Merge branch 'x86-merge' into for-linus
[cascardo/linux.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2006 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
46
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51
52 /* serialize freq changes  */
53 static DEFINE_MUTEX(fidvid_mutex);
54
55 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
56
57 static int cpu_family = CPU_OPTERON;
58
59 #ifndef CONFIG_SMP
60 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
61 #endif
62
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
65 {
66         return 800 + (fid * 100);
67 }
68
69 /* Return a frequency in KHz, given an input fid */
70 static u32 find_khz_freq_from_fid(u32 fid)
71 {
72         return 1000 * find_freq_from_fid(fid);
73 }
74
75 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, u32 pstate)
76 {
77         return data[pstate].frequency;
78 }
79
80 /* Return the vco fid for an input fid
81  *
82  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
83  * only from corresponding high fids. This returns "high" fid corresponding to
84  * "low" one.
85  */
86 static u32 convert_fid_to_vco_fid(u32 fid)
87 {
88         if (fid < HI_FID_TABLE_BOTTOM)
89                 return 8 + (2 * fid);
90         else
91                 return fid;
92 }
93
94 /*
95  * Return 1 if the pending bit is set. Unless we just instructed the processor
96  * to transition to a new state, seeing this bit set is really bad news.
97  */
98 static int pending_bit_stuck(void)
99 {
100         u32 lo, hi;
101
102         if (cpu_family == CPU_HW_PSTATE)
103                 return 0;
104
105         rdmsr(MSR_FIDVID_STATUS, lo, hi);
106         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
107 }
108
109 /*
110  * Update the global current fid / vid values from the status msr.
111  * Returns 1 on error.
112  */
113 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
114 {
115         u32 lo, hi;
116         u32 i = 0;
117
118         if (cpu_family == CPU_HW_PSTATE) {
119                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
120                 i = lo & HW_PSTATE_MASK;
121                 data->currpstate = i;
122                 return 0;
123         }
124         do {
125                 if (i++ > 10000) {
126                         dprintk("detected change pending stuck\n");
127                         return 1;
128                 }
129                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
130         } while (lo & MSR_S_LO_CHANGE_PENDING);
131
132         data->currvid = hi & MSR_S_HI_CURRENT_VID;
133         data->currfid = lo & MSR_S_LO_CURRENT_FID;
134
135         return 0;
136 }
137
138 /* the isochronous relief time */
139 static void count_off_irt(struct powernow_k8_data *data)
140 {
141         udelay((1 << data->irt) * 10);
142         return;
143 }
144
145 /* the voltage stabilization time */
146 static void count_off_vst(struct powernow_k8_data *data)
147 {
148         udelay(data->vstable * VST_UNITS_20US);
149         return;
150 }
151
152 /* need to init the control msr to a safe value (for each cpu) */
153 static void fidvid_msr_init(void)
154 {
155         u32 lo, hi;
156         u8 fid, vid;
157
158         rdmsr(MSR_FIDVID_STATUS, lo, hi);
159         vid = hi & MSR_S_HI_CURRENT_VID;
160         fid = lo & MSR_S_LO_CURRENT_FID;
161         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
162         hi = MSR_C_HI_STP_GNT_BENIGN;
163         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
164         wrmsr(MSR_FIDVID_CTL, lo, hi);
165 }
166
167 /* write the new fid value along with the other control fields to the msr */
168 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
169 {
170         u32 lo;
171         u32 savevid = data->currvid;
172         u32 i = 0;
173
174         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
175                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
176                 return 1;
177         }
178
179         lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
180
181         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
182                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
183
184         do {
185                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
186                 if (i++ > 100) {
187                         printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
188                         return 1;
189                 }
190         } while (query_current_values_with_pending_wait(data));
191
192         count_off_irt(data);
193
194         if (savevid != data->currvid) {
195                 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
196                        savevid, data->currvid);
197                 return 1;
198         }
199
200         if (fid != data->currfid) {
201                 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
202                         data->currfid);
203                 return 1;
204         }
205
206         return 0;
207 }
208
209 /* Write a new vid to the hardware */
210 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
211 {
212         u32 lo;
213         u32 savefid = data->currfid;
214         int i = 0;
215
216         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
217                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
218                 return 1;
219         }
220
221         lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
222
223         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
224                 vid, lo, STOP_GRANT_5NS);
225
226         do {
227                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
228                 if (i++ > 100) {
229                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
230                         return 1;
231                 }
232         } while (query_current_values_with_pending_wait(data));
233
234         if (savefid != data->currfid) {
235                 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
236                        savefid, data->currfid);
237                 return 1;
238         }
239
240         if (vid != data->currvid) {
241                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
242                                 data->currvid);
243                 return 1;
244         }
245
246         return 0;
247 }
248
249 /*
250  * Reduce the vid by the max of step or reqvid.
