
468         if (test_thread_flag(TIF_USEDFPU)) {
469 #endif
470                 put_psr(get_psr() | PSR_EF);
471                 fpsave(&p->thread.float_regs[0], &p->thread.fsr,
472                        &p->thread.fpqueue[0], &p->thread.fpqdepth);
473 #ifdef CONFIG_SMP
474                 clear_thread_flag(TIF_USEDFPU);
475 #endif
476         }
477
478         /*
479          *  p->thread_info         new_stack   childregs
480          *  !                      !           !             {if(PSR_PS) }
481          *  V                      V (stk.fr.) V  (pt_regs)  { (stk.fr.) }
482          *  +----- - - - - - ------+===========+============={+==========}+
483          */
484         new_stack = task_stack_page(p) + THREAD_SIZE;
485         if (regs->psr & PSR_PS)
486                 new_stack -= STACKFRAME_SZ;
487         new_stack -= STACKFRAME_SZ + TRACEREG_SZ;
488         memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ);
489         childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ);
490
491         /*
492          * A new process must start with interrupts closed in 2.5,
493          * because this is how Mingo's scheduler works (see schedule_tail
494          * and finish_arch_switch). If we do not do it, a timer interrupt hits
495          * before we unlock, attempts to re-take the rq->lock, and then we die.
496          * Thus, kpsr|=PSR_PIL.
497          */
498         ti->ksp = (unsigned long) new_stack;
499         ti->kpc = (((unsigned long) ret_from_fork) - 0x8);
500         ti->kpsr = current->thread.fork_kpsr | PSR_PIL;
501         ti->kwim = current->thread.fork_kwim;
502
503         if(regs->psr & PSR_PS) {
504                 extern struct pt_regs fake_swapper_regs;
505
506                 p->thread.kregs = &fake_swapper_regs;
507                 new_stack += STACKFRAME_SZ + TRACEREG_SZ;
508                 childregs->u_regs[UREG_FP] = (unsigned long) new_stack;
509                 p->thread.flags |= SPARC_FLAG_KTHREAD;
510                 p->thread.current_ds = KERNEL_DS;
511                 memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ);
512                 childregs->u_regs[UREG_G6] = (unsigned long) ti;
513         } else {
514                 p->thread.kregs = childregs;
515                 childregs->u_regs[UREG_FP] = sp;
516                 p->thread.flags &= ~SPARC_FLAG_KTHREAD;
517                 p->thread.current_ds = USER_DS;
518
519                 if (sp != regs->u_regs[UREG_FP]) {
520                         struct sparc_stackf __user *childstack;
521                         struct sparc_stackf __user *parentstack;
522
523                         /*
524                          * This is a clone() call with supplied user stack.
525                          * Set some valid stack frames to give to the child.
526                          */
527                         childstack = (struct sparc_stackf __user *)
528                                 (sp & ~0x7UL);
529                         parentstack = (struct sparc_stackf __user *)
530                                 regs->u_regs[UREG_FP];
531
532 #if 0
533                         printk("clone: parent stack:\n");
534                         show_stackframe(parentstack);
535 #endif
536
537                         childstack = clone_stackframe(childstack, parentstack);
538                         if (!childstack)
539                                 return -EFAULT;
540
541 #if 0
542                         printk("clone: child stack:\n");
543                         show_stackframe(childstack);
544 #endif
545
546                         childregs->u_regs[UREG_FP] = (unsigned long)childstack;
547                 }
548         }
549
550 #ifdef CONFIG_SMP
551         /* FPU must be disabled on SMP. */
552         childregs->psr &= ~PSR_EF;
553 #endif
554
555         /* Set the return value for the child. */
556         childregs->u_regs[UREG_I0] = current->pid;
557         childregs->u_regs[UREG_I1] = 1;
558
559         /* Set the return value for the parent. */
560         regs->u_regs[UREG_I1] = 0;
561
562         if (clone_flags & CLONE_SETTLS)
563                 childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
564
565         return 0;
566 }
567
568 /*
569  * fill in the fpu structure for a core dump.
