Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[cascardo/linux.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50
51 #include "srmmu.h"
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 extern struct resource sparc_iomap;
59
60 extern unsigned long last_valid_pfn;
61
62 static pgd_t *srmmu_swapper_pg_dir;
63
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END       }
74 #endif
75
76 int flush_page_for_dma_global = 1;
77
78 char *srmmu_name;
79
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85
86 static int is_hypersparc;
87
88 static int srmmu_cache_pagetables;
89
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113         unsigned long ptp;      /* Physical address, shifted right by 4 */
114         int i;
115
116         ptp = __nocache_pa((unsigned long) ptep) >> 4;
117         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120         }
121 }
122
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125         unsigned long ptp;      /* Physical address, shifted right by 4 */
126         int i;
127
128         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
129         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132         }
133 }
134
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138         void *pte;
139
140         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141         return (pte_t *) pte +
142             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144
145 /*
146  * size: bytes to allocate in the nocache area.
147  * align: bytes, number to align at.
148  * Returns the virtual address of the allocated area.
149  */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152         int offset;
153         unsigned long addr;
154
155         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157                        size);
158                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
159         }
160         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162                        size);
163                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164         }
165         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166
167         offset = bit_map_string_get(&srmmu_nocache_map,
168                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170         if (offset == -1) {
171                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172                        size, (int) srmmu_nocache_size,
173                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174                 return 0;
175         }
176
177         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178         return (void *)addr;
179 }
180
181 void *srmmu_get_nocache(int size, int align)
182 {
183         void *tmp;
184
185         tmp = __srmmu_get_nocache(size, align);
186
187         if (tmp)
188                 memset(tmp, 0, size);
189
190         return tmp;
191 }
192
193 void srmmu_free_nocache(void *addr, int size)
194 {
195         unsigned long vaddr;
196         int offset;
197
198         vaddr = (unsigned long)addr;
199         if (vaddr < SRMMU_NOCACHE_VADDR) {
200                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202                 BUG();
203         }
204         if (vaddr + size > srmmu_nocache_end) {
205                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206                     vaddr, srmmu_nocache_end);
207                 BUG();
208         }
209         if (!is_power_of_2(size)) {
210                 printk("Size 0x%x is not a power of 2\n", size);
211                 BUG();
212         }
213         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214                 printk("Size 0x%x is too small\n", size);
215                 BUG();
216         }
217         if (vaddr & (size - 1)) {
218                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219                 BUG();
220         }
221
222         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224
225         bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229                                                  unsigned long end);
230
231 /* Return how much physical memory we have.  */
232 static unsigned long __init probe_memory(void)
233 {
234         unsigned long total = 0;
235         int i;
236
237         for (i = 0; sp_banks[i].num_bytes; i++)
238                 total += sp_banks[i].num_bytes;
239
240         return total;
241 }
242
243 /*
244  * Reserve nocache dynamically proportionally to the amount of
245  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246  */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249         unsigned long sysmemavail = probe_memory() / 1024;
250         int srmmu_nocache_npages;
251
252         srmmu_nocache_npages =
253                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254
255  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259
260         /* anything above 1280 blows up */
261         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263
264         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267
268 static void __init srmmu_nocache_init(void)
269 {
270         unsigned int bitmap_bits;
271         pgd_t *pgd;
272         pmd_t *pmd;
273         pte_t *pte;
274         unsigned long paddr, vaddr;
275         unsigned long pteval;
276
277         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278
279         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282
283         srmmu_nocache_bitmap =
284                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285                                 SMP_CACHE_BYTES, 0UL);
286         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
287
288         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290         init_mm.pgd = srmmu_swapper_pg_dir;
291
292         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
293
294         paddr = __pa((unsigned long)srmmu_nocache_pool);
295         vaddr = SRMMU_NOCACHE_VADDR;
296
297         while (vaddr < srmmu_nocache_end) {
298                 pgd = pgd_offset_k(vaddr);
299                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
301
302                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
303
304                 if (srmmu_cache_pagetables)
305                         pteval |= SRMMU_CACHE;
306
307                 set_pte(__nocache_fix(pte), __pte(pteval));
308
309                 vaddr += PAGE_SIZE;
310                 paddr += PAGE_SIZE;
311         }
312
313         flush_cache_all();
314         flush_tlb_all();
315 }
316
317 pgd_t *get_pgd_fast(void)
318 {
319         pgd_t *pgd = NULL;
320
321         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322         if (pgd) {
323                 pgd_t *init = pgd_offset_k(0);
324                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327         }
328
329         return pgd;
330 }
331
332 /*
333  * Hardware needs alignment to 256 only, but we align to whole page size
334  * to reduce fragmentation problems due to the buddy principle.
335  * XXX Provide actual fragmentation statistics in /proc.
336  *
337  * Alignments up to the page size are the same for physical and virtual
338  * addresses of the nocache area.