251  * Decreasing vid codes represent increasing voltages:
252  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
253  */
254 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
255 {
256         if ((data->currvid - reqvid) > step)
257                 reqvid = data->currvid - step;
258
259         if (write_new_vid(data, reqvid))
260                 return 1;
261
262         count_off_vst(data);
263
264         return 0;
265 }
266
267 /* Change hardware pstate by single MSR write */
268 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
269 {
270         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
271         data->currpstate = pstate;
272         return 0;
273 }
274
275 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
276 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
277 {
278         if (core_voltage_pre_transition(data, reqvid))
279                 return 1;
280
281         if (core_frequency_transition(data, reqfid))
282                 return 1;
283
284         if (core_voltage_post_transition(data, reqvid))
285                 return 1;
286
287         if (query_current_values_with_pending_wait(data))
288                 return 1;
289
290         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
291                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
292                                 smp_processor_id(),
293                                 reqfid, reqvid, data->currfid, data->currvid);
294                 return 1;
295         }
296
297         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
298                 smp_processor_id(), data->currfid, data->currvid);
299
300         return 0;
301 }
302
303 /* Phase 1 - core voltage transition ... setup voltage */
304 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
305 {
306         u32 rvosteps = data->rvo;
307         u32 savefid = data->currfid;
308         u32 maxvid, lo;
309
310         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
311                 smp_processor_id(),
312                 data->currfid, data->currvid, reqvid, data->rvo);
313
314         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
315         maxvid = 0x1f & (maxvid >> 16);
316         dprintk("ph1 maxvid=0x%x\n", maxvid);
317         if (reqvid < maxvid) /* lower numbers are higher voltages */
318                 reqvid = maxvid;
319
320         while (data->currvid > reqvid) {
321                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
322                         data->currvid, reqvid);
323                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
324                         return 1;
325         }
326
327         while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
328                 if (data->currvid == maxvid) {
329                         rvosteps = 0;
330                 } else {
331                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
332                                 data->currvid - 1);
333                         if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
334                                 return 1;
335                         rvosteps--;
336                 }
337         }
338
339         if (query_current_values_with_pending_wait(data))
340                 return 1;
341
342         if (savefid != data->currfid) {
343                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
344                 return 1;
345         }
346
347         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
348                 data->currfid, data->currvid);
349
350         return 0;
351 }
352
353 /* Phase 2 - core frequency transition */
354 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
355 {
356         u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
357
358         if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
359                 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
360                         reqfid, data->currfid);
361                 return 1;
362         }
363
364         if (data->currfid == reqfid) {
365                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
366                 return 0;
367         }
368
369         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
370                 smp_processor_id(),
371                 data->currfid, data->currvid, reqfid);
372
373         vcoreqfid = convert_fid_to_vco_fid(reqfid);
374         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
375         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
376             : vcoreqfid - vcocurrfid;
377
378         while (vcofiddiff > 2) {
379                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
380
381                 if (reqfid > data->currfid) {
382                         if (data->currfid > LO_FID_TABLE_TOP) {
383                                 if (write_new_fid(data, data->currfid + fid_interval)) {
384                                         return 1;
385                                 }
386                         } else {
387                                 if (write_new_fid
388                                     (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
389                                         return 1;
390                                 }
391                         }
392                 } else {
393                         if (write_new_fid(data, data->currfid - fid_interval))
394                                 return 1;
395                 }
396
397                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
398                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
399                     : vcoreqfid - vcocurrfid;
400         }
401
402         if (write_new_fid(data, reqfid))
403                 return 1;
404
405         if (query_current_values_with_pending_wait(data))
406                 return 1;
407
408         if (data->currfid != reqfid) {
409                 printk(KERN_ERR PFX
410                         "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
411                         data->currfid, reqfid);
412                 return 1;
413         }
414
415         if (savevid != data->currvid) {
416                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
417                         savevid, data->currvid);
