ASoC: tlv320aic23: Convert to params_width()
[cascardo/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23  * Intel PerfMon, used on Core and later.
24  */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
28         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
29         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
30         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
31         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
32         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
33         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
34         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45         EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87         EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99         EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134         /*
135          * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136          * siblings; disable these events because they can corrupt unrelated
137          * counters.
138          */
139         INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140         INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141         INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142         INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143         EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152         EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157         EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165         EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181         EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189         EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197         EVENT_PTR(mem_ld_nhm),
198         NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202         EVENT_PTR(mem_ld_snb),
203         EVENT_PTR(mem_st_snb),
204         NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215         INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217         INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219         INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220         EVENT_CONSTRAINT_END
221 };
222
223 static u64 intel_pmu_event_map(int hw_event)
224 {
225         return intel_perfmon_event_map[hw_event];
226 }
227
228 #define SNB_DMND_DATA_RD        (1ULL << 0)
229 #define SNB_DMND_RFO            (1ULL << 1)
230 #define SNB_DMND_IFETCH         (1ULL << 2)
231 #define SNB_DMND_WB             (1ULL << 3)
232 #define SNB_PF_DATA_RD          (1ULL << 4)
233 #define SNB_PF_RFO              (1ULL << 5)
234 #define SNB_PF_IFETCH           (1ULL << 6)
235 #define SNB_LLC_DATA_RD         (1ULL << 7)
236 #define SNB_LLC_RFO             (1ULL << 8)
237 #define SNB_LLC_IFETCH          (1ULL << 9)
238 #define SNB_BUS_LOCKS           (1ULL << 10)
239 #define SNB_STRM_ST             (1ULL << 11)
240 #define SNB_OTHER               (1ULL << 15)
241 #define SNB_RESP_ANY            (1ULL << 16)
242 #define SNB_NO_SUPP             (1ULL << 17)
243 #define SNB_LLC_HITM            (1ULL << 18)
244 #define SNB_LLC_HITE            (1ULL << 19)
245 #define SNB_LLC_HITS            (1ULL << 20)
246 #define SNB_LLC_HITF            (1ULL << 21)
247 #define SNB_LOCAL               (1ULL << 22)
248 #define SNB_REMOTE              (0xffULL << 23)
249 #define SNB_SNP_NONE            (1ULL << 31)
250 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
251 #define SNB_SNP_MISS            (1ULL << 33)
252 #define SNB_NO_FWD              (1ULL << 34)
253 #define SNB_SNP_FWD             (1ULL << 35)
254 #define SNB_HITM                (1ULL << 36)
255 #define SNB_NON_DRAM            (1ULL << 37)
256
257 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
258 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
259 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
260
261 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
262                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
263                                  SNB_HITM)
264
265 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
266 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
267
268 #define SNB_L3_ACCESS           SNB_RESP_ANY
269 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
270
271 static __initconst const u64 snb_hw_cache_extra_regs
272                                 [PERF_COUNT_HW_CACHE_MAX]
273                                 [PERF_COUNT_HW_CACHE_OP_MAX]
274                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
275 {
276  [ C(LL  ) ] = {
277         [ C(OP_READ) ] = {
278                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
279                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
280         },
281         [ C(OP_WRITE) ] = {
282                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
283                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
284         },
285         [ C(OP_PREFETCH) ] = {
286                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
287                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
288         },
289  },
290  [ C(NODE) ] = {
291         [ C(OP_READ) ] = {
292                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
293                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
294         },
295         [ C(OP_WRITE) ] = {
296                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
297                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
298         },
299         [ C(OP_PREFETCH) ] = {
300                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
301                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
302         },
303  },
304 };
305
306 static __initconst const u64 snb_hw_cache_event_ids
307                                 [PERF_COUNT_HW_CACHE_MAX]
308                                 [PERF_COUNT_HW_CACHE_OP_MAX]
309                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310 {
311  [ C(L1D) ] = {
312         [ C(OP_READ) ] = {
313                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
314                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
315         },
316         [ C(OP_WRITE) ] = {
317                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