339  */
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
341 {
342         unsigned long pte;
343         struct page *page;
344
345         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346                 return NULL;
347         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348         pgtable_page_ctor(page);
349         return page;
350 }
351
352 void pte_free(struct mm_struct *mm, pgtable_t pte)
353 {
354         unsigned long p;
355
356         pgtable_page_dtor(pte);
357         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
358         if (p == 0)
359                 BUG();
360         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
361
362         /* free non cached virtual address*/
363         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
364 }
365
366 /* context handling - a dynamically sized pool is used */
367 #define NO_CONTEXT      -1
368
369 struct ctx_list {
370         struct ctx_list *next;
371         struct ctx_list *prev;
372         unsigned int ctx_number;
373         struct mm_struct *ctx_mm;
374 };
375
376 static struct ctx_list *ctx_list_pool;
377 static struct ctx_list ctx_free;
378 static struct ctx_list ctx_used;
379
380 /* At boot time we determine the number of contexts */
381 static int num_contexts;
382
383 static inline void remove_from_ctx_list(struct ctx_list *entry)
384 {
385         entry->next->prev = entry->prev;
386         entry->prev->next = entry->next;
387 }
388
389 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
390 {
391         entry->next = head;
392         (entry->prev = head->prev)->next = entry;
393         head->prev = entry;
394 }
395 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
396 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
397
398
399 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
400 {
401         struct ctx_list *ctxp;
402
403         ctxp = ctx_free.next;
404         if (ctxp != &ctx_free) {
405                 remove_from_ctx_list(ctxp);
406                 add_to_used_ctxlist(ctxp);
407                 mm->context = ctxp->ctx_number;
408                 ctxp->ctx_mm = mm;
409                 return;
410         }
411         ctxp = ctx_used.next;
412         if (ctxp->ctx_mm == old_mm)
413                 ctxp = ctxp->next;
414         if (ctxp == &ctx_used)
415                 panic("out of mmu contexts");
416         flush_cache_mm(ctxp->ctx_mm);
417         flush_tlb_mm(ctxp->ctx_mm);
418         remove_from_ctx_list(ctxp);
419         add_to_used_ctxlist(ctxp);
420         ctxp->ctx_mm->context = NO_CONTEXT;
421         ctxp->ctx_mm = mm;
422         mm->context = ctxp->ctx_number;
423 }
424
425 static inline void free_context(int context)
426 {
427         struct ctx_list *ctx_old;
428
429         ctx_old = ctx_list_pool + context;
430         remove_from_ctx_list(ctx_old);
431         add_to_free_ctxlist(ctx_old);
432 }
433
434 static void __init sparc_context_init(int numctx)
435 {
436         int ctx;
437         unsigned long size;
438
439         size = numctx * sizeof(struct ctx_list);
440         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
441
442         for (ctx = 0; ctx < numctx; ctx++) {
443                 struct ctx_list *clist;
444
445                 clist = (ctx_list_pool + ctx);
446                 clist->ctx_number = ctx;
447                 clist->ctx_mm = NULL;
448         }
449         ctx_free.next = ctx_free.prev = &ctx_free;
450         ctx_used.next = ctx_used.prev = &ctx_used;
451         for (ctx = 0; ctx < numctx; ctx++)
452                 add_to_free_ctxlist(ctx_list_pool + ctx);
453 }
454
455 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
456                struct task_struct *tsk)
457 {
458         if (mm->context == NO_CONTEXT) {
459                 spin_lock(&srmmu_context_spinlock);
460                 alloc_context(old_mm, mm);
461                 spin_unlock(&srmmu_context_spinlock);
462                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
463         }
464
465         if (sparc_cpu_model == sparc_leon)
466                 leon_switch_mm();
467
468         if (is_hypersparc)
469                 hyper_flush_whole_icache();
470
471         srmmu_set_context(mm->context);
472 }
473
474 /* Low level IO area allocation on the SRMMU. */
475 static inline void srmmu_mapioaddr(unsigned long physaddr,
476                                    unsigned long virt_addr, int bus_type)
477 {
478         pgd_t *pgdp;
479         pmd_t *pmdp;
480         pte_t *ptep;
481         unsigned long tmp;
482
483         physaddr &= PAGE_MASK;
484         pgdp = pgd_offset_k(virt_addr);
485         pmdp = pmd_offset(pgdp, virt_addr);
486         ptep = pte_offset_kernel(pmdp, virt_addr);
487         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
488
489         /* I need to test whether this is consistent over all
490          * sun4m's.  The bus_type represents the upper 4 bits of
491          * 36-bit physical address on the I/O space lines...
492          */
493         tmp |= (bus_type << 28);
494         tmp |= SRMMU_PRIV;
495         __flush_page_to_ram(virt_addr);
496         set_pte(ptep, __pte(tmp));
497 }
498
499 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
500                       unsigned long xva, unsigned int len)
501 {
502         while (len != 0) {
503                 len -= PAGE_SIZE;
504                 srmmu_mapioaddr(xpa, xva, bus);
505                 xva += PAGE_SIZE;
506                 xpa += PAGE_SIZE;
507         }
508         flush_tlb_all();
509 }
510
511 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
512 {
513         pgd_t *pgdp;
514         pmd_t *pmdp;
515         pte_t *ptep;
516
517         pgdp = pgd_offset_k(virt_addr);
518         pmdp = pmd_offset(pgdp, virt_addr);
519         ptep = pte_offset_kernel(pmdp, virt_addr);
520
521         /* No need to flush uncacheable page. */
522         __pte_clear(ptep);
523 }
524
525 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
526 {
527         while (len != 0) {
528                 len -= PAGE_SIZE;
529                 srmmu_unmapioaddr(virt_addr);
530                 virt_addr += PAGE_SIZE;
531         }
532         flush_tlb_all();
533 }
534
535 /* tsunami.S */
536 extern void tsunami_flush_cache_all(void);
537 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
538 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
539 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
540 extern void tsunami_flush_page_to_ram(unsigned long page);
541 extern void tsunami_flush_page_for_dma(unsigned long page);
542 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
543 extern void tsunami_flush_tlb_all(void);
544 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
545 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
547 extern void tsunami_setup_blockops(void);
548
549 /* swift.S */
550 extern void swift_flush_cache_all(void);
551 extern void swift_flush_cache_mm(struct mm_struct *mm);
552 extern void swift_flush_cache_range(struct vm_area_struct *vma,
553                                     unsigned long start, unsigned long end);
554 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
555 extern void swift_flush_page_to_ram(unsigned long page);
556 extern void swift_flush_page_for_dma(unsigned long page);
557 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
558 extern void swift_flush_tlb_all(void);
559 extern void swift_flush_tlb_mm(struct mm_struct *mm);
560 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
561                                   unsigned long start, unsigned long end);
562 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
563
564 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
565 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
566 {
567         int cctx, ctx1;
568
569         page &= PAGE_MASK;
570         if ((ctx1 = vma->vm_mm->context) != -1) {
571                 cctx = srmmu_get_context();
572 /* Is context # ever different from current context? P3 */
573                 if (cctx != ctx1) {
574                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
575                         srmmu_set_context(ctx1);
576                         swift_flush_page(page);
577                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
578                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
579                         srmmu_set_context(cctx);
580                 } else {
581                          /* Rm. prot. bits from virt. c. */
582                         /* swift_flush_cache_all(); */
583                         /* swift_flush_cache_page(vma, page); */
584                         swift_flush_page(page);
585
586                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
587                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
588                         /* same as above: srmmu_flush_tlb_page() */
589                 }
590         }
591 }
592 #endif
593
594 /*
595  * The following are all MBUS based SRMMU modules, and therefore could
596  * be found in a multiprocessor configuration.  On the whole, these
597  * chips seems to be much more touchy about DVMA and page tables
598  * with respect to cache coherency.