418                 return 1;
419         }
420
421         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
422                 data->currfid, data->currvid);
423
424         return 0;
425 }
426
427 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
428 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
429 {
430         u32 savefid = data->currfid;
431         u32 savereqvid = reqvid;
432
433         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
434                 smp_processor_id(),
435                 data->currfid, data->currvid);
436
437         if (reqvid != data->currvid) {
438                 if (write_new_vid(data, reqvid))
439                         return 1;
440
441                 if (savefid != data->currfid) {
442                         printk(KERN_ERR PFX
443                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
444                                savefid, data->currfid);
445                         return 1;
446                 }
447
448                 if (data->currvid != reqvid) {
449                         printk(KERN_ERR PFX
450                                "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
451                                reqvid, data->currvid);
452                         return 1;
453                 }
454         }
455
456         if (query_current_values_with_pending_wait(data))
457                 return 1;
458
459         if (savereqvid != data->currvid) {
460                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
461                 return 1;
462         }
463
464         if (savefid != data->currfid) {
465                 dprintk("ph3 failed, currfid changed 0x%x\n",
466                         data->currfid);
467                 return 1;
468         }
469
470         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
471                 data->currfid, data->currvid);
472
473         return 0;
474 }
475
476 static int check_supported_cpu(unsigned int cpu)
477 {
478         cpumask_t oldmask;
479         u32 eax, ebx, ecx, edx;
480         unsigned int rc = 0;
481
482         oldmask = current->cpus_allowed;
483         set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
484
485         if (smp_processor_id() != cpu) {
486                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
487                 goto out;
488         }
489
490         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
491                 goto out;
492
493         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
494         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
495             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
496                 goto out;
497
498         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
499                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
500                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
501                         printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
502                         goto out;
503                 }
504
505                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
506                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
507                         printk(KERN_INFO PFX
508                                "No frequency change capabilities detected\n");
509                         goto out;
510                 }
511
512                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
513                 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
514                         printk(KERN_INFO PFX "Power state transitions not supported\n");
515                         goto out;
516                 }
517         } else { /* must be a HW Pstate capable processor */
518                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
519                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
520                         cpu_family = CPU_HW_PSTATE;
521                 else
522                         goto out;
523         }
524
525         rc = 1;
526
527 out:
528         set_cpus_allowed_ptr(current, &oldmask);
529         return rc;
530 }
531
532 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
533 {
534         unsigned int j;
535         u8 lastfid = 0xff;
536
537         for (j = 0; j < data->numps; j++) {
538                 if (pst[j].vid > LEAST_VID) {
539                         printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
540                         return -EINVAL;
541                 }
542                 if (pst[j].vid < data->rvo) {   /* vid + rvo >= 0 */
543                         printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
544                         return -ENODEV;
545                 }
546                 if (pst[j].vid < maxvid + data->rvo) {  /* vid + rvo >= maxvid */
547                         printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
548                         return -ENODEV;
549                 }
550                 if (pst[j].fid > MAX_FID) {
551                         printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
552                         return -ENODEV;
553                 }
554                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
555                         /* Only first fid is allowed to be in "low" range */
556                         printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
557                         return -EINVAL;
558                 }
559                 if (pst[j].fid < lastfid)
560                         lastfid = pst[j].fid;
561         }
562         if (lastfid & 1) {
563                 printk(KERN_ERR BFX "lastfid invalid\n");
564                 return -EINVAL;
565         }
566         if (lastfid > LO_FID_TABLE_TOP)
567                 printk(KERN_INFO BFX  "first fid not from lo freq table\n");
568
569         return 0;
570 }
571
572 static void print_basics(struct powernow_k8_data *data)
573 {
574         int j;
575         for (j = 0; j < data->numps; j++) {
576                 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
577                         if (cpu_family == CPU_HW_PSTATE) {
578                                 printk(KERN_INFO PFX "   %d : pstate %d (%d MHz)\n",
579                                         j,
