mm/unicore32: use common help functions to free reserved pages
[cascardo/linux.git] / arch / unicore32 / mm / init.c
1 /*
2  *  linux/arch/unicore32/mm/init.c
3  *
4  *  Copyright (C) 2010 GUAN Xue-tao
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/sizes.h>
28 #include <asm/tlb.h>
29 #include <asm/memblock.h>
30 #include <mach/map.h>
31
32 #include "mm.h"
33
34 static unsigned long phys_initrd_start __initdata = 0x01000000;
35 static unsigned long phys_initrd_size __initdata = SZ_8M;
36
37 static int __init early_initrd(char *p)
38 {
39         unsigned long start, size;
40         char *endp;
41
42         start = memparse(p, &endp);
43         if (*endp == ',') {
44                 size = memparse(endp + 1, NULL);
45
46                 phys_initrd_start = start;
47                 phys_initrd_size = size;
48         }
49         return 0;
50 }
51 early_param("initrd", early_initrd);
52
53 /*
54  * This keeps memory configuration data used by a couple memory
55  * initialization functions, as well as show_mem() for the skipping
56  * of holes in the memory map.  It is populated by uc32_add_memory().
57  */
58 struct meminfo meminfo;
59
60 void show_mem(unsigned int filter)
61 {
62         int free = 0, total = 0, reserved = 0;
63         int shared = 0, cached = 0, slab = 0, i;
64         struct meminfo *mi = &meminfo;
65
66         printk(KERN_DEFAULT "Mem-info:\n");
67         show_free_areas(filter);
68
69         if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
70                 return;
71
72         for_each_bank(i, mi) {
73                 struct membank *bank = &mi->bank[i];
74                 unsigned int pfn1, pfn2;
75                 struct page *page, *end;
76
77                 pfn1 = bank_pfn_start(bank);
78                 pfn2 = bank_pfn_end(bank);
79
80                 page = pfn_to_page(pfn1);
81                 end  = pfn_to_page(pfn2 - 1) + 1;
82
83                 do {
84                         total++;
85                         if (PageReserved(page))
86                                 reserved++;
87                         else if (PageSwapCache(page))
88                                 cached++;
89                         else if (PageSlab(page))
90                                 slab++;
91                         else if (!page_count(page))
92                                 free++;
93                         else
94                                 shared += page_count(page) - 1;
95                         page++;
96                 } while (page < end);
97         }
98
99         printk(KERN_DEFAULT "%d pages of RAM\n", total);
100         printk(KERN_DEFAULT "%d free pages\n", free);
101         printk(KERN_DEFAULT "%d reserved pages\n", reserved);
102         printk(KERN_DEFAULT "%d slab pages\n", slab);
103         printk(KERN_DEFAULT "%d pages shared\n", shared);
104         printk(KERN_DEFAULT "%d pages swap cached\n", cached);
105 }
106
107 static void __init find_limits(unsigned long *min, unsigned long *max_low,
108         unsigned long *max_high)
109 {
110         struct meminfo *mi = &meminfo;
111         int i;
112
113         *min = -1UL;
114         *max_low = *max_high = 0;
115
116         for_each_bank(i, mi) {
117                 struct membank *bank = &mi->bank[i];
118                 unsigned long start, end;
119
120                 start = bank_pfn_start(bank);
121                 end = bank_pfn_end(bank);
122
123                 if (*min > start)
124                         *min = start;
125                 if (*max_high < end)
126                         *max_high = end;
127                 if (bank->highmem)
128                         continue;
129                 if (*max_low < end)
130                         *max_low = end;
131         }
132 }
133
134 static void __init uc32_bootmem_init(unsigned long start_pfn,
135         unsigned long end_pfn)
136 {
137         struct memblock_region *reg;
138         unsigned int boot_pages;
139         phys_addr_t bitmap;
140         pg_data_t *pgdat;
141
142         /*
143          * Allocate the bootmem bitmap page.  This must be in a region
144          * of memory which has already been mapped.
145          */
146         boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
147         bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
148                                 __pfn_to_phys(end_pfn));
149
150         /*
151          * Initialise the bootmem allocator, handing the
152          * memory banks over to bootmem.
153          */
154         node_set_online(0);
155         pgdat = NODE_DATA(0);
156         init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
157
158         /* Free the lowmem regions from memblock into bootmem. */
159         for_each_memblock(memory, reg) {
160                 unsigned long start = memblock_region_memory_base_pfn(reg);
161                 unsigned long end = memblock_region_memory_end_pfn(reg);
162
163                 if (end >= end_pfn)
164                         end = end_pfn;
165                 if (start >= end)
166                         break;
167
168                 free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
169         }
170
171         /* Reserve the lowmem memblock reserved regions in bootmem. */
172         for_each_memblock(reserved, reg) {
173                 unsigned long start = memblock_region_reserved_base_pfn(reg);
174                 unsigned long end = memblock_region_reserved_end_pfn(reg);
175
176                 if (end >= end_pfn)
177                         end = end_pfn;
178                 if (start >= end)
179                         break;
180
181                 reserve_bootmem(__pfn_to_phys(start),
182                         (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
183         }
184 }
185
186 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
187         unsigned long max_high)
188 {
189         unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
190         struct memblock_region *reg;
191
192         /*
193          * initialise the zones.