599  */
600
601 /* viking.S */
602 extern void viking_flush_cache_all(void);
603 extern void viking_flush_cache_mm(struct mm_struct *mm);
604 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
605                                      unsigned long end);
606 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
607 extern void viking_flush_page_to_ram(unsigned long page);
608 extern void viking_flush_page_for_dma(unsigned long page);
609 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
610 extern void viking_flush_page(unsigned long page);
611 extern void viking_mxcc_flush_page(unsigned long page);
612 extern void viking_flush_tlb_all(void);
613 extern void viking_flush_tlb_mm(struct mm_struct *mm);
614 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
615                                    unsigned long end);
616 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
617                                   unsigned long page);
618 extern void sun4dsmp_flush_tlb_all(void);
619 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
620 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
621                                    unsigned long end);
622 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
623                                   unsigned long page);
624
625 /* hypersparc.S */
626 extern void hypersparc_flush_cache_all(void);
627 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
628 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
629 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
630 extern void hypersparc_flush_page_to_ram(unsigned long page);
631 extern void hypersparc_flush_page_for_dma(unsigned long page);
632 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
633 extern void hypersparc_flush_tlb_all(void);
634 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
635 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
637 extern void hypersparc_setup_blockops(void);
638
639 /*
640  * NOTE: All of this startup code assumes the low 16mb (approx.) of
641  *       kernel mappings are done with one single contiguous chunk of
642  *       ram.  On small ram machines (classics mainly) we only get
643  *       around 8mb mapped for us.
644  */
645
646 static void __init early_pgtable_allocfail(char *type)
647 {
648         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
649         prom_halt();
650 }
651
652 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
653                                                         unsigned long end)
654 {
655         pgd_t *pgdp;
656         pmd_t *pmdp;
657         pte_t *ptep;
658
659         while (start < end) {
660                 pgdp = pgd_offset_k(start);
661                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
662                         pmdp = __srmmu_get_nocache(
663                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
664                         if (pmdp == NULL)
665                                 early_pgtable_allocfail("pmd");
666                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
667                         pgd_set(__nocache_fix(pgdp), pmdp);
668                 }
669                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
670                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
671                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
672                         if (ptep == NULL)
673                                 early_pgtable_allocfail("pte");
674                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
675                         pmd_set(__nocache_fix(pmdp), ptep);
676                 }
677                 if (start > (0xffffffffUL - PMD_SIZE))
678                         break;
679                 start = (start + PMD_SIZE) & PMD_MASK;
680         }
681 }
682
683 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
684                                                   unsigned long end)
685 {
686         pgd_t *pgdp;
687         pmd_t *pmdp;
688         pte_t *ptep;
689
690         while (start < end) {
691                 pgdp = pgd_offset_k(start);
692                 if (pgd_none(*pgdp)) {
693                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
694                         if (pmdp == NULL)
695                                 early_pgtable_allocfail("pmd");
696                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
697                         pgd_set(pgdp, pmdp);
698                 }
699                 pmdp = pmd_offset(pgdp, start);
700                 if (srmmu_pmd_none(*pmdp)) {
701                         ptep = __srmmu_get_nocache(PTE_SIZE,
702                                                              PTE_SIZE);
703                         if (ptep == NULL)
704                                 early_pgtable_allocfail("pte");
705                         memset(ptep, 0, PTE_SIZE);
706                         pmd_set(pmdp, ptep);
707                 }
708                 if (start > (0xffffffffUL - PMD_SIZE))
709                         break;
710                 start = (start + PMD_SIZE) & PMD_MASK;
711         }
712 }
713
714 /* These flush types are not available on all chips... */
715 static inline unsigned long srmmu_probe(unsigned long vaddr)
716 {
717         unsigned long retval;
718
719         if (sparc_cpu_model != sparc_leon) {
720
721                 vaddr &= PAGE_MASK;
722                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
723                                      "=r" (retval) :
724                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
725         } else {
726                 retval = leon_swprobe(vaddr, 0);
727         }
728         return retval;
729 }
730
731 /*
732  * This is much cleaner than poking around physical address space
733  * looking at the prom's page table directly which is what most
734  * other OS's do.  Yuck... this is much better.
735  */
736 static void __init srmmu_inherit_prom_mappings(unsigned long start,
737                                                unsigned long end)
738 {
739         unsigned long probed;
740         unsigned long addr;
741         pgd_t *pgdp;
742         pmd_t *pmdp;
743         pte_t *ptep;
744         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
745
746         while (start <= end) {
747                 if (start == 0)
748                         break; /* probably wrap around */
749                 if (start == 0xfef00000)
750                         start = KADB_DEBUGGER_BEGVM;
751                 probed = srmmu_probe(start);
752                 if (!probed) {
753                         /* continue probing until we find an entry */
754                         start += PAGE_SIZE;
755                         continue;
756                 }
757
758                 /* A red snapper, see what it really is. */
759                 what = 0;
760                 addr = start - PAGE_SIZE;
761
762                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
763                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
764                                 what = 1;
765                 }
766
767                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
768                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
769                                 what = 2;
770                 }
771
772                 pgdp = pgd_offset_k(start);
773                 if (what == 2) {
774                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
775                         start += SRMMU_PGDIR_SIZE;
776                         continue;
777                 }
778                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
779                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
780                                                    SRMMU_PMD_TABLE_SIZE);
781                         if (pmdp == NULL)
782                                 early_pgtable_allocfail("pmd");
783                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
784                         pgd_set(__nocache_fix(pgdp), pmdp);
785                 }
786                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
787                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
788                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
789                         if (ptep == NULL)
790                                 early_pgtable_allocfail("pte");
791                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
792                         pmd_set(__nocache_fix(pmdp), ptep);
793                 }
794                 if (what == 1) {
795                         /* We bend the rule where all 16 PTPs in a pmd_t point
796                          * inside the same PTE page, and we leak a perfectly
797                          * good hardware PTE piece. Alternatives seem worse.
