89e890bc0941015e2ec5d97ed87837b182cc57bc
[cascardo/linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5  *
6  * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
15  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/machines.h>
46 #include <asm/page.h>
47 #include <asm/pcic.h>
48 #include <asm/irq_regs.h>
49 #include <asm/setup.h>
50
51 #include "irq.h"
52
53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
54 static __volatile__ u64 timer_cs_internal_counter = 0;
55 static char timer_cs_enabled = 0;
56
57 static struct clock_event_device timer_ce;
58 static char timer_ce_enabled = 0;
59
60 #ifdef CONFIG_SMP
61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
62 #endif
63
64 DEFINE_SPINLOCK(rtc_lock);
65 EXPORT_SYMBOL(rtc_lock);
66
67 static int set_rtc_mmss(unsigned long);
68
69 unsigned long profile_pc(struct pt_regs *regs)
70 {
71         extern char __copy_user_begin[], __copy_user_end[];
72         extern char __atomic_begin[], __atomic_end[];
73         extern char __bzero_begin[], __bzero_end[];
74
75         unsigned long pc = regs->pc;
76
77         if (in_lock_functions(pc) ||
78             (pc >= (unsigned long) __copy_user_begin &&
79              pc < (unsigned long) __copy_user_end) ||
80             (pc >= (unsigned long) __atomic_begin &&
81              pc < (unsigned long) __atomic_end) ||
82             (pc >= (unsigned long) __bzero_begin &&
83              pc < (unsigned long) __bzero_end))
84                 pc = regs->u_regs[UREG_RETPC];
85         return pc;
86 }
87
88 EXPORT_SYMBOL(profile_pc);
89
90 __volatile__ unsigned int *master_l10_counter;
91
92 int update_persistent_clock(struct timespec now)
93 {
94         return set_rtc_mmss(now.tv_sec);
95 }
96
97 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
98 {
99         if (timer_cs_enabled) {
100                 write_seqlock(&timer_cs_lock);
101                 timer_cs_internal_counter++;
102                 clear_clock_irq();
103                 write_sequnlock(&timer_cs_lock);
104         } else {
105                 clear_clock_irq();
106         }
107
108         if (timer_ce_enabled)
109                 timer_ce.event_handler(&timer_ce);
110
111         return IRQ_HANDLED;
112 }
113
114 static void timer_ce_set_mode(enum clock_event_mode mode,
115                               struct clock_event_device *evt)
116 {
117         switch (mode) {
118                 case CLOCK_EVT_MODE_PERIODIC:
119                 case CLOCK_EVT_MODE_RESUME:
120                         timer_ce_enabled = 1;
121                         break;
122                 case CLOCK_EVT_MODE_SHUTDOWN:
123                         timer_ce_enabled = 0;
124                         break;
125                 default:
126                         break;
127         }
128         smp_mb();
129 }
130
131 static __init void setup_timer_ce(void)
132 {
133         struct clock_event_device *ce = &timer_ce;
134
135         BUG_ON(smp_processor_id() != boot_cpu_id);
136
137         ce->name     = "timer_ce";
138         ce->rating   = 100;
139         ce->features = CLOCK_EVT_FEAT_PERIODIC;
140         ce->set_mode = timer_ce_set_mode;
141         ce->cpumask  = cpu_possible_mask;
142         ce->shift    = 32;
143         ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
144                               ce->shift);
145         clockevents_register_device(ce);
146 }
147
148 static unsigned int sbus_cycles_offset(void)
149 {
150         unsigned int val, offset;
151
152         val = *master_l10_counter;
153         offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
154
155         /* Limit hit? */
156         if (val & TIMER_LIMIT_BIT)
157                 offset += sparc_config.cs_period;
158
159         return offset;
160 }
161
162 static cycle_t timer_cs_read(struct clocksource *cs)
163 {
164         unsigned int seq, offset;
165         u64 cycles;
166
167         do {
168                 seq = read_seqbegin(&timer_cs_lock);
169
170                 cycles = timer_cs_internal_counter;
171                 offset = sparc_config.get_cycles_offset();
172         } while (read_seqretry(&timer_cs_lock, seq));
173
174         /* Count absolute cycles */
175         cycles *= sparc_config.cs_period;
176         cycles += offset;
177
178         return cycles;
179 }
180
181 static struct clocksource timer_cs = {
182         .name   = "timer_cs",
183         .rating = 100,
184         .read   = timer_cs_read,
185         .mask   = CLOCKSOURCE_MASK(64),
186         .shift  = 2,
187         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
188 };
189
190 static __init int setup_timer_cs(void)
191 {
192         timer_cs_enabled = 1;
193         timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
194                                             timer_cs.shift);
195
196         return clocksource_register(&timer_cs);
197 }
198
199 #ifdef CONFIG_SMP
200 static void percpu_ce_setup(enum clock_event_mode mode,
201                         struct clock_event_device *evt)
202 {
203         int cpu = __first_cpu(evt->cpumask);
204
205         switch (mode) {
206                 case CLOCK_EVT_MODE_PERIODIC:
207                         load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
208                         break;
209                 case CLOCK_EVT_MODE_ONESHOT:
210                 case CLOCK_EVT_MODE_SHUTDOWN:
211                 case CLOCK_EVT_MODE_UNUSED:
212                         load_profile_irq(cpu, 0);
213                         break;