580                                         data->powernow_table[j].index,
581                                         data->powernow_table[j].frequency/1000);
582                         } else {
583                                 printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x\n",
584                                         j,
585                                         data->powernow_table[j].index & 0xff,
586                                         data->powernow_table[j].frequency/1000,
587                                         data->powernow_table[j].index >> 8);
588                         }
589                 }
590         }
591         if (data->batps)
592                 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
593 }
594
595 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
596 {
597         struct cpufreq_frequency_table *powernow_table;
598         unsigned int j;
599
600         if (data->batps) {    /* use ACPI support to get full speed on mains power */
601                 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
602                 data->numps = data->batps;
603         }
604
605         for ( j=1; j<data->numps; j++ ) {
606                 if (pst[j-1].fid >= pst[j].fid) {
607                         printk(KERN_ERR PFX "PST out of sequence\n");
608                         return -EINVAL;
609                 }
610         }
611
612         if (data->numps < 2) {
613                 printk(KERN_ERR PFX "no p states to transition\n");
614                 return -ENODEV;
615         }
616
617         if (check_pst_table(data, pst, maxvid))
618                 return -EINVAL;
619
620         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
621                 * (data->numps + 1)), GFP_KERNEL);
622         if (!powernow_table) {
623                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
624                 return -ENOMEM;
625         }
626
627         for (j = 0; j < data->numps; j++) {
628                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
629                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
630                 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
631         }
632         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
633         powernow_table[data->numps].index = 0;
634
635         if (query_current_values_with_pending_wait(data)) {
636                 kfree(powernow_table);
637                 return -EIO;
638         }
639
640         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
641         data->powernow_table = powernow_table;
642         if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
643                 print_basics(data);
644
645         for (j = 0; j < data->numps; j++)
646                 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
647                         return 0;
648
649         dprintk("currfid/vid do not match PST, ignoring\n");
650         return 0;
651 }
652
653 /* Find and validate the PSB/PST table in BIOS. */
654 static int find_psb_table(struct powernow_k8_data *data)
655 {
656         struct psb_s *psb;
657         unsigned int i;
658         u32 mvs;
659         u8 maxvid;
660         u32 cpst = 0;
661         u32 thiscpuid;
662
663         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
664                 /* Scan BIOS looking for the signature. */
665                 /* It can not be at ffff0 - it is too big. */
666
667                 psb = phys_to_virt(i);
668                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
669                         continue;
670
671                 dprintk("found PSB header at 0x%p\n", psb);
672
673                 dprintk("table vers: 0x%x\n", psb->tableversion);
674                 if (psb->tableversion != PSB_VERSION_1_4) {
675                         printk(KERN_ERR BFX "PSB table is not v1.4\n");
676                         return -ENODEV;
677                 }
678
679                 dprintk("flags: 0x%x\n", psb->flags1);
680                 if (psb->flags1) {
681                         printk(KERN_ERR BFX "unknown flags\n");
682                         return -ENODEV;
683                 }
684
685                 data->vstable = psb->vstable;
686                 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
687
688                 dprintk("flags2: 0x%x\n", psb->flags2);
689                 data->rvo = psb->flags2 & 3;
690                 data->irt = ((psb->flags2) >> 2) & 3;
691                 mvs = ((psb->flags2) >> 4) & 3;
692                 data->vidmvs = 1 << mvs;
693                 data->batps = ((psb->flags2) >> 6) & 3;
694
695                 dprintk("ramp voltage offset: %d\n", data->rvo);
696                 dprintk("isochronous relief time: %d\n", data->irt);
697                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
698
699                 dprintk("numpst: 0x%x\n", psb->num_tables);
700                 cpst = psb->num_tables;
701                 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
702                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
703                         if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
704                                 cpst = 1;
705                         }
706                 }
707                 if (cpst != 1) {
708                         printk(KERN_ERR BFX "numpst must be 1\n");
709                         return -ENODEV;
710                 }
711
712                 data->plllock = psb->plllocktime;
713                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
714                 dprintk("maxfid: 0x%x\n", psb->maxfid);
715                 dprintk("maxvid: 0x%x\n", psb->maxvid);
716                 maxvid = psb->maxvid;
717
718                 data->numps = psb->numps;
719                 dprintk("numpstates: 0x%x\n", data->numps);
720                 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
721         }
722         /*
723          * If you see this message, complain to BIOS manufacturer. If
724          * he tells you "we do not support Linux" or some similar
725          * nonsense, remember that Windows 2000 uses the same legacy
726          * mechanism that the old Linux PSB driver uses. Tell them it
727          * is broken with Windows 2000.