194          */
195         memset(zone_size, 0, sizeof(zone_size));
196
197         /*
198          * The memory size has already been determined.  If we need
199          * to do anything fancy with the allocation of this memory
200          * to the zones, now is the time to do it.
201          */
202         zone_size[0] = max_low - min;
203
204         /*
205          * Calculate the size of the holes.
206          *  holes = node_size - sum(bank_sizes)
207          */
208         memcpy(zhole_size, zone_size, sizeof(zhole_size));
209         for_each_memblock(memory, reg) {
210                 unsigned long start = memblock_region_memory_base_pfn(reg);
211                 unsigned long end = memblock_region_memory_end_pfn(reg);
212
213                 if (start < max_low) {
214                         unsigned long low_end = min(end, max_low);
215                         zhole_size[0] -= low_end - start;
216                 }
217         }
218
219         /*
220          * Adjust the sizes according to any special requirements for
221          * this machine type.
222          */
223         arch_adjust_zones(zone_size, zhole_size);
224
225         free_area_init_node(0, zone_size, min, zhole_size);
226 }
227
228 int pfn_valid(unsigned long pfn)
229 {
230         return memblock_is_memory(pfn << PAGE_SHIFT);
231 }
232 EXPORT_SYMBOL(pfn_valid);
233
234 static void uc32_memory_present(void)
235 {
236 }
237
238 static int __init meminfo_cmp(const void *_a, const void *_b)
239 {
240         const struct membank *a = _a, *b = _b;
241         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
242         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
243 }
244
245 void __init uc32_memblock_init(struct meminfo *mi)
246 {
247         int i;
248
249         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
250                 meminfo_cmp, NULL);
251
252         for (i = 0; i < mi->nr_banks; i++)
253                 memblock_add(mi->bank[i].start, mi->bank[i].size);
254
255         /* Register the kernel text, kernel data and initrd with memblock. */
256         memblock_reserve(__pa(_text), _end - _text);
257
258 #ifdef CONFIG_BLK_DEV_INITRD
259         if (phys_initrd_size) {
260                 memblock_reserve(phys_initrd_start, phys_initrd_size);
261
262                 /* Now convert initrd to virtual addresses */
263                 initrd_start = __phys_to_virt(phys_initrd_start);
264                 initrd_end = initrd_start + phys_initrd_size;
265         }
266 #endif
267
268         uc32_mm_memblock_reserve();
269
270         memblock_allow_resize();
271         memblock_dump_all();
272 }
273
274 void __init bootmem_init(void)
275 {
276         unsigned long min, max_low, max_high;
277
278         max_low = max_high = 0;
279
280         find_limits(&min, &max_low, &max_high);
281
282         uc32_bootmem_init(min, max_low);
283
284 #ifdef CONFIG_SWIOTLB
285         swiotlb_init(1);
286 #endif
287         /*
288          * Sparsemem tries to allocate bootmem in memory_present(),
289          * so must be done after the fixed reservations
290          */
291         uc32_memory_present();
292
293         /*
294          * sparse_init() needs the bootmem allocator up and running.
295          */
296         sparse_init();
297
298         /*
299          * Now free the memory - free_area_init_node needs
300          * the sparse mem_map arrays initialized by sparse_init()
301          * for memmap_init_zone(), otherwise all PFNs are invalid.
302          */
303         uc32_bootmem_free(min, max_low, max_high);
304
305         high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
306
307         /*
308          * This doesn't seem to be used by the Linux memory manager any
309          * more, but is used by ll_rw_block.  If we can get rid of it, we
310          * also get rid of some of the stuff above as well.
311          *
312          * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
313          * the system, not the maximum PFN.
314          */
315         max_low_pfn = max_low - PHYS_PFN_OFFSET;
316         max_pfn = max_high - PHYS_PFN_OFFSET;
317 }
318
319 static inline void
320 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
321 {
322         struct page *start_pg, *end_pg;
323         unsigned long pg, pgend;
324
325         /*
326          * Convert start_pfn/end_pfn to a struct page pointer.
327          */
328         start_pg = pfn_to_page(start_pfn - 1) + 1;
329         end_pg = pfn_to_page(end_pfn);
330
331         /*
332          * Convert to physical addresses, and
333          * round start upwards and end downwards.
334          */
335         pg = PAGE_ALIGN(__pa(start_pg));
336         pgend = __pa(end_pg) & PAGE_MASK;
337
338         /*
339          * If there are free pages between these,
340          * free the section of the memmap array.