318                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
319         },
320         [ C(OP_PREFETCH) ] = {
321                 [ C(RESULT_ACCESS) ] = 0x0,
322                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
323         },
324  },
325  [ C(L1I ) ] = {
326         [ C(OP_READ) ] = {
327                 [ C(RESULT_ACCESS) ] = 0x0,
328                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
329         },
330         [ C(OP_WRITE) ] = {
331                 [ C(RESULT_ACCESS) ] = -1,
332                 [ C(RESULT_MISS)   ] = -1,
333         },
334         [ C(OP_PREFETCH) ] = {
335                 [ C(RESULT_ACCESS) ] = 0x0,
336                 [ C(RESULT_MISS)   ] = 0x0,
337         },
338  },
339  [ C(LL  ) ] = {
340         [ C(OP_READ) ] = {
341                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
342                 [ C(RESULT_ACCESS) ] = 0x01b7,
343                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
344                 [ C(RESULT_MISS)   ] = 0x01b7,
345         },
346         [ C(OP_WRITE) ] = {
347                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
348                 [ C(RESULT_ACCESS) ] = 0x01b7,
349                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
350                 [ C(RESULT_MISS)   ] = 0x01b7,
351         },
352         [ C(OP_PREFETCH) ] = {
353                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
354                 [ C(RESULT_ACCESS) ] = 0x01b7,
355                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
356                 [ C(RESULT_MISS)   ] = 0x01b7,
357         },
358  },
359  [ C(DTLB) ] = {
360         [ C(OP_READ) ] = {
361                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
362                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
363         },
364         [ C(OP_WRITE) ] = {
365                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
366                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
367         },
368         [ C(OP_PREFETCH) ] = {
369                 [ C(RESULT_ACCESS) ] = 0x0,
370                 [ C(RESULT_MISS)   ] = 0x0,
371         },
372  },
373  [ C(ITLB) ] = {
374         [ C(OP_READ) ] = {
375                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
376                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
377         },
378         [ C(OP_WRITE) ] = {
379                 [ C(RESULT_ACCESS) ] = -1,
380                 [ C(RESULT_MISS)   ] = -1,
381         },
382         [ C(OP_PREFETCH) ] = {
383                 [ C(RESULT_ACCESS) ] = -1,
384                 [ C(RESULT_MISS)   ] = -1,
385         },
386  },
387  [ C(BPU ) ] = {
388         [ C(OP_READ) ] = {
389                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
390                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
391         },
392         [ C(OP_WRITE) ] = {
393                 [ C(RESULT_ACCESS) ] = -1,
394                 [ C(RESULT_MISS)   ] = -1,
395         },
396         [ C(OP_PREFETCH) ] = {
397                 [ C(RESULT_ACCESS) ] = -1,
398                 [ C(RESULT_MISS)   ] = -1,
399         },
400  },
401  [ C(NODE) ] = {
402         [ C(OP_READ) ] = {
403                 [ C(RESULT_ACCESS) ] = 0x01b7,
404                 [ C(RESULT_MISS)   ] = 0x01b7,
405         },
406         [ C(OP_WRITE) ] = {
407                 [ C(RESULT_ACCESS) ] = 0x01b7,
408                 [ C(RESULT_MISS)   ] = 0x01b7,
409         },
410         [ C(OP_PREFETCH) ] = {
411                 [ C(RESULT_ACCESS) ] = 0x01b7,
412                 [ C(RESULT_MISS)   ] = 0x01b7,
413         },
414  },
415
416 };
417
418 static __initconst const u64 westmere_hw_cache_event_ids
419                                 [PERF_COUNT_HW_CACHE_MAX]
420                                 [PERF_COUNT_HW_CACHE_OP_MAX]
421                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
422 {
423  [ C(L1D) ] = {
424         [ C(OP_READ) ] = {
425                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
426                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
427         },
428         [ C(OP_WRITE) ] = {
429                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
430                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
431         },
432         [ C(OP_PREFETCH) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
434                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
435         },
436  },
437  [ C(L1I ) ] = {
438         [ C(OP_READ) ] = {
439                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
440                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
441         },
442         [ C(OP_WRITE) ] = {
443                 [ C(RESULT_ACCESS) ] = -1,
444                 [ C(RESULT_MISS)   ] = -1,
445         },
446         [ C(OP_PREFETCH) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x0,
448                 [ C(RESULT_MISS)   ] = 0x0,
449         },
450  },
451  [ C(LL  ) ] = {
452         [ C(OP_READ) ] = {
453                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
454                 [ C(RESULT_ACCESS) ] = 0x01b7,
455                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
456                 [ C(RESULT_MISS)   ] = 0x01b7,
457         },
458         /*
459          * Use RFO, not WRITEBACK, because a write miss would typically occur
460          * on RFO.
461          */
462         [ C(OP_WRITE) ] = {
463                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
464                 [ C(RESULT_ACCESS) ] = 0x01b7,
465                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
466                 [ C(RESULT_MISS)   ] = 0x01b7,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
470                 [ C(RESULT_ACCESS) ] = 0x01b7,
471                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
472                 [ C(RESULT_MISS)   ] = 0x01b7,
473         },
474  },
475  [ C(DTLB) ] = {
476         [ C(OP_READ) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
478                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
479         },
480         [ C(OP_WRITE) ] = {