728          *
729          * The reference to the AMD documentation is chapter 9 in the
730          * BIOS and Kernel Developer's Guide, which is available on
731          * www.amd.com
732          */
733         printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
734         return -ENODEV;
735 }
736
737 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
738 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
739 {
740         if (!data->acpi_data->state_count || (cpu_family == CPU_HW_PSTATE))
741                 return;
742
743         data->irt = (data->acpi_data->states[index].control >> IRT_SHIFT) & IRT_MASK;
744         data->rvo = (data->acpi_data->states[index].control >> RVO_SHIFT) & RVO_MASK;
745         data->exttype = (data->acpi_data->states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
746         data->plllock = (data->acpi_data->states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
747         data->vidmvs = 1 << ((data->acpi_data->states[index].control >> MVS_SHIFT) & MVS_MASK);
748         data->vstable = (data->acpi_data->states[index].control >> VST_SHIFT) & VST_MASK;
749 }
750
751
752 static struct acpi_processor_performance *acpi_perf_data;
753 static int preregister_valid;
754
755 static int powernow_k8_cpu_preinit_acpi(void)
756 {
757         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
758         if (!acpi_perf_data)
759                 return -ENODEV;
760
761         if (acpi_processor_preregister_performance(acpi_perf_data))
762                 return -ENODEV;
763         else
764                 preregister_valid = 1;
765         return 0;
766 }
767
768 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
769 {
770         struct cpufreq_frequency_table *powernow_table;
771         int ret_val;
772         int cpu = 0;
773
774         data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
775         if (acpi_processor_register_performance(data->acpi_data, data->cpu)) {
776                 dprintk("register performance failed: bad ACPI data\n");
777                 return -EIO;
778         }
779
780         /* verify the data contained in the ACPI structures */
781         if (data->acpi_data->state_count <= 1) {
782                 dprintk("No ACPI P-States\n");
783                 goto err_out;
784         }
785
786         if ((data->acpi_data->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
787                 (data->acpi_data->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
788                 dprintk("Invalid control/status registers (%x - %x)\n",
789                         data->acpi_data->control_register.space_id,
790                         data->acpi_data->status_register.space_id);
791                 goto err_out;
792         }
793
794         /* fill in data->powernow_table */
795         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
796                 * (data->acpi_data->state_count + 1)), GFP_KERNEL);
797         if (!powernow_table) {
798                 dprintk("powernow_table memory alloc failure\n");
799                 goto err_out;
800         }
801
802         if (cpu_family == CPU_HW_PSTATE)
803                 ret_val = fill_powernow_table_pstate(data, powernow_table);
804         else
805                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
806         if (ret_val)
807                 goto err_out_mem;
808
809         powernow_table[data->acpi_data->state_count].frequency = CPUFREQ_TABLE_END;
810         powernow_table[data->acpi_data->state_count].index = 0;
811         data->powernow_table = powernow_table;
812
813         /* fill in data */
814         data->numps = data->acpi_data->state_count;
815         if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
816                 print_basics(data);
817         powernow_k8_acpi_pst_values(data, 0);
818
819         /* notify BIOS that we exist */
820         acpi_processor_notify_smm(THIS_MODULE);
821
822         /* determine affinity, from ACPI if available */
823         if (preregister_valid) {
824                 if ((data->acpi_data->shared_type == CPUFREQ_SHARED_TYPE_ALL) ||
825                         (data->acpi_data->shared_type == CPUFREQ_SHARED_TYPE_ANY))
826                         data->starting_core_affinity = data->acpi_data->shared_cpu_map;
827                 else
828                         data->starting_core_affinity = cpumask_of_cpu(data->cpu);
829         } else {
830         /* best guess from family if not */
831                 if (cpu_family == CPU_HW_PSTATE)
832                         data->starting_core_affinity = cpumask_of_cpu(data->cpu);
833                 else
834                         data->starting_core_affinity = per_cpu(cpu_core_map, data->cpu);
835         }
836
837         return 0;
838
839 err_out_mem:
840         kfree(powernow_table);
841
842 err_out:
843         acpi_processor_unregister_performance(data->acpi_data, data->cpu);
844
845         /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
846         data->acpi_data->state_count = 0;
847
848         return -ENODEV;
849 }
850
851 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
852 {
853         int i;
854         u32 hi = 0, lo = 0;
855         rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
856         data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
857
858         for (i = 0; i < data->acpi_data->state_count; i++) {
859                 u32 index;
860
861                 index = data->acpi_data->states[i].control & HW_PSTATE_MASK;
862                 if (index > data->max_hw_pstate) {
863                         printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
864                         printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
865                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
866                         continue;
867                 }
868                 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
869                 if (!(hi & HW_PSTATE_VALID_MASK)) {
870                         dprintk("invalid pstate %d, ignoring\n", index);
871                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
872                         continue;
873                 }
874
875                 powernow_table[i].index = index;
876
877                 powernow_table[i].frequency = data->acpi_data->states[i].core_frequency * 1000;
878         }
879         return 0;
880 }
881
882 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
883 {
884         int i;
885         int cntlofreq = 0;
886         for (i = 0; i < data->acpi_data->state_count; i++) {
887                 u32 fid;
888                 u32 vid;
889