798                          */
799                         unsigned int x; /* Index of HW PMD in soft cluster */
800                         unsigned long *val;
801                         x = (start >> PMD_SHIFT) & 15;
802                         val = &pmdp->pmdv[x];
803                         *(unsigned long *)__nocache_fix(val) = probed;
804                         start += SRMMU_REAL_PMD_SIZE;
805                         continue;
806                 }
807                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
808                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
809                 start += PAGE_SIZE;
810         }
811 }
812
813 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
814
815 /* Create a third-level SRMMU 16MB page mapping. */
816 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
817 {
818         pgd_t *pgdp = pgd_offset_k(vaddr);
819         unsigned long big_pte;
820
821         big_pte = KERNEL_PTE(phys_base >> 4);
822         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
823 }
824
825 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
826 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
827 {
828         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
829         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
830         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
831         /* Map "low" memory only */
832         const unsigned long min_vaddr = PAGE_OFFSET;
833         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
834
835         if (vstart < min_vaddr || vstart >= max_vaddr)
836                 return vstart;
837
838         if (vend > max_vaddr || vend < min_vaddr)
839                 vend = max_vaddr;
840
841         while (vstart < vend) {
842                 do_large_mapping(vstart, pstart);
843                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
844         }
845         return vstart;
846 }
847
848 static void __init map_kernel(void)
849 {
850         int i;
851
852         if (phys_base > 0) {
853                 do_large_mapping(PAGE_OFFSET, phys_base);
854         }
855
856         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
857                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
858         }
859 }
860
861 void (*poke_srmmu)(void) __cpuinitdata = NULL;
862
863 extern unsigned long bootmem_init(unsigned long *pages_avail);
864
865 void __init srmmu_paging_init(void)
866 {
867         int i;
868         phandle cpunode;
869         char node_str[128];
870         pgd_t *pgd;
871         pmd_t *pmd;
872         pte_t *pte;
873         unsigned long pages_avail;
874
875         init_mm.context = (unsigned long) NO_CONTEXT;
876         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
877
878         if (sparc_cpu_model == sun4d)
879                 num_contexts = 65536; /* We know it is Viking */
880         else {
881                 /* Find the number of contexts on the srmmu. */
882                 cpunode = prom_getchild(prom_root_node);
883                 num_contexts = 0;
884                 while (cpunode != 0) {
885                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
886                         if (!strcmp(node_str, "cpu")) {
887                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
888                                 break;
889                         }
890                         cpunode = prom_getsibling(cpunode);
891                 }
892         }
893
894         if (!num_contexts) {
895                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
896                 prom_halt();
897         }
898
899         pages_avail = 0;
900         last_valid_pfn = bootmem_init(&pages_avail);
901
902         srmmu_nocache_calcsize();
903         srmmu_nocache_init();
904         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
905         map_kernel();
906
907         /* ctx table has to be physically aligned to its size */
908         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
909         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
910
911         for (i = 0; i < num_contexts; i++)
912                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
913
914         flush_cache_all();
915         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
916 #ifdef CONFIG_SMP
917         /* Stop from hanging here... */
918         local_ops->tlb_all();
919 #else
920         flush_tlb_all();
921 #endif
922         poke_srmmu();
923
924         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
925         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
926
927         srmmu_allocate_ptable_skeleton(
928                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
929         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
930
931         pgd = pgd_offset_k(PKMAP_BASE);
932         pmd = pmd_offset(pgd, PKMAP_BASE);
933         pte = pte_offset_kernel(pmd, PKMAP_BASE);
934         pkmap_page_table = pte;
935
936         flush_cache_all();
937         flush_tlb_all();
938
939         sparc_context_init(num_contexts);
940
941         kmap_init();
942
943         {
944                 unsigned long zones_size[MAX_NR_ZONES];
945                 unsigned long zholes_size[MAX_NR_ZONES];
946                 unsigned long npages;
947                 int znum;
948
949                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
950                         zones_size[znum] = zholes_size[znum] = 0;
951
952                 npages = max_low_pfn - pfn_base;
953
954                 zones_size[ZONE_DMA] = npages;
955                 zholes_size[ZONE_DMA] = npages - pages_avail;
956
957                 npages = highend_pfn - max_low_pfn;
958                 zones_size[ZONE_HIGHMEM] = npages;
959                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
960
961                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
962         }
963 }
964
965 void mmu_info(struct seq_file *m)
966 {
967         seq_printf(m,
968                    "MMU type\t: %s\n"
969                    "contexts\t: %d\n"
970                    "nocache total\t: %ld\n"
971                    "nocache used\t: %d\n",
972                    srmmu_name,
973                    num_contexts,
974                    srmmu_nocache_size,
975                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
976 }
977
978 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
979 {
980         mm->context = NO_CONTEXT;
981         return 0;
982 }
983
984 void destroy_context(struct mm_struct *mm)
985 {
986
987         if (mm->context != NO_CONTEXT) {
988                 flush_cache_mm(mm);
989                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
990                 flush_tlb_mm(mm);
991                 spin_lock(&srmmu_context_spinlock);
992                 free_context(mm->context);
993                 spin_unlock(&srmmu_context_spinlock);
994                 mm->context = NO_CONTEXT;
995         }
996 }
997
998 /* Init various srmmu chip types. */
999 static void __init srmmu_is_bad(void)
1000 {
1001         prom_printf("Could not determine SRMMU chip type.\n");
1002         prom_halt();
1003 }
1004
1005 static void __init init_vac_layout(void)
1006 {
1007         phandle nd;
1008         int cache_lines;
1009         char node_str[128];
1010 #ifdef CONFIG_SMP
1011         int cpu = 0;
1012         unsigned long max_size = 0;
1013         unsigned long min_line_size = 0x10000000;
1014 #endif
1015
1016         nd = prom_getchild(prom_root_node);
1017         while ((nd = prom_getsibling(nd)) != 0) {
1018                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1019                 if (!strcmp(node_str, "cpu")) {
1020                         vac_line_size = prom_getint(nd, "cache-line-size");
1021                         if (vac_line_size == -1) {
1022                                 prom_printf("can't determine cache-line-size, halting.\n");
1023                                 prom_halt();
1024                         }
1025                         cache_lines = prom_getint(nd, "cache-nlines");
1026                         if (cache_lines == -1) {
1027                                 prom_printf("can't determine cache-nlines, halting.\n");
1028                                 prom_halt();
1029                         }
1030
1031                         vac_cache_size = cache_lines * vac_line_size;
1032 #ifdef CONFIG_SMP
1033                         if (vac_cache_size > max_size)
1034                                 max_size = vac_cache_size;
1035                         if (vac_line_size < min_line_size)
1036                                 min_line_size = vac_line_size;
1037                         //FIXME: cpus not contiguous!!