481                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
482                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
483         },
484         [ C(OP_PREFETCH) ] = {
485                 [ C(RESULT_ACCESS) ] = 0x0,
486                 [ C(RESULT_MISS)   ] = 0x0,
487         },
488  },
489  [ C(ITLB) ] = {
490         [ C(OP_READ) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
492                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = -1,
496                 [ C(RESULT_MISS)   ] = -1,
497         },
498         [ C(OP_PREFETCH) ] = {
499                 [ C(RESULT_ACCESS) ] = -1,
500                 [ C(RESULT_MISS)   ] = -1,
501         },
502  },
503  [ C(BPU ) ] = {
504         [ C(OP_READ) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
506                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
507         },
508         [ C(OP_WRITE) ] = {
509                 [ C(RESULT_ACCESS) ] = -1,
510                 [ C(RESULT_MISS)   ] = -1,
511         },
512         [ C(OP_PREFETCH) ] = {
513                 [ C(RESULT_ACCESS) ] = -1,
514                 [ C(RESULT_MISS)   ] = -1,
515         },
516  },
517  [ C(NODE) ] = {
518         [ C(OP_READ) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x01b7,
520                 [ C(RESULT_MISS)   ] = 0x01b7,
521         },
522         [ C(OP_WRITE) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x01b7,
524                 [ C(RESULT_MISS)   ] = 0x01b7,
525         },
526         [ C(OP_PREFETCH) ] = {
527                 [ C(RESULT_ACCESS) ] = 0x01b7,
528                 [ C(RESULT_MISS)   ] = 0x01b7,
529         },
530  },
531 };
532
533 /*
534  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
535  * See IA32 SDM Vol 3B 30.6.1.3
536  */
537
538 #define NHM_DMND_DATA_RD        (1 << 0)
539 #define NHM_DMND_RFO            (1 << 1)
540 #define NHM_DMND_IFETCH         (1 << 2)
541 #define NHM_DMND_WB             (1 << 3)
542 #define NHM_PF_DATA_RD          (1 << 4)
543 #define NHM_PF_DATA_RFO         (1 << 5)
544 #define NHM_PF_IFETCH           (1 << 6)
545 #define NHM_OFFCORE_OTHER       (1 << 7)
546 #define NHM_UNCORE_HIT          (1 << 8)
547 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
548 #define NHM_OTHER_CORE_HITM     (1 << 10)
549                                 /* reserved */
550 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
551 #define NHM_REMOTE_DRAM         (1 << 13)
552 #define NHM_LOCAL_DRAM          (1 << 14)
553 #define NHM_NON_DRAM            (1 << 15)
554
555 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
556 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
557
558 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
559 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
560 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
561
562 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
563 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
564 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
565
566 static __initconst const u64 nehalem_hw_cache_extra_regs
567                                 [PERF_COUNT_HW_CACHE_MAX]
568                                 [PERF_COUNT_HW_CACHE_OP_MAX]
569                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
570 {
571  [ C(LL  ) ] = {
572         [ C(OP_READ) ] = {
573                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
574                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
575         },
576         [ C(OP_WRITE) ] = {
577                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
578                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
579         },
580         [ C(OP_PREFETCH) ] = {
581                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
582                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
583         },
584  },
585  [ C(NODE) ] = {
586         [ C(OP_READ) ] = {
587                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
588                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
589         },
590         [ C(OP_WRITE) ] = {
591                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
592                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
593         },
594         [ C(OP_PREFETCH) ] = {
595                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
596                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
597         },
598  },
599 };
600
601 static __initconst const u64 nehalem_hw_cache_event_ids
602                                 [PERF_COUNT_HW_CACHE_MAX]
603                                 [PERF_COUNT_HW_CACHE_OP_MAX]
604                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
605 {
606  [ C(L1D) ] = {
607         [ C(OP_READ) ] = {
608                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
609                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
610         },
611         [ C(OP_WRITE) ] = {
612                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
613                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
614         },
615         [ C(OP_PREFETCH) ] = {
616                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
617                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
618         },
619  },
620  [ C(L1I ) ] = {
621         [ C(OP_READ) ] = {
622                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
623                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
624         },
625         [ C(OP_WRITE) ] = {
626                 [ C(RESULT_ACCESS) ] = -1,
627                 [ C(RESULT_MISS)   ] = -1,
628         },
629         [ C(OP_PREFETCH) ] = {
630                 [ C(RESULT_ACCESS) ] = 0x0,
631                 [ C(RESULT_MISS)   ] = 0x0,
632         },
633  },
634  [ C(LL  ) ] = {
635         [ C(OP_READ) ] = {
636                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
637                 [ C(RESULT_ACCESS) ] = 0x01b7,
638                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
639                 [ C(RESULT_MISS)   ] = 0x01b7,
640         },
641         /*
642          * Use RFO, not WRITEBACK, because a write miss would typically occur
643          * on RFO.