890                 if (data->exttype) {
891                         fid = data->acpi_data->states[i].status & EXT_FID_MASK;
892                         vid = (data->acpi_data->states[i].status >> VID_SHIFT) & EXT_VID_MASK;
893                 } else {
894                         fid = data->acpi_data->states[i].control & FID_MASK;
895                         vid = (data->acpi_data->states[i].control >> VID_SHIFT) & VID_MASK;
896                 }
897
898                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
899
900                 powernow_table[i].index = fid; /* lower 8 bits */
901                 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
902                 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
903
904                 /* verify frequency is OK */
905                 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
906                         (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
907                         dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
908                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
909                         continue;
910                 }
911
912                 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
913                 if (vid == VID_OFF) {
914                         dprintk("invalid vid %u, ignoring\n", vid);
915                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
916                         continue;
917                 }
918
919                 /* verify only 1 entry from the lo frequency table */
920                 if (fid < HI_FID_TABLE_BOTTOM) {
921                         if (cntlofreq) {
922                                 /* if both entries are the same, ignore this one ... */
923                                 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
924                                     (powernow_table[i].index != powernow_table[cntlofreq].index)) {
925                                         printk(KERN_ERR PFX "Too many lo freq table entries\n");
926                                         return 1;
927                                 }
928
929                                 dprintk("double low frequency table entry, ignoring it.\n");
930                                 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
931                                 continue;
932                         } else
933                                 cntlofreq = i;
934                 }
935
936                 if (powernow_table[i].frequency != (data->acpi_data->states[i].core_frequency * 1000)) {
937                         printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
938                                 powernow_table[i].frequency,
939                                 (unsigned int) (data->acpi_data->states[i].core_frequency * 1000));
940                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
941                         continue;
942                 }
943         }
944         return 0;
945 }
946
947 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
948 {
949         if (data->acpi_data->state_count)
950                 acpi_processor_unregister_performance(data->acpi_data, data->cpu);
951 }
952
953 #else
954 static int powernow_k8_cpu_preinit_acpi(void) { return -ENODEV; }
955 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
956 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
957 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
958 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
959
960 /* Take a frequency, and issue the fid/vid transition command */
961 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
962 {
963         u32 fid = 0;
964         u32 vid = 0;
965         int res, i;
966         struct cpufreq_freqs freqs;
967
968         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
969
970         /* fid/vid correctness check for k8 */
971         /* fid are the lower 8 bits of the index we stored into
972          * the cpufreq frequency table in find_psb_table, vid
973          * are the upper 8 bits.
974          */
975         fid = data->powernow_table[index].index & 0xFF;
976         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
977
978         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
979
980         if (query_current_values_with_pending_wait(data))
981                 return 1;
982
983         if ((data->currvid == vid) && (data->currfid == fid)) {
984                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
985                         fid, vid);
986                 return 0;
987         }
988
989         if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
990                 printk(KERN_ERR PFX
991                        "ignoring illegal change in lo freq table-%x to 0x%x\n",
992                        data->currfid, fid);
993                 return 1;
994         }
995
996         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
997                 smp_processor_id(), fid, vid);
998         freqs.old = find_khz_freq_from_fid(data->currfid);
999         freqs.new = find_khz_freq_from_fid(fid);
1000
1001         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1002                 freqs.cpu = i;
1003                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1004         }
1005
1006         res = transition_fid_vid(data, fid, vid);
1007         freqs.new = find_khz_freq_from_fid(data->currfid);
1008
1009         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1010                 freqs.cpu = i;
1011                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1012         }
1013         return res;
1014 }
1015
1016 /* Take a frequency, and issue the hardware pstate transition command */
1017 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1018 {
1019         u32 pstate = 0;
1020         int res, i;
1021         struct cpufreq_freqs freqs;
1022
1023         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1024
1025         /* get MSR index for hardware pstate transition */
1026         pstate = index & HW_PSTATE_MASK;
1027         if (pstate > data->max_hw_pstate)
1028                 return 0;
1029         freqs.old = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1030         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1031
1032         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1033                 freqs.cpu = i;
1034                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1035         }
1036
1037         res = transition_pstate(data, pstate);
1038         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1039