214                 default:
215                         break;
216         }
217 }
218
219 static int percpu_ce_set_next_event(unsigned long delta,
220                                     struct clock_event_device *evt)
221 {
222         int cpu = __first_cpu(evt->cpumask);
223         unsigned int next = (unsigned int)delta;
224
225         load_profile_irq(cpu, next);
226         return 0;
227 }
228
229 void register_percpu_ce(int cpu)
230 {
231         struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
232         unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
233
234         if (sparc_config.features & FEAT_L14_ONESHOT)
235                 features |= CLOCK_EVT_FEAT_ONESHOT;
236
237         ce->name           = "percpu_ce";
238         ce->rating         = 200;
239         ce->features       = features;
240         ce->set_mode       = percpu_ce_setup;
241         ce->set_next_event = percpu_ce_set_next_event;
242         ce->cpumask        = cpumask_of(cpu);
243         ce->shift          = 32;
244         ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
245                                     ce->shift);
246         ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
247         ce->min_delta_ns   = clockevent_delta2ns(100, ce);
248
249         clockevents_register_device(ce);
250 }
251 #endif
252
253 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
254 {
255         struct platform_device *pdev = to_platform_device(dev);
256         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
257
258         return readb(pdata->ioaddr + ofs);
259 }
260
261 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
262 {
263         struct platform_device *pdev = to_platform_device(dev);
264         struct m48t59_plat_data *pdata = pdev->dev.platform_data;
265
266         writeb(val, pdata->ioaddr + ofs);
267 }
268
269 static struct m48t59_plat_data m48t59_data = {
270         .read_byte = mostek_read_byte,
271         .write_byte = mostek_write_byte,
272 };
273
274 /* resource is set at runtime */
275 static struct platform_device m48t59_rtc = {
276         .name           = "rtc-m48t59",
277         .id             = 0,
278         .num_resources  = 1,
279         .dev    = {
280                 .platform_data = &m48t59_data,
281         },
282 };
283
284 static int __devinit clock_probe(struct platform_device *op)
285 {
286         struct device_node *dp = op->dev.of_node;
287         const char *model = of_get_property(dp, "model", NULL);
288
289         if (!model)
290                 return -ENODEV;
291
292         /* Only the primary RTC has an address property */
293         if (!of_find_property(dp, "address", NULL))
294                 return -ENODEV;
295
296         m48t59_rtc.resource = &op->resource[0];
297         if (!strcmp(model, "mk48t02")) {
298                 /* Map the clock register io area read-only */
299                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
300                                                 2048, "rtc-m48t59");
301                 m48t59_data.type = M48T59RTC_TYPE_M48T02;
302         } else if (!strcmp(model, "mk48t08")) {
303                 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
304                                                 8192, "rtc-m48t59");
305                 m48t59_data.type = M48T59RTC_TYPE_M48T08;
306         } else
307                 return -ENODEV;
308
309         if (platform_device_register(&m48t59_rtc) < 0)
310                 printk(KERN_ERR "Registering RTC device failed\n");
311
312         return 0;
313 }
314
315 static struct of_device_id clock_match[] = {
316         {
317                 .name = "eeprom",
318         },
319         {},
320 };
321
322 static struct platform_driver clock_driver = {
323         .probe          = clock_probe,
324         .driver = {
325                 .name = "rtc",
326                 .owner = THIS_MODULE,
327                 .of_match_table = clock_match,
328         },
329 };
330
331
332 /* Probe for the mostek real time clock chip. */
333 static int __init clock_init(void)
334 {
335         return platform_driver_register(&clock_driver);
336 }
337 /* Must be after subsys_initcall() so that busses are probed.  Must
338  * be before device_initcall() because things like the RTC driver
339  * need to see the clock registers.
340  */
341 fs_initcall(clock_init);
342
343 static void __init sparc32_late_time_init(void)
344 {
345         if (sparc_config.features & FEAT_L10_CLOCKEVENT)
346                 setup_timer_ce();
347         if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
348                 setup_timer_cs();
349 #ifdef CONFIG_SMP
350         register_percpu_ce(smp_processor_id());
351 #endif
352 }
353
354 static void __init sbus_time_init(void)
355 {
356         sparc_config.get_cycles_offset = sbus_cycles_offset;
357         sparc_config.init_timers();
358 }
359
360 void __init time_init(void)
361 {
362         btfixup();
363
364         sparc_config.features = 0;
365         late_time_init = sparc32_late_time_init;
366
367         if (pcic_present())
368                 pci_time_init();
369         else
370                 sbus_time_init();
371 }
372
373
374 static int set_rtc_mmss(unsigned long secs)
375 {
376         struct rtc_device *rtc = rtc_class_open("rtc0");
377         int err = -1;
378
379         if (rtc) {
380                 err = rtc_set_mmss(rtc, secs);
381                 rtc_class_close(rtc);
382         }
383
384         return err;
385 }