644          */
645         [ C(OP_WRITE) ] = {
646                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
647                 [ C(RESULT_ACCESS) ] = 0x01b7,
648                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
649                 [ C(RESULT_MISS)   ] = 0x01b7,
650         },
651         [ C(OP_PREFETCH) ] = {
652                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
653                 [ C(RESULT_ACCESS) ] = 0x01b7,
654                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
655                 [ C(RESULT_MISS)   ] = 0x01b7,
656         },
657  },
658  [ C(DTLB) ] = {
659         [ C(OP_READ) ] = {
660                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
661                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
662         },
663         [ C(OP_WRITE) ] = {
664                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
665                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
666         },
667         [ C(OP_PREFETCH) ] = {
668                 [ C(RESULT_ACCESS) ] = 0x0,
669                 [ C(RESULT_MISS)   ] = 0x0,
670         },
671  },
672  [ C(ITLB) ] = {
673         [ C(OP_READ) ] = {
674                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
675                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
676         },
677         [ C(OP_WRITE) ] = {
678                 [ C(RESULT_ACCESS) ] = -1,
679                 [ C(RESULT_MISS)   ] = -1,
680         },
681         [ C(OP_PREFETCH) ] = {
682                 [ C(RESULT_ACCESS) ] = -1,
683                 [ C(RESULT_MISS)   ] = -1,
684         },
685  },
686  [ C(BPU ) ] = {
687         [ C(OP_READ) ] = {
688                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
689                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
690         },
691         [ C(OP_WRITE) ] = {
692                 [ C(RESULT_ACCESS) ] = -1,
693                 [ C(RESULT_MISS)   ] = -1,
694         },
695         [ C(OP_PREFETCH) ] = {
696                 [ C(RESULT_ACCESS) ] = -1,
697                 [ C(RESULT_MISS)   ] = -1,
698         },
699  },
700  [ C(NODE) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = 0x01b7,
703                 [ C(RESULT_MISS)   ] = 0x01b7,
704         },
705         [ C(OP_WRITE) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x01b7,
707                 [ C(RESULT_MISS)   ] = 0x01b7,
708         },
709         [ C(OP_PREFETCH) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x01b7,
711                 [ C(RESULT_MISS)   ] = 0x01b7,
712         },
713  },
714 };
715
716 static __initconst const u64 core2_hw_cache_event_ids
717                                 [PERF_COUNT_HW_CACHE_MAX]
718                                 [PERF_COUNT_HW_CACHE_OP_MAX]
719                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
720 {
721  [ C(L1D) ] = {
722         [ C(OP_READ) ] = {
723                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
724                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
725         },
726         [ C(OP_WRITE) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
728                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
729         },
730         [ C(OP_PREFETCH) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
732                 [ C(RESULT_MISS)   ] = 0,
733         },
734  },
735  [ C(L1I ) ] = {
736         [ C(OP_READ) ] = {
737                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
738                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
739         },
740         [ C(OP_WRITE) ] = {
741                 [ C(RESULT_ACCESS) ] = -1,
742                 [ C(RESULT_MISS)   ] = -1,
743         },
744         [ C(OP_PREFETCH) ] = {
745                 [ C(RESULT_ACCESS) ] = 0,
746                 [ C(RESULT_MISS)   ] = 0,
747         },
748  },
749  [ C(LL  ) ] = {
750         [ C(OP_READ) ] = {
751                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
752                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
753         },
754         [ C(OP_WRITE) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
756                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
757         },
758         [ C(OP_PREFETCH) ] = {
759                 [ C(RESULT_ACCESS) ] = 0,
760                 [ C(RESULT_MISS)   ] = 0,
761         },
762  },
763  [ C(DTLB) ] = {
764         [ C(OP_READ) ] = {
765                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
766                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
767         },
768         [ C(OP_WRITE) ] = {
769                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
770                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
771         },
772         [ C(OP_PREFETCH) ] = {
773                 [ C(RESULT_ACCESS) ] = 0,
774                 [ C(RESULT_MISS)   ] = 0,
775         },
776  },
777  [ C(ITLB) ] = {
778         [ C(OP_READ) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
780                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
781         },
782         [ C(OP_WRITE) ] = {
783                 [ C(RESULT_ACCESS) ] = -1,
784                 [ C(RESULT_MISS)   ] = -1,
785         },
786         [ C(OP_PREFETCH) ] = {
787                 [ C(RESULT_ACCESS) ] = -1,
788                 [ C(RESULT_MISS)   ] = -1,
789         },
790  },
791  [ C(BPU ) ] = {
792         [ C(OP_READ) ] = {
793                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
794                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
795         },
796         [ C(OP_WRITE) ] = {
797                 [ C(RESULT_ACCESS) ] = -1,
798                 [ C(RESULT_MISS)   ] = -1,
799         },
800         [ C(OP_PREFETCH) ] = {
801                 [ C(RESULT_ACCESS) ] = -1,
802                 [ C(RESULT_MISS)   ] = -1,
803         },
804  },
805 };
806
807 static __initconst const u64 atom_hw_cache_event_ids
808                                 [PERF_COUNT_HW_CACHE_MAX]
809                                 [PERF_COUNT_HW_CACHE_OP_MAX]
810                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
811 {
812  [ C(L1D) ] = {
813         [ C(OP_READ) ] = {
814                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
815                 [ C(RESULT_MISS)   ] = 0,
816         },
817         [ C(OP_WRITE) ] = {
818                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
819                 [ C(RESULT_MISS)   ] = 0,
820         },
821         [ C(OP_PREFETCH) ] = {
822                 [ C(RESULT_ACCESS) ] = 0x0,
823                 [ C(RESULT_MISS)   ] = 0,
824         },
825  },
826  [ C(L1I ) ] = {
827         [ C(OP_READ) ] = {