341          */
342         if (pg < pgend)
343                 free_bootmem(pg, pgend - pg);
344 }
345
346 /*
347  * The mem_map array can get very big.  Free the unused area of the memory map.
348  */
349 static void __init free_unused_memmap(struct meminfo *mi)
350 {
351         unsigned long bank_start, prev_bank_end = 0;
352         unsigned int i;
353
354         /*
355          * This relies on each bank being in address order.
356          * The banks are sorted previously in bootmem_init().
357          */
358         for_each_bank(i, mi) {
359                 struct membank *bank = &mi->bank[i];
360
361                 bank_start = bank_pfn_start(bank);
362
363                 /*
364                  * If we had a previous bank, and there is a space
365                  * between the current bank and the previous, free it.
366                  */
367                 if (prev_bank_end && prev_bank_end < bank_start)
368                         free_memmap(prev_bank_end, bank_start);
369
370                 /*
371                  * Align up here since the VM subsystem insists that the
372                  * memmap entries are valid from the bank end aligned to
373                  * MAX_ORDER_NR_PAGES.
374                  */
375                 prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
376         }
377 }
378
379 /*
380  * mem_init() marks the free areas in the mem_map and tells us how much
381  * memory is free.  This is done after various parts of the system have
382  * claimed their memory after the kernel image.
383  */
384 void __init mem_init(void)
385 {
386         unsigned long reserved_pages, free_pages;
387         struct memblock_region *reg;
388         int i;
389
390         max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
391
392         free_unused_memmap(&meminfo);
393
394         /* this will put all unused low memory onto the freelists */
395         totalram_pages += free_all_bootmem();
396
397         reserved_pages = free_pages = 0;
398
399         for_each_bank(i, &meminfo) {
400                 struct membank *bank = &meminfo.bank[i];
401                 unsigned int pfn1, pfn2;
402                 struct page *page, *end;
403
404                 pfn1 = bank_pfn_start(bank);
405                 pfn2 = bank_pfn_end(bank);
406
407                 page = pfn_to_page(pfn1);
408                 end  = pfn_to_page(pfn2 - 1) + 1;
409
410                 do {
411                         if (PageReserved(page))
412                                 reserved_pages++;
413                         else if (!page_count(page))
414                                 free_pages++;
415                         page++;
416                 } while (page < end);
417         }
418
419         /*
420          * Since our memory may not be contiguous, calculate the
421          * real number of pages we have in this system
422          */
423         printk(KERN_INFO "Memory:");
424         num_physpages = 0;
425         for_each_memblock(memory, reg) {
426                 unsigned long pages = memblock_region_memory_end_pfn(reg) -
427                         memblock_region_memory_base_pfn(reg);
428                 num_physpages += pages;
429                 printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
430         }
431         printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
432
433         printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
434                 nr_free_pages() << (PAGE_SHIFT-10),
435                 free_pages << (PAGE_SHIFT-10),
436                 reserved_pages << (PAGE_SHIFT-10),
437                 totalhigh_pages << (PAGE_SHIFT-10));
438
439         printk(KERN_NOTICE "Virtual kernel memory layout:\n"
440                 "    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
441                 "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
442                 "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
443                 "    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
444                 "      .init : 0x%p" " - 0x%p" "   (%4d kB)\n"
445                 "      .text : 0x%p" " - 0x%p" "   (%4d kB)\n"
446                 "      .data : 0x%p" " - 0x%p" "   (%4d kB)\n",
447
448                 VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
449                 DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
450                 VMALLOC_START, VMALLOC_END,
451                 DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
452                 PAGE_OFFSET, (unsigned long)high_memory,
453                 DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
454                 MODULES_VADDR, MODULES_END,
455                 DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
456
457                 __init_begin, __init_end,
458                 DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
459                 _stext, _etext,
460                 DIV_ROUND_UP((_etext - _stext), SZ_1K),
461                 _sdata, _edata,
462                 DIV_ROUND_UP((_edata - _sdata), SZ_1K));
463
464         BUILD_BUG_ON(TASK_SIZE                          > MODULES_VADDR);
465         BUG_ON(TASK_SIZE                                > MODULES_VADDR);
466
467         if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
468                 /*
469                  * On a machine this small we won't get
470                  * anywhere without overcommit, so turn
471                  * it on by default.
472                  */
473                 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
474         }
475 }
476
477 void free_initmem(void)
478 {
479         free_initmem_default(0);
480 }
481
482 #ifdef CONFIG_BLK_DEV_INITRD
483
484 static int keep_initrd;
485
486 void free_initrd_mem(unsigned long start, unsigned long end)
487 {
488         if (!keep_initrd)
489                 free_reserved_area(start, end, 0, "initrd");
490 }
491
492 static int __init keepinitrd_setup(char *__unused)
493 {
494         keep_initrd = 1;
495         return 1;
496 }
497
498 __setup("keepinitrd", keepinitrd_setup);
499 #endif