1040         for_each_cpu_mask_nr(i, *(data->available_cores)) {
1041                 freqs.cpu = i;
1042                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1043         }
1044         return res;
1045 }
1046
1047 /* Driver entry point to switch to the target frequency */
1048 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1049 {
1050         cpumask_t oldmask;
1051         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1052         u32 checkfid;
1053         u32 checkvid;
1054         unsigned int newstate;
1055         int ret = -EIO;
1056
1057         if (!data)
1058                 return -EINVAL;
1059
1060         checkfid = data->currfid;
1061         checkvid = data->currvid;
1062
1063         /* only run on specific CPU from here on */
1064         oldmask = current->cpus_allowed;
1065         set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1066
1067         if (smp_processor_id() != pol->cpu) {
1068                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1069                 goto err_out;
1070         }
1071
1072         if (pending_bit_stuck()) {
1073                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1074                 goto err_out;
1075         }
1076
1077         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1078                 pol->cpu, targfreq, pol->min, pol->max, relation);
1079
1080         if (query_current_values_with_pending_wait(data))
1081                 goto err_out;
1082
1083         if (cpu_family != CPU_HW_PSTATE) {
1084                 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1085                 data->currfid, data->currvid);
1086
1087                 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1088                         printk(KERN_INFO PFX
1089                                 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1090                                 checkfid, data->currfid, checkvid, data->currvid);
1091                 }
1092         }
1093
1094         if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1095                 goto err_out;
1096
1097         mutex_lock(&fidvid_mutex);
1098
1099         powernow_k8_acpi_pst_values(data, newstate);
1100
1101         if (cpu_family == CPU_HW_PSTATE)
1102                 ret = transition_frequency_pstate(data, newstate);
1103         else
1104                 ret = transition_frequency_fidvid(data, newstate);
1105         if (ret) {
1106                 printk(KERN_ERR PFX "transition frequency failed\n");
1107                 ret = 1;
1108                 mutex_unlock(&fidvid_mutex);
1109                 goto err_out;
1110         }
1111         mutex_unlock(&fidvid_mutex);
1112
1113         if (cpu_family == CPU_HW_PSTATE)
1114                 pol->cur = find_khz_freq_from_pstate(data->powernow_table, newstate);
1115         else
1116                 pol->cur = find_khz_freq_from_fid(data->currfid);
1117         ret = 0;
1118
1119 err_out:
1120         set_cpus_allowed_ptr(current, &oldmask);
1121         return ret;
1122 }
1123
1124 /* Driver entry point to verify the policy and range of frequencies */
1125 static int powernowk8_verify(struct cpufreq_policy *pol)
1126 {
1127         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1128
1129         if (!data)
1130                 return -EINVAL;
1131
1132         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1133 }
1134
1135 /* per CPU init entry point to the driver */
1136 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1137 {
1138         struct powernow_k8_data *data;
1139         cpumask_t oldmask = CPU_MASK_ALL;
1140         int rc;
1141
1142         if (!cpu_online(pol->cpu))
1143                 return -ENODEV;
1144
1145         if (!check_supported_cpu(pol->cpu))
1146                 return -ENODEV;
1147
1148         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1149         if (!data) {
1150                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1151                 return -ENOMEM;
1152         }
1153
1154         data->cpu = pol->cpu;
1155
1156         if (powernow_k8_cpu_init_acpi(data)) {
1157                 /*
1158                  * Use the PSB BIOS structure. This is only availabe on
1159                  * an UP version, and is deprecated by AMD.
1160                  */
1161                 if (num_online_cpus() != 1) {
1162 #ifndef CONFIG_ACPI_PROCESSOR
1163                         printk(KERN_ERR PFX "ACPI Processor support is required "
1164                                "for SMP systems but is absent. Please load the "
1165                                "ACPI Processor module before starting this "
1166                                "driver.\n");
1167 #else
1168                         printk(KERN_ERR PFX "Your BIOS does not provide ACPI "
1169                                "_PSS objects in a way that Linux understands. "
1170                                "Please report this to the Linux ACPI maintainers"
1171                                " and complain to your BIOS vendor.\n");
1172 #endif
1173                         kfree(data);
1174                         return -ENODEV;
1175                 }
1176                 if (pol->cpu != 0) {
1177                         printk(KERN_ERR PFX "No ACPI _PSS objects for CPU other than "
1178                                "CPU0. Complain to your BIOS vendor.\n");
1179                         kfree(data);
1180                         return -ENODEV;
1181                 }
1182                 rc = find_psb_table(data);
1183                 if (rc) {
1184                         kfree(data);
1185                         return -ENODEV;
1186                 }
1187         }
1188
1189         /* only run on specific CPU from here on */
1190         oldmask = current->cpus_allowed;
1191         set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1192
1193         if (smp_processor_id() != pol->cpu) {
1194                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1195                 goto err_out;
1196         }
1197
1198         if (pending_bit_stuck()) {
1199                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1200                 goto err_out;
1201         }
1202
1203         if (query_current_values_with_pending_wait(data))
1204                 goto err_out;
1205
1206         if (cpu_family == CPU_OPTERON)
1207                 fidvid_msr_init();
1208
1209         /* run on any CPU again */
1210         set_cpus_allowed_ptr(current, &oldmask);
1211
1212         pol->cpus = data->starting_core_affinity;
1213         data->available_cores = &(pol->cpus);
1214
1215         /* Take a crude guess here.