828                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
829                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
830         },
831         [ C(OP_WRITE) ] = {
832                 [ C(RESULT_ACCESS) ] = -1,
833                 [ C(RESULT_MISS)   ] = -1,
834         },
835         [ C(OP_PREFETCH) ] = {
836                 [ C(RESULT_ACCESS) ] = 0,
837                 [ C(RESULT_MISS)   ] = 0,
838         },
839  },
840  [ C(LL  ) ] = {
841         [ C(OP_READ) ] = {
842                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
843                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
844         },
845         [ C(OP_WRITE) ] = {
846                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
847                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
848         },
849         [ C(OP_PREFETCH) ] = {
850                 [ C(RESULT_ACCESS) ] = 0,
851                 [ C(RESULT_MISS)   ] = 0,
852         },
853  },
854  [ C(DTLB) ] = {
855         [ C(OP_READ) ] = {
856                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
857                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
858         },
859         [ C(OP_WRITE) ] = {
860                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
861                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
862         },
863         [ C(OP_PREFETCH) ] = {
864                 [ C(RESULT_ACCESS) ] = 0,
865                 [ C(RESULT_MISS)   ] = 0,
866         },
867  },
868  [ C(ITLB) ] = {
869         [ C(OP_READ) ] = {
870                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
871                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
872         },
873         [ C(OP_WRITE) ] = {
874                 [ C(RESULT_ACCESS) ] = -1,
875                 [ C(RESULT_MISS)   ] = -1,
876         },
877         [ C(OP_PREFETCH) ] = {
878                 [ C(RESULT_ACCESS) ] = -1,
879                 [ C(RESULT_MISS)   ] = -1,
880         },
881  },
882  [ C(BPU ) ] = {
883         [ C(OP_READ) ] = {
884                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
885                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
886         },
887         [ C(OP_WRITE) ] = {
888                 [ C(RESULT_ACCESS) ] = -1,
889                 [ C(RESULT_MISS)   ] = -1,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = -1,
893                 [ C(RESULT_MISS)   ] = -1,
894         },
895  },
896 };
897
898 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
899 {
900         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
901         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
902         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
903         EVENT_EXTRA_END
904 };
905
906 #define SLM_DMND_READ           SNB_DMND_DATA_RD
907 #define SLM_DMND_WRITE          SNB_DMND_RFO
908 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
909
910 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
911 #define SLM_LLC_ACCESS          SNB_RESP_ANY
912 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
913
914 static __initconst const u64 slm_hw_cache_extra_regs
915                                 [PERF_COUNT_HW_CACHE_MAX]
916                                 [PERF_COUNT_HW_CACHE_OP_MAX]
917                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
918 {
919  [ C(LL  ) ] = {
920         [ C(OP_READ) ] = {
921                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
922                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
923         },
924         [ C(OP_WRITE) ] = {
925                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
926                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
927         },
928         [ C(OP_PREFETCH) ] = {
929                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
930                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
931         },
932  },
933 };
934
935 static __initconst const u64 slm_hw_cache_event_ids
936                                 [PERF_COUNT_HW_CACHE_MAX]
937                                 [PERF_COUNT_HW_CACHE_OP_MAX]
938                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
939 {
940  [ C(L1D) ] = {
941         [ C(OP_READ) ] = {
942                 [ C(RESULT_ACCESS) ] = 0,
943                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
944         },
945         [ C(OP_WRITE) ] = {
946                 [ C(RESULT_ACCESS) ] = 0,
947                 [ C(RESULT_MISS)   ] = 0,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = 0,
951                 [ C(RESULT_MISS)   ] = 0,
952         },
953  },
954  [ C(L1I ) ] = {
955         [ C(OP_READ) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
957                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
958         },
959         [ C(OP_WRITE) ] = {
960                 [ C(RESULT_ACCESS) ] = -1,
961                 [ C(RESULT_MISS)   ] = -1,
962         },
963         [ C(OP_PREFETCH) ] = {
964                 [ C(RESULT_ACCESS) ] = 0,
965                 [ C(RESULT_MISS)   ] = 0,
966         },
967  },
968  [ C(LL  ) ] = {
969         [ C(OP_READ) ] = {
970                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
971                 [ C(RESULT_ACCESS) ] = 0x01b7,
972                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
973                 [ C(RESULT_MISS)   ] = 0x01b7,
974         },
975         [ C(OP_WRITE) ] = {
976                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
977                 [ C(RESULT_ACCESS) ] = 0x01b7,
978                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
979                 [ C(RESULT_MISS)   ] = 0x01b7,
980         },
981         [ C(OP_PREFETCH) ] = {
982                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
983                 [ C(RESULT_ACCESS) ] = 0x01b7,
984                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
985                 [ C(RESULT_MISS)   ] = 0x01b7,
986         },
987  },
988  [ C(DTLB) ] = {
989         [ C(OP_READ) ] = {
990                 [ C(RESULT_ACCESS) ] = 0,
991                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
992         },
993         [ C(OP_WRITE) ] = {
994                 [ C(RESULT_ACCESS) ] = 0,
995                 [ C(RESULT_MISS)   ] = 0,
996         },
997         [ C(OP_PREFETCH) ] = {
998                 [ C(RESULT_ACCESS) ] = 0,
999                 [ C(RESULT_MISS)   ] = 0,
1000         },
1001  },
1002  [ C(ITLB) ] = {
1003         [ C(OP_READ) ] = {
1004                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1005                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1006         },
1007         [ C(OP_WRITE) ] = {
1008                 [ C(RESULT_ACCESS) ] = -1,