570  */
571 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
572 {
573         if (used_math()) {
574                 memset(fpregs, 0, sizeof(*fpregs));
575                 fpregs->pr_q_entrysize = 8;
576                 return 1;
577         }
578 #ifdef CONFIG_SMP
579         if (test_thread_flag(TIF_USEDFPU)) {
580                 put_psr(get_psr() | PSR_EF);
581                 fpsave(&current->thread.float_regs[0], &current->thread.fsr,
582                        &current->thread.fpqueue[0], &current->thread.fpqdepth);
583                 if (regs != NULL) {
584                         regs->psr &= ~(PSR_EF);
585                         clear_thread_flag(TIF_USEDFPU);
586                 }
587         }
588 #else
589         if (current == last_task_used_math) {
590                 put_psr(get_psr() | PSR_EF);
591                 fpsave(&current->thread.float_regs[0], &current->thread.fsr,
592                        &current->thread.fpqueue[0], &current->thread.fpqdepth);
593                 if (regs != NULL) {
594                         regs->psr &= ~(PSR_EF);
595                         last_task_used_math = NULL;
596                 }
597         }
598 #endif
599         memcpy(&fpregs->pr_fr.pr_regs[0],
600                &current->thread.float_regs[0],
601                (sizeof(unsigned long) * 32));
602         fpregs->pr_fsr = current->thread.fsr;
603         fpregs->pr_qcnt = current->thread.fpqdepth;
604         fpregs->pr_q_entrysize = 8;
605         fpregs->pr_en = 1;
606         if(fpregs->pr_qcnt != 0) {
607                 memcpy(&fpregs->pr_q[0],
608                        &current->thread.fpqueue[0],
609                        sizeof(struct fpq) * fpregs->pr_qcnt);
610         }
611         /* Zero out the rest. */
612         memset(&fpregs->pr_q[fpregs->pr_qcnt], 0,
613                sizeof(struct fpq) * (32 - fpregs->pr_qcnt));
614         return 1;
615 }
616
617 /*
618  * sparc_execve() executes a new program after the asm stub has set
619  * things up for us.  This should basically do what I want it to.
620  */
621 asmlinkage int sparc_execve(struct pt_regs *regs)
622 {
623         int error, base = 0;
624         char *filename;
625
626         /* Check for indirect call. */
627         if(regs->u_regs[UREG_G1] == 0)
628                 base = 1;
629
630         filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
631         error = PTR_ERR(filename);
632         if(IS_ERR(filename))
633                 goto out;
634         error = do_execve(filename,
635                           (char __user * __user *)regs->u_regs[base + UREG_I1],
636                           (char __user * __user *)regs->u_regs[base + UREG_I2],
637                           regs);
638         putname(filename);
639 out:
640         return error;
641 }
642
643 /*
644  * This is the mechanism for creating a new kernel thread.
645  *
646  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
647  * who haven't done an "execve()") should use this: it will work within
648  * a system call from a "real" process, but the process memory space will
649  * not be freed until both the parent and the child have exited.
650  */
651 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
652 {
653         long retval;
654
655         __asm__ __volatile__("mov %4, %%g2\n\t"    /* Set aside fn ptr... */
656                              "mov %5, %%g3\n\t"    /* and arg. */
657                              "mov %1, %%g1\n\t"
658                              "mov %2, %%o0\n\t"    /* Clone flags. */
659                              "mov 0, %%o1\n\t"     /* usp arg == 0 */
660                              "t 0x10\n\t"          /* Linux/Sparc clone(). */
661                              "cmp %%o1, 0\n\t"
662                              "be 1f\n\t"           /* The parent, just return. */
663                              " nop\n\t"            /* Delay slot. */
664                              "jmpl %%g2, %%o7\n\t" /* Call the function. */
665                              " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */
666                              "mov %3, %%g1\n\t"
667                              "t 0x10\n\t"          /* Linux/Sparc exit(). */
668                              /* Notreached by child. */
669                              "1: mov %%o0, %0\n\t" :
670                              "=r" (retval) :
671                              "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
672                              "i" (__NR_exit),  "r" (fn), "r" (arg) :
673                              "g1", "g2", "g3", "o0", "o1", "memory", "cc");
674         return retval;
675 }
676
677 unsigned long get_wchan(struct task_struct *task)
678 {
679         unsigned long pc, fp, bias = 0;
680         unsigned long task_base = (unsigned long) task;
681         unsigned long ret = 0;
682         struct reg_window32 *rw;
683         int count = 0;
684
685         if (!task || task == current ||
686             task->state == TASK_RUNNING)
687                 goto out;
688
689         fp = task_thread_info(task)->ksp + bias;
690         do {
691                 /* Bogus frame pointer? */
692                 if (fp < (task_base + sizeof(struct thread_info)) ||
693                     fp >= (task_base + (2 * PAGE_SIZE)))
694                         break;
695                 rw = (struct reg_window32 *) fp;
696                 pc = rw->ins[7];
697                 if (!in_sched_functions(pc)) {
698                         ret = pc;
699                         goto out;
700                 }
701                 fp = rw->ins[6] + bias;
702         } while (++count < 16);
703
704 out:
705         return ret;
706 }
707