1038                         cpu++;
1039                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1040                                 break;
1041 #else
1042                         break;
1043 #endif
1044                 }
1045         }
1046         if (nd == 0) {
1047                 prom_printf("No CPU nodes found, halting.\n");
1048                 prom_halt();
1049         }
1050 #ifdef CONFIG_SMP
1051         vac_cache_size = max_size;
1052         vac_line_size = min_line_size;
1053 #endif
1054         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1055                (int)vac_cache_size, (int)vac_line_size);
1056 }
1057
1058 static void __cpuinit poke_hypersparc(void)
1059 {
1060         volatile unsigned long clear;
1061         unsigned long mreg = srmmu_get_mmureg();
1062
1063         hyper_flush_unconditional_combined();
1064
1065         mreg &= ~(HYPERSPARC_CWENABLE);
1066         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1067         mreg |= (HYPERSPARC_CMODE);
1068
1069         srmmu_set_mmureg(mreg);
1070
1071 #if 0 /* XXX I think this is bad news... -DaveM */
1072         hyper_clear_all_tags();
1073 #endif
1074
1075         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1076         hyper_flush_whole_icache();
1077         clear = srmmu_get_faddr();
1078         clear = srmmu_get_fstatus();
1079 }
1080
1081 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1082         .cache_all      = hypersparc_flush_cache_all,
1083         .cache_mm       = hypersparc_flush_cache_mm,
1084         .cache_page     = hypersparc_flush_cache_page,
1085         .cache_range    = hypersparc_flush_cache_range,
1086         .tlb_all        = hypersparc_flush_tlb_all,
1087         .tlb_mm         = hypersparc_flush_tlb_mm,
1088         .tlb_page       = hypersparc_flush_tlb_page,
1089         .tlb_range      = hypersparc_flush_tlb_range,
1090         .page_to_ram    = hypersparc_flush_page_to_ram,
1091         .sig_insns      = hypersparc_flush_sig_insns,
1092         .page_for_dma   = hypersparc_flush_page_for_dma,
1093 };
1094
1095 static void __init init_hypersparc(void)
1096 {
1097         srmmu_name = "ROSS HyperSparc";
1098         srmmu_modtype = HyperSparc;
1099
1100         init_vac_layout();
1101
1102         is_hypersparc = 1;
1103         sparc32_cachetlb_ops = &hypersparc_ops;
1104
1105         poke_srmmu = poke_hypersparc;
1106
1107         hypersparc_setup_blockops();
1108 }
1109
1110 static void __cpuinit poke_swift(void)
1111 {
1112         unsigned long mreg;
1113
1114         /* Clear any crap from the cache or else... */
1115         swift_flush_cache_all();
1116
1117         /* Enable I & D caches */
1118         mreg = srmmu_get_mmureg();
1119         mreg |= (SWIFT_IE | SWIFT_DE);
1120         /*
1121          * The Swift branch folding logic is completely broken.  At
1122          * trap time, if things are just right, if can mistakenly
1123          * think that a trap is coming from kernel mode when in fact
1124          * it is coming from user mode (it mis-executes the branch in
1125          * the trap code).  So you see things like crashme completely
1126          * hosing your machine which is completely unacceptable.  Turn
1127          * this shit off... nice job Fujitsu.
1128          */
1129         mreg &= ~(SWIFT_BF);
1130         srmmu_set_mmureg(mreg);
1131 }
1132
1133 static const struct sparc32_cachetlb_ops swift_ops = {
1134         .cache_all      = swift_flush_cache_all,
1135         .cache_mm       = swift_flush_cache_mm,
1136         .cache_page     = swift_flush_cache_page,
1137         .cache_range    = swift_flush_cache_range,
1138         .tlb_all        = swift_flush_tlb_all,
1139         .tlb_mm         = swift_flush_tlb_mm,
1140         .tlb_page       = swift_flush_tlb_page,
1141         .tlb_range      = swift_flush_tlb_range,
1142         .page_to_ram    = swift_flush_page_to_ram,
1143         .sig_insns      = swift_flush_sig_insns,
1144         .page_for_dma   = swift_flush_page_for_dma,
1145 };
1146
1147 #define SWIFT_MASKID_ADDR  0x10003018
1148 static void __init init_swift(void)
1149 {
1150         unsigned long swift_rev;
1151
1152         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1153                              "srl %0, 0x18, %0\n\t" :
1154                              "=r" (swift_rev) :
1155                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1156         srmmu_name = "Fujitsu Swift";
1157         switch (swift_rev) {
1158         case 0x11:
1159         case 0x20:
1160         case 0x23:
1161         case 0x30:
1162                 srmmu_modtype = Swift_lots_o_bugs;
1163                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1164                 /*
1165                  * Gee george, I wonder why Sun is so hush hush about
1166                  * this hardware bug... really braindamage stuff going
1167                  * on here.  However I think we can find a way to avoid
1168                  * all of the workaround overhead under Linux.  Basically,
1169                  * any page fault can cause kernel pages to become user
1170                  * accessible (the mmu gets confused and clears some of
1171                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1172                  * horrible eh?  But wait, after extensive testing it appears
1173                  * that if you use pgd_t level large kernel pte's (like the
1174                  * 4MB pages on the Pentium) the bug does not get tripped
1175                  * at all.  This avoids almost all of the major overhead.
1176                  * Welcome to a world where your vendor tells you to,
1177                  * "apply this kernel patch" instead of "sorry for the
1178                  * broken hardware, send it back and we'll give you
1179                  * properly functioning parts"
1180                  */
1181                 break;
1182         case 0x25:
1183         case 0x31:
1184                 srmmu_modtype = Swift_bad_c;
1185                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1186                 /*
1187                  * You see Sun allude to this hardware bug but never
1188                  * admit things directly, they'll say things like,
1189                  * "the Swift chip cache problems" or similar.
1190                  */
1191                 break;
1192         default:
1193                 srmmu_modtype = Swift_ok;
1194                 break;
1195         }
1196
1197         sparc32_cachetlb_ops = &swift_ops;
1198         flush_page_for_dma_global = 0;
1199
1200         /*
1201          * Are you now convinced that the Swift is one of the
1202          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1203          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1204          * you examined the microcode of the Swift you'd find
1205          * XXX's all over the place.