1009                 [ C(RESULT_MISS)   ] = -1,
1010         },
1011         [ C(OP_PREFETCH) ] = {
1012                 [ C(RESULT_ACCESS) ] = -1,
1013                 [ C(RESULT_MISS)   ] = -1,
1014         },
1015  },
1016  [ C(BPU ) ] = {
1017         [ C(OP_READ) ] = {
1018                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1019                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1020         },
1021         [ C(OP_WRITE) ] = {
1022                 [ C(RESULT_ACCESS) ] = -1,
1023                 [ C(RESULT_MISS)   ] = -1,
1024         },
1025         [ C(OP_PREFETCH) ] = {
1026                 [ C(RESULT_ACCESS) ] = -1,
1027                 [ C(RESULT_MISS)   ] = -1,
1028         },
1029  },
1030 };
1031
1032 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1033 {
1034         /* user explicitly requested branch sampling */
1035         if (has_branch_stack(event))
1036                 return true;
1037
1038         /* implicit branch sampling to correct PEBS skid */
1039         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1040             x86_pmu.intel_cap.pebs_format < 2)
1041                 return true;
1042
1043         return false;
1044 }
1045
1046 static void intel_pmu_disable_all(void)
1047 {
1048         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1049
1050         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1051
1052         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1053                 intel_pmu_disable_bts();
1054
1055         intel_pmu_pebs_disable_all();
1056         intel_pmu_lbr_disable_all();
1057 }
1058
1059 static void intel_pmu_enable_all(int added)
1060 {
1061         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1062
1063         intel_pmu_pebs_enable_all();
1064         intel_pmu_lbr_enable_all();
1065         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1066                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1067
1068         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1069                 struct perf_event *event =
1070                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1071
1072                 if (WARN_ON_ONCE(!event))
1073                         return;
1074
1075                 intel_pmu_enable_bts(event->hw.config);
1076         }
1077 }
1078
1079 /*
1080  * Workaround for:
1081  *   Intel Errata AAK100 (model 26)
1082  *   Intel Errata AAP53  (model 30)
1083  *   Intel Errata BD53   (model 44)
1084  *
1085  * The official story:
1086  *   These chips need to be 'reset' when adding counters by programming the
1087  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1088  *   in sequence on the same PMC or on different PMCs.
1089  *
1090  * In practise it appears some of these events do in fact count, and
1091  * we need to programm all 4 events.
1092  */
1093 static void intel_pmu_nhm_workaround(void)
1094 {
1095         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1096         static const unsigned long nhm_magic[4] = {
1097                 0x4300B5,
1098                 0x4300D2,
1099                 0x4300B1,
1100                 0x4300B1
1101         };
1102         struct perf_event *event;
1103         int i;
1104
1105         /*
1106          * The Errata requires below steps:
1107          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1108          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1109          *    the corresponding PMCx;
1110          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1111          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1112          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1113          */
1114
1115         /*
1116          * The real steps we choose are a little different from above.
1117          * A) To reduce MSR operations, we don't run step 1) as they
1118          *    are already cleared before this function is called;
1119          * B) Call x86_perf_event_update to save PMCx before configuring
1120          *    PERFEVTSELx with magic number;
1121          * C) With step 5), we do clear only when the PERFEVTSELx is
1122          *    not used currently.
1123          * D) Call x86_perf_event_set_period to restore PMCx;
1124          */
1125
1126         /* We always operate 4 pairs of PERF Counters */
1127         for (i = 0; i < 4; i++) {
1128                 event = cpuc->events[i];
1129                 if (event)
1130                         x86_perf_event_update(event);
1131         }
1132
1133         for (i = 0; i < 4; i++) {
1134                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1135                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1136         }
1137
1138         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1139         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1140
1141         for (i = 0; i < 4; i++) {
1142                 event = cpuc->events[i];
1143
1144                 if (event) {
1145                         x86_perf_event_set_period(event);
1146                         __x86_pmu_enable_event(&event->hw,
1147                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1148                 } else
1149                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1150         }
1151 }
1152
1153 static void intel_pmu_nhm_enable_all(int added)
1154 {
1155         if (added)
1156                 intel_pmu_nhm_workaround();
1157         intel_pmu_enable_all(added);
1158 }
1159
1160 static inline u64 intel_pmu_get_status(void)
1161 {
1162         u64 status;
1163
1164         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1165
1166         return status;
1167 }
1168
1169 static inline void intel_pmu_ack_status(u64 ack)
1170 {
1171         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1172 }
1173
1174 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1175 {
1176         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1177         u64 ctrl_val, mask;
1178
1179         mask = 0xfULL << (idx * 4);
1180
1181         rdmsrl(hwc->config_base, ctrl_val);
1182         ctrl_val &= ~mask;
1183         wrmsrl(hwc->config_base, ctrl_val);
1184 }
1185
1186 static inline bool event_is_checkpointed(struct perf_event *event)
1187 {
1188         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1189 }
1190
1191 static void intel_pmu_disable_event(struct perf_event *event)
1192 {
1193         struct hw_perf_event *hwc = &event->hw;
1194         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1195
1196         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1197                 intel_pmu_disable_bts();
1198                 intel_pmu_drain_bts_buffer();
1199                 return;
1200         }
1201