1216          * That guess was in microseconds, so multiply with 1000 */
1217         pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1218             + (3 * (1 << data->irt) * 10)) * 1000;
1219
1220         if (cpu_family == CPU_HW_PSTATE)
1221                 pol->cur = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1222         else
1223                 pol->cur = find_khz_freq_from_fid(data->currfid);
1224         dprintk("policy current frequency %d kHz\n", pol->cur);
1225
1226         /* min/max the cpu is capable of */
1227         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1228                 printk(KERN_ERR PFX "invalid powernow_table\n");
1229                 powernow_k8_cpu_exit_acpi(data);
1230                 kfree(data->powernow_table);
1231                 kfree(data);
1232                 return -EINVAL;
1233         }
1234
1235         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1236
1237         if (cpu_family == CPU_HW_PSTATE)
1238                 dprintk("cpu_init done, current pstate 0x%x\n", data->currpstate);
1239         else
1240                 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1241                         data->currfid, data->currvid);
1242
1243         per_cpu(powernow_data, pol->cpu) = data;
1244
1245         return 0;
1246
1247 err_out:
1248         set_cpus_allowed_ptr(current, &oldmask);
1249         powernow_k8_cpu_exit_acpi(data);
1250
1251         kfree(data);
1252         return -ENODEV;
1253 }
1254
1255 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1256 {
1257         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1258
1259         if (!data)
1260                 return -EINVAL;
1261
1262         powernow_k8_cpu_exit_acpi(data);
1263
1264         cpufreq_frequency_table_put_attr(pol->cpu);
1265
1266         kfree(data->powernow_table);
1267         kfree(data);
1268
1269         return 0;
1270 }
1271
1272 static unsigned int powernowk8_get (unsigned int cpu)
1273 {
1274         struct powernow_k8_data *data;
1275         cpumask_t oldmask = current->cpus_allowed;
1276         unsigned int khz = 0;
1277         unsigned int first;
1278
1279         first = first_cpu(per_cpu(cpu_core_map, cpu));
1280         data = per_cpu(powernow_data, first);
1281
1282         if (!data)
1283                 return -EINVAL;
1284
1285         set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1286         if (smp_processor_id() != cpu) {
1287                 printk(KERN_ERR PFX
1288                         "limiting to CPU %d failed in powernowk8_get\n", cpu);
1289                 set_cpus_allowed_ptr(current, &oldmask);
1290                 return 0;
1291         }
1292
1293         if (query_current_values_with_pending_wait(data))
1294                 goto out;
1295
1296         if (cpu_family == CPU_HW_PSTATE)
1297                 khz = find_khz_freq_from_pstate(data->powernow_table,
1298                                                 data->currpstate);
1299         else
1300                 khz = find_khz_freq_from_fid(data->currfid);
1301
1302
1303 out:
1304         set_cpus_allowed_ptr(current, &oldmask);
1305         return khz;
1306 }
1307
1308 static struct freq_attr* powernow_k8_attr[] = {
1309         &cpufreq_freq_attr_scaling_available_freqs,
1310         NULL,
1311 };
1312
1313 static struct cpufreq_driver cpufreq_amd64_driver = {
1314         .verify = powernowk8_verify,
1315         .target = powernowk8_target,
1316         .init = powernowk8_cpu_init,
1317         .exit = __devexit_p(powernowk8_cpu_exit),
1318         .get = powernowk8_get,
1319         .name = "powernow-k8",
1320         .owner = THIS_MODULE,
1321         .attr = powernow_k8_attr,
1322 };
1323
1324 /* driver entry point for init */
1325 static int __cpuinit powernowk8_init(void)
1326 {
1327         unsigned int i, supported_cpus = 0;
1328
1329         for_each_online_cpu(i) {
1330                 if (check_supported_cpu(i))
1331                         supported_cpus++;
1332         }
1333
1334         if (supported_cpus == num_online_cpus()) {
1335                 powernow_k8_cpu_preinit_acpi();
1336                 printk(KERN_INFO PFX "Found %d %s "
1337                         "processors (%d cpu cores) (" VERSION ")\n",
1338                         num_online_nodes(),
1339                         boot_cpu_data.x86_model_id, supported_cpus);
1340                 return cpufreq_register_driver(&cpufreq_amd64_driver);
1341         }
1342
1343         return -ENODEV;
1344 }
1345
1346 /* driver entry point for term */
1347 static void __exit powernowk8_exit(void)
1348 {
1349         dprintk("exit\n");
1350
1351         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1352
1353 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
1354         free_percpu(acpi_perf_data);
1355 #endif
1356 }
1357
1358 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1359 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1360 MODULE_LICENSE("GPL");
1361
1362 late_initcall(powernowk8_init);
1363 module_exit(powernowk8_exit);