1206          */
1207         poke_srmmu = poke_swift;
1208 }
1209
1210 static void turbosparc_flush_cache_all(void)
1211 {
1212         flush_user_windows();
1213         turbosparc_idflash_clear();
1214 }
1215
1216 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1217 {
1218         FLUSH_BEGIN(mm)
1219         flush_user_windows();
1220         turbosparc_idflash_clear();
1221         FLUSH_END
1222 }
1223
1224 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1225 {
1226         FLUSH_BEGIN(vma->vm_mm)
1227         flush_user_windows();
1228         turbosparc_idflash_clear();
1229         FLUSH_END
1230 }
1231
1232 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1233 {
1234         FLUSH_BEGIN(vma->vm_mm)
1235         flush_user_windows();
1236         if (vma->vm_flags & VM_EXEC)
1237                 turbosparc_flush_icache();
1238         turbosparc_flush_dcache();
1239         FLUSH_END
1240 }
1241
1242 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1243 static void turbosparc_flush_page_to_ram(unsigned long page)
1244 {
1245 #ifdef TURBOSPARC_WRITEBACK
1246         volatile unsigned long clear;
1247
1248         if (srmmu_probe(page))
1249                 turbosparc_flush_page_cache(page);
1250         clear = srmmu_get_fstatus();
1251 #endif
1252 }
1253
1254 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1255 {
1256 }
1257
1258 static void turbosparc_flush_page_for_dma(unsigned long page)
1259 {
1260         turbosparc_flush_dcache();
1261 }
1262
1263 static void turbosparc_flush_tlb_all(void)
1264 {
1265         srmmu_flush_whole_tlb();
1266 }
1267
1268 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1269 {
1270         FLUSH_BEGIN(mm)
1271         srmmu_flush_whole_tlb();
1272         FLUSH_END
1273 }
1274
1275 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1276 {
1277         FLUSH_BEGIN(vma->vm_mm)
1278         srmmu_flush_whole_tlb();
1279         FLUSH_END
1280 }
1281
1282 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1283 {
1284         FLUSH_BEGIN(vma->vm_mm)
1285         srmmu_flush_whole_tlb();
1286         FLUSH_END
1287 }
1288
1289
1290 static void __cpuinit poke_turbosparc(void)
1291 {
1292         unsigned long mreg = srmmu_get_mmureg();
1293         unsigned long ccreg;
1294
1295         /* Clear any crap from the cache or else... */
1296         turbosparc_flush_cache_all();
1297         /* Temporarily disable I & D caches */
1298         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1299         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1300         srmmu_set_mmureg(mreg);
1301
1302         ccreg = turbosparc_get_ccreg();
1303
1304 #ifdef TURBOSPARC_WRITEBACK
1305         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1306         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1307                         /* Write-back D-cache, emulate VLSI
1308                          * abortion number three, not number one */
1309 #else
1310         /* For now let's play safe, optimize later */
1311         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1312                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1313         ccreg &= ~(TURBOSPARC_uS2);
1314                         /* Emulate VLSI abortion number three, not number one */
1315 #endif
1316
1317         switch (ccreg & 7) {
1318         case 0: /* No SE cache */
1319         case 7: /* Test mode */
1320                 break;
1321         default:
1322                 ccreg |= (TURBOSPARC_SCENABLE);
1323         }
1324         turbosparc_set_ccreg(ccreg);
1325
1326         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1327         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1328         srmmu_set_mmureg(mreg);
1329 }
1330
1331 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1332         .cache_all      = turbosparc_flush_cache_all,
1333         .cache_mm       = turbosparc_flush_cache_mm,
1334         .cache_page     = turbosparc_flush_cache_page,
1335         .cache_range    = turbosparc_flush_cache_range,
1336         .tlb_all        = turbosparc_flush_tlb_all,
1337         .tlb_mm         = turbosparc_flush_tlb_mm,
1338         .tlb_page       = turbosparc_flush_tlb_page,
1339         .tlb_range      = turbosparc_flush_tlb_range,
1340         .page_to_ram    = turbosparc_flush_page_to_ram,
1341         .sig_insns      = turbosparc_flush_sig_insns,
1342         .page_for_dma   = turbosparc_flush_page_for_dma,
1343 };
1344
1345 static void __init init_turbosparc(void)
1346 {
1347         srmmu_name = "Fujitsu TurboSparc";
1348         srmmu_modtype = TurboSparc;
1349         sparc32_cachetlb_ops = &turbosparc_ops;
1350         poke_srmmu = poke_turbosparc;
1351 }
1352
1353 static void __cpuinit poke_tsunami(void)
1354 {
1355         unsigned long mreg = srmmu_get_mmureg();
1356
1357         tsunami_flush_icache();
1358         tsunami_flush_dcache();
1359         mreg &= ~TSUNAMI_ITD;
1360         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1361         srmmu_set_mmureg(mreg);
1362 }
1363
1364 static const struct sparc32_cachetlb_ops tsunami_ops = {
1365         .cache_all      = tsunami_flush_cache_all,
1366         .cache_mm       = tsunami_flush_cache_mm,
1367         .cache_page     = tsunami_flush_cache_page,
1368         .cache_range    = tsunami_flush_cache_range,
1369         .tlb_all        = tsunami_flush_tlb_all,
1370         .tlb_mm         = tsunami_flush_tlb_mm,
1371         .tlb_page       = tsunami_flush_tlb_page,
1372         .tlb_range      = tsunami_flush_tlb_range,
1373         .page_to_ram    = tsunami_flush_page_to_ram,
1374         .sig_insns      = tsunami_flush_sig_insns,
1375         .page_for_dma   = tsunami_flush_page_for_dma,
1376 };
1377
1378 static void __init init_tsunami(void)
1379 {
1380         /*
1381          * Tsunami's pretty sane, Sun and TI actually got it
1382          * somewhat right this time.  Fujitsu should have
1383          * taken some lessons from them.
1384          */
1385
1386         srmmu_name = "TI Tsunami";
1387         srmmu_modtype = Tsunami;
1388         sparc32_cachetlb_ops = &tsunami_ops;
1389         poke_srmmu = poke_tsunami;
1390
1391         tsunami_setup_blockops();
1392 }
1393
1394 static void __cpuinit poke_viking(void)
1395 {
1396         unsigned long mreg = srmmu_get_mmureg();
1397         static int smp_catch;
1398
1399         if (viking_mxcc_present) {
1400                 unsigned long mxcc_control = mxcc_get_creg();
1401
1402                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1403                 mxcc_control &= ~(MXCC_CTL_RRC);
1404                 mxcc_set_creg(mxcc_control);
1405
1406                 /*
1407                  * We don't need memory parity checks.
1408                  * XXX This is a mess, have to dig out later. ecd.