1202         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1203         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1204         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1205
1206         /*
1207          * must disable before any actual event
1208          * because any event may be combined with LBR
1209          */
1210         if (intel_pmu_needs_lbr_smpl(event))
1211                 intel_pmu_lbr_disable(event);
1212
1213         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1214                 intel_pmu_disable_fixed(hwc);
1215                 return;
1216         }
1217
1218         x86_pmu_disable_event(event);
1219
1220         if (unlikely(event->attr.precise_ip))
1221                 intel_pmu_pebs_disable(event);
1222 }
1223
1224 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1225 {
1226         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1227         u64 ctrl_val, bits, mask;
1228
1229         /*
1230          * Enable IRQ generation (0x8),
1231          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1232          * if requested:
1233          */
1234         bits = 0x8ULL;
1235         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1236                 bits |= 0x2;
1237         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1238                 bits |= 0x1;
1239
1240         /*
1241          * ANY bit is supported in v3 and up
1242          */
1243         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1244                 bits |= 0x4;
1245
1246         bits <<= (idx * 4);
1247         mask = 0xfULL << (idx * 4);
1248
1249         rdmsrl(hwc->config_base, ctrl_val);
1250         ctrl_val &= ~mask;
1251         ctrl_val |= bits;
1252         wrmsrl(hwc->config_base, ctrl_val);
1253 }
1254
1255 static void intel_pmu_enable_event(struct perf_event *event)
1256 {
1257         struct hw_perf_event *hwc = &event->hw;
1258         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1259
1260         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1261                 if (!__this_cpu_read(cpu_hw_events.enabled))
1262                         return;
1263
1264                 intel_pmu_enable_bts(hwc->config);
1265                 return;
1266         }
1267         /*
1268          * must enabled before any actual event
1269          * because any event may be combined with LBR
1270          */
1271         if (intel_pmu_needs_lbr_smpl(event))
1272                 intel_pmu_lbr_enable(event);
1273
1274         if (event->attr.exclude_host)
1275                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1276         if (event->attr.exclude_guest)
1277                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1278
1279         if (unlikely(event_is_checkpointed(event)))
1280                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1281
1282         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1283                 intel_pmu_enable_fixed(hwc);
1284                 return;
1285         }
1286
1287         if (unlikely(event->attr.precise_ip))
1288                 intel_pmu_pebs_enable(event);
1289
1290         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1291 }
1292
1293 /*
1294  * Save and restart an expired event. Called by NMI contexts,
1295  * so it has to be careful about preempting normal event ops:
1296  */
1297 int intel_pmu_save_and_restart(struct perf_event *event)
1298 {
1299         x86_perf_event_update(event);
1300         /*
1301          * For a checkpointed counter always reset back to 0.  This
1302          * avoids a situation where the counter overflows, aborts the
1303          * transaction and is then set back to shortly before the
1304          * overflow, and overflows and aborts again.
1305          */
1306         if (unlikely(event_is_checkpointed(event))) {
1307                 /* No race with NMIs because the counter should not be armed */
1308                 wrmsrl(event->hw.event_base, 0);
1309                 local64_set(&event->hw.prev_count, 0);
1310         }
1311         return x86_perf_event_set_period(event);
1312 }
1313
1314 static void intel_pmu_reset(void)
1315 {
1316         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1317         unsigned long flags;
1318         int idx;
1319
1320         if (!x86_pmu.num_counters)
1321                 return;
1322
1323         local_irq_save(flags);
1324
1325         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1326
1327         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1328                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1329                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1330         }
1331         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1332                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1333
1334         if (ds)
1335                 ds->bts_index = ds->bts_buffer_base;
1336
1337         local_irq_restore(flags);
1338 }
1339
1340 /*
1341  * This handler is triggered by the local APIC, so the APIC IRQ handling
1342  * rules apply:
1343  */
1344 static int intel_pmu_handle_irq(struct pt_regs *regs)
1345 {
1346         struct perf_sample_data data;
1347         struct cpu_hw_events *cpuc;
1348         int bit, loops;
1349         u64 status;
1350         int handled;
1351
1352         cpuc = &__get_cpu_var(cpu_hw_events);
1353
1354         /*
1355          * No known reason to not always do late ACK,
1356          * but just in case do it opt-in.
1357          */
1358         if (!x86_pmu.late_ack)
1359                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1360         intel_pmu_disable_all();
1361         handled = intel_pmu_drain_bts_buffer();
1362         status = intel_pmu_get_status();
1363         if (!status)
1364                 goto done;
1365
1366         loops = 0;
1367 again:
1368         intel_pmu_ack_status(status);
1369         if (++loops > 100) {
1370                 static bool warned = false;
1371                 if (!warned) {
1372                         WARN(1, "perfevents: irq loop stuck!\n");
1373                         perf_event_print_debug();
1374                         warned = true;
1375                 }
1376                 intel_pmu_reset();
1377                 goto done;
1378         }
1379
1380         inc_irq_stat(apic_perf_irqs);
1381
1382         intel_pmu_lbr_read();
1383
1384         /*
1385          * PEBS overflow sets bit 62 in the global status register
1386          */
1387         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1388                 handled++;
1389                 x86_pmu.drain_pebs(regs);
1390         }
1391
1392         /*
1393          * Checkpointed counters can lead to 'spurious' PMIs because the
1394          * rollback caused by the PMI will have cleared the overflow status
1395          * bit. Therefore always force probe these counters.