1409                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1410                  */
1411
1412                 /* We do cache ptables on MXCC. */
1413                 mreg |= VIKING_TCENABLE;
1414         } else {
1415                 unsigned long bpreg;
1416
1417                 mreg &= ~(VIKING_TCENABLE);
1418                 if (smp_catch++) {
1419                         /* Must disable mixed-cmd mode here for other cpu's. */
1420                         bpreg = viking_get_bpreg();
1421                         bpreg &= ~(VIKING_ACTION_MIX);
1422                         viking_set_bpreg(bpreg);
1423
1424                         /* Just in case PROM does something funny. */
1425                         msi_set_sync();
1426                 }
1427         }
1428
1429         mreg |= VIKING_SPENABLE;
1430         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1431         mreg |= VIKING_SBENABLE;
1432         mreg &= ~(VIKING_ACENABLE);
1433         srmmu_set_mmureg(mreg);
1434 }
1435
1436 static struct sparc32_cachetlb_ops viking_ops = {
1437         .cache_all      = viking_flush_cache_all,
1438         .cache_mm       = viking_flush_cache_mm,
1439         .cache_page     = viking_flush_cache_page,
1440         .cache_range    = viking_flush_cache_range,
1441         .tlb_all        = viking_flush_tlb_all,
1442         .tlb_mm         = viking_flush_tlb_mm,
1443         .tlb_page       = viking_flush_tlb_page,
1444         .tlb_range      = viking_flush_tlb_range,
1445         .page_to_ram    = viking_flush_page_to_ram,
1446         .sig_insns      = viking_flush_sig_insns,
1447         .page_for_dma   = viking_flush_page_for_dma,
1448 };
1449
1450 #ifdef CONFIG_SMP
1451 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1452  * perform the local TLB flush and all the other cpus will see it.
1453  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1454  * that requires that we add some synchronization to these flushes.
1455  *
1456  * The bug is that the fifo which keeps track of all the pending TLB
1457  * broadcasts in the system is an entry or two too small, so if we
1458  * have too many going at once we'll overflow that fifo and lose a TLB
1459  * flush resulting in corruption.
1460  *
1461  * Our workaround is to take a global spinlock around the TLB flushes,
1462  * which guarentees we won't ever have too many pending.  It's a big
1463  * hammer, but a semaphore like system to make sure we only have N TLB
1464  * flushes going at once will require SMP locking anyways so there's
1465  * no real value in trying any harder than this.
1466  */
1467 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1468         .cache_all      = viking_flush_cache_all,
1469         .cache_mm       = viking_flush_cache_mm,
1470         .cache_page     = viking_flush_cache_page,
1471         .cache_range    = viking_flush_cache_range,
1472         .tlb_all        = sun4dsmp_flush_tlb_all,
1473         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1474         .tlb_page       = sun4dsmp_flush_tlb_page,
1475         .tlb_range      = sun4dsmp_flush_tlb_range,
1476         .page_to_ram    = viking_flush_page_to_ram,
1477         .sig_insns      = viking_flush_sig_insns,
1478         .page_for_dma   = viking_flush_page_for_dma,
1479 };
1480 #endif
1481
1482 static void __init init_viking(void)
1483 {
1484         unsigned long mreg = srmmu_get_mmureg();
1485
1486         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1487         if (mreg & VIKING_MMODE) {
1488                 srmmu_name = "TI Viking";
1489                 viking_mxcc_present = 0;
1490                 msi_set_sync();
1491
1492                 /*
1493                  * We need this to make sure old viking takes no hits
1494                  * on it's cache for dma snoops to workaround the
1495                  * "load from non-cacheable memory" interrupt bug.
1496                  * This is only necessary because of the new way in
1497                  * which we use the IOMMU.
1498                  */
1499                 viking_ops.page_for_dma = viking_flush_page;
1500 #ifdef CONFIG_SMP
1501                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1502 #endif
1503                 flush_page_for_dma_global = 0;
1504         } else {
1505                 srmmu_name = "TI Viking/MXCC";
1506                 viking_mxcc_present = 1;
1507                 srmmu_cache_pagetables = 1;
1508         }
1509
1510         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1511                 &viking_ops;
1512 #ifdef CONFIG_SMP
1513         if (sparc_cpu_model == sun4d)
1514                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1515                         &viking_sun4d_smp_ops;
1516 #endif
1517
1518         poke_srmmu = poke_viking;
1519 }
1520
1521 /* Probe for the srmmu chip version. */
1522 static void __init get_srmmu_type(void)
1523 {
1524         unsigned long mreg, psr;
1525         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1526
1527         srmmu_modtype = SRMMU_INVAL_MOD;
1528         hwbug_bitmask = 0;
1529
1530         mreg = srmmu_get_mmureg(); psr = get_psr();
1531         mod_typ = (mreg & 0xf0000000) >> 28;
1532         mod_rev = (mreg & 0x0f000000) >> 24;
1533         psr_typ = (psr >> 28) & 0xf;
1534         psr_vers = (psr >> 24) & 0xf;
1535
1536         /* First, check for sparc-leon. */
1537         if (sparc_cpu_model == sparc_leon) {
1538                 init_leon();
1539                 return;
1540         }
1541
1542         /* Second, check for HyperSparc or Cypress. */
1543         if (mod_typ == 1) {
1544                 switch (mod_rev) {
1545                 case 7:
1546                         /* UP or MP Hypersparc */
1547                         init_hypersparc();
1548                         break;
1549                 case 0:
1550                 case 2:
1551                 case 10:
1552                 case 11:
1553                 case 12:
1554                 case 13:
1555                 case 14:
1556                 case 15:
1557                 default:
1558                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1559                         prom_halt();
1560                         break;
1561                 }
1562                 return;
1563         }
1564
1565         /* Now Fujitsu TurboSparc. It might happen that it is
1566          * in Swift emulation mode, so we will check later...