1396          */
1397         status |= cpuc->intel_cp_status;
1398
1399         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1400                 struct perf_event *event = cpuc->events[bit];
1401
1402                 handled++;
1403
1404                 if (!test_bit(bit, cpuc->active_mask))
1405                         continue;
1406
1407                 if (!intel_pmu_save_and_restart(event))
1408                         continue;
1409
1410                 perf_sample_data_init(&data, 0, event->hw.last_period);
1411
1412                 if (has_branch_stack(event))
1413                         data.br_stack = &cpuc->lbr_stack;
1414
1415                 if (perf_event_overflow(event, &data, regs))
1416                         x86_pmu_stop(event, 0);
1417         }
1418
1419         /*
1420          * Repeat if there is more work to be done:
1421          */
1422         status = intel_pmu_get_status();
1423         if (status)
1424                 goto again;
1425
1426 done:
1427         intel_pmu_enable_all(0);
1428         /*
1429          * Only unmask the NMI after the overflow counters
1430          * have been reset. This avoids spurious NMIs on
1431          * Haswell CPUs.
1432          */
1433         if (x86_pmu.late_ack)
1434                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1435         return handled;
1436 }
1437
1438 static struct event_constraint *
1439 intel_bts_constraints(struct perf_event *event)
1440 {
1441         struct hw_perf_event *hwc = &event->hw;
1442         unsigned int hw_event, bts_event;
1443
1444         if (event->attr.freq)
1445                 return NULL;
1446
1447         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1448         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1449
1450         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1451                 return &bts_constraint;
1452
1453         return NULL;
1454 }
1455
1456 static int intel_alt_er(int idx)
1457 {
1458         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1459                 return idx;
1460
1461         if (idx == EXTRA_REG_RSP_0)
1462                 return EXTRA_REG_RSP_1;
1463
1464         if (idx == EXTRA_REG_RSP_1)
1465                 return EXTRA_REG_RSP_0;
1466
1467         return idx;
1468 }
1469
1470 static void intel_fixup_er(struct perf_event *event, int idx)
1471 {
1472         event->hw.extra_reg.idx = idx;
1473
1474         if (idx == EXTRA_REG_RSP_0) {
1475                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1476                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1477                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1478         } else if (idx == EXTRA_REG_RSP_1) {
1479                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1480                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1481                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1482         }
1483 }
1484
1485 /*
1486  * manage allocation of shared extra msr for certain events
1487  *
1488  * sharing can be:
1489  * per-cpu: to be shared between the various events on a single PMU
1490  * per-core: per-cpu + shared by HT threads
1491  */
1492 static struct event_constraint *
1493 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1494                                    struct perf_event *event,
1495                                    struct hw_perf_event_extra *reg)
1496 {
1497         struct event_constraint *c = &emptyconstraint;
1498         struct er_account *era;
1499         unsigned long flags;
1500         int idx = reg->idx;
1501
1502         /*
1503          * reg->alloc can be set due to existing state, so for fake cpuc we
1504          * need to ignore this, otherwise we might fail to allocate proper fake
1505          * state for this extra reg constraint. Also see the comment below.
1506          */
1507         if (reg->alloc && !cpuc->is_fake)
1508                 return NULL; /* call x86_get_event_constraint() */
1509
1510 again:
1511         era = &cpuc->shared_regs->regs[idx];
1512         /*
1513          * we use spin_lock_irqsave() to avoid lockdep issues when
1514          * passing a fake cpuc
1515          */
1516         raw_spin_lock_irqsave(&era->lock, flags);
1517
1518         if (!atomic_read(&era->ref) || era->config == reg->config) {
1519
1520                 /*
1521                  * If its a fake cpuc -- as per validate_{group,event}() we
1522                  * shouldn't touch event state and we can avoid doing so
1523                  * since both will only call get_event_constraints() once
1524                  * on each event, this avoids the need for reg->alloc.
1525                  *
1526                  * Not doing the ER fixup will only result in era->reg being
1527                  * wrong, but since we won't actually try and program hardware
1528                  * this isn't a problem either.
1529                  */
1530                 if (!cpuc->is_fake) {
1531                         if (idx != reg->idx)
1532                                 intel_fixup_er(event, idx);
1533
1534                         /*
1535                          * x86_schedule_events() can call get_event_constraints()
1536                          * multiple times on events in the case of incremental
1537                          * scheduling(). reg->alloc ensures we only do the ER
1538                          * allocation once.
1539                          */
1540                         reg->alloc = 1;
1541                 }
1542
1543                 /* lock in msr value */
1544                 era->config = reg->config;
1545                 era->reg = reg->reg;
1546
1547                 /* one more user */
1548                 atomic_inc(&era->ref);
1549
1550                 /*
1551                  * need to call x86_get_event_constraint()
1552                  * to check if associated event has constraints
1553                  */
1554                 c = NULL;
1555         } else {
1556                 idx = intel_alt_er(idx);
1557                 if (idx != reg->idx) {
1558                         raw_spin_unlock_irqrestore(&era->lock, flags);
1559                         goto again;
1560                 }
1561         }
1562         raw_spin_unlock_irqrestore(&era->lock, flags);
1563
1564         return c;
1565 }
1566
1567 static void
1568 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1569                                    struct hw_perf_event_extra *reg)
1570