1567          */
1568         if (psr_typ == 0 && psr_vers == 5) {
1569                 init_turbosparc();
1570                 return;
1571         }
1572
1573         /* Next check for Fujitsu Swift. */
1574         if (psr_typ == 0 && psr_vers == 4) {
1575                 phandle cpunode;
1576                 char node_str[128];
1577
1578                 /* Look if it is not a TurboSparc emulating Swift... */
1579                 cpunode = prom_getchild(prom_root_node);
1580                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1581                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1582                         if (!strcmp(node_str, "cpu")) {
1583                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1584                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1585                                         init_turbosparc();
1586                                         return;
1587                                 }
1588                                 break;
1589                         }
1590                 }
1591
1592                 init_swift();
1593                 return;
1594         }
1595
1596         /* Now the Viking family of srmmu. */
1597         if (psr_typ == 4 &&
1598            ((psr_vers == 0) ||
1599             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1600                 init_viking();
1601                 return;
1602         }
1603
1604         /* Finally the Tsunami. */
1605         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1606                 init_tsunami();
1607                 return;
1608         }
1609
1610         /* Oh well */
1611         srmmu_is_bad();
1612 }
1613
1614 #ifdef CONFIG_SMP
1615 /* Local cross-calls. */
1616 static void smp_flush_page_for_dma(unsigned long page)
1617 {
1618         xc1((smpfunc_t) local_ops->page_for_dma, page);
1619         local_ops->page_for_dma(page);
1620 }
1621
1622 static void smp_flush_cache_all(void)
1623 {
1624         xc0((smpfunc_t) local_ops->cache_all);
1625         local_ops->cache_all();
1626 }
1627
1628 static void smp_flush_tlb_all(void)
1629 {
1630         xc0((smpfunc_t) local_ops->tlb_all);
1631         local_ops->tlb_all();
1632 }
1633
1634 static void smp_flush_cache_mm(struct mm_struct *mm)
1635 {
1636         if (mm->context != NO_CONTEXT) {
1637                 cpumask_t cpu_mask;
1638                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1639                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1640                 if (!cpumask_empty(&cpu_mask))
1641                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1642                 local_ops->cache_mm(mm);
1643         }
1644 }
1645
1646 static void smp_flush_tlb_mm(struct mm_struct *mm)
1647 {
1648         if (mm->context != NO_CONTEXT) {
1649                 cpumask_t cpu_mask;
1650                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1651                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1652                 if (!cpumask_empty(&cpu_mask)) {
1653                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1654                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1655                                 cpumask_copy(mm_cpumask(mm),
1656                                              cpumask_of(smp_processor_id()));
1657                 }
1658                 local_ops->tlb_mm(mm);
1659         }
1660 }
1661
1662 static void smp_flush_cache_range(struct vm_area_struct *vma,
1663                                   unsigned long start,
1664                                   unsigned long end)
1665 {
1666         struct mm_struct *mm = vma->vm_mm;
1667
1668         if (mm->context != NO_CONTEXT) {
1669                 cpumask_t cpu_mask;
1670                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1671                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1672                 if (!cpumask_empty(&cpu_mask))
1673                         xc3((smpfunc_t) local_ops->cache_range,
1674                             (unsigned long) vma, start, end);
1675                 local_ops->cache_range(vma, start, end);
1676         }
1677 }
1678
1679 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1680                                 unsigned long start,
1681                                 unsigned long end)
1682 {
1683         struct mm_struct *mm = vma->vm_mm;
1684
1685         if (mm->context != NO_CONTEXT) {
1686                 cpumask_t cpu_mask;
1687                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1688                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1689                 if (!cpumask_empty(&cpu_mask))
1690                         xc3((smpfunc_t) local_ops->tlb_range,
1691                             (unsigned long) vma, start, end);
1692                 local_ops->tlb_range(vma, start, end);
1693         }
1694 }
1695
1696 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1697 {
1698         struct mm_struct *mm = vma->vm_mm;
1699
1700         if (mm->context != NO_CONTEXT) {
1701                 cpumask_t cpu_mask;
1702                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1703                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1704                 if (!cpumask_empty(&cpu_mask))
1705                         xc2((smpfunc_t) local_ops->cache_page,
1706                             (unsigned long) vma, page);
1707                 local_ops->cache_page(vma, page);
1708         }
1709 }
1710
1711 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1712 {
1713         struct mm_struct *mm = vma->vm_mm;
1714
1715         if (mm->context != NO_CONTEXT) {
1716                 cpumask_t cpu_mask;
1717                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1718                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1719                 if (!cpumask_empty(&cpu_mask))
1720                         xc2((smpfunc_t) local_ops->tlb_page,
1721                             (unsigned long) vma, page);
1722                 local_ops->tlb_page(vma, page);
1723         }
1724 }
1725
1726 static void smp_flush_page_to_ram(unsigned long page)
1727 {
1728         /* Current theory is that those who call this are the one's
1729          * who have just dirtied their cache with the pages contents
1730          * in kernel space, therefore we only run this on local cpu.
1731          *
1732          * XXX This experiment failed, research further... -DaveM
1733          */
1734 #if 1
1735         xc1((smpfunc_t) local_ops->page_to_ram, page);
1736 #endif
1737         local_ops->page_to_ram(page);
1738 }
1739
1740 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1741 {
1742         cpumask_t cpu_mask;
1743         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1744         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1745         if (!cpumask_empty(&cpu_mask))
1746                 xc2((smpfunc_t) local_ops->sig_insns,
1747                     (unsigned long) mm, insn_addr);
1748         local_ops->sig_insns(mm, insn_addr);
1749 }
1750
1751 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1752         .cache_all      = smp_flush_cache_all,
1753         .cache_mm       = smp_flush_cache_mm,
1754         .cache_page     = smp_flush_cache_page,
1755         .cache_range    = smp_flush_cache_range,
1756         .tlb_all        = smp_flush_tlb_all,
1757         .tlb_mm         = smp_flush_tlb_mm,
1758         .tlb_page       = smp_flush_tlb_page,
1759         .tlb_range      = smp_flush_tlb_range,
1760         .page_to_ram    = smp_flush_page_to_ram,
1761         .sig_insns      = smp_flush_sig_insns,
1762         .page_for_dma   = smp_flush_page_for_dma,
1763 };
1764 #endif
1765
1766 /* Load up routines and constants for sun4m and sun4d mmu */
1767 void __init load_mmu(void)
1768 {
1769         extern void ld_mmu_iommu(void);
1770         extern void ld_mmu_iounit(void);
1771
1772         /* Functions */
1773         get_srmmu_type();
1774
1775 #ifdef CONFIG_SMP
1776         /* El switcheroo... */
1777         local_ops = sparc32_cachetlb_ops;
1778
1779         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784         }
1785
1786         if (poke_srmmu == poke_viking) {
1787                 /* Avoid unnecessary cross calls. */
1788                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1792
1793                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796         }
1797
1798         /* It really is const after this point. */
1799         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800                 &smp_cachetlb_ops;
1801 #endif
1802
1803         if (sparc_cpu_model == sun4d)
1804                 ld_mmu_iounit();
1805         else
1806                 ld_mmu_iommu();
1807 #ifdef CONFIG_SMP
1808         if (sparc_cpu_model == sun4d)
1809                 sun4d_init_smp();
1810         else if (sparc_cpu_model == sparc_leon)
1811                 leon_init_smp();
1812         else
1813                 sun4m_init_smp();
1814 #endif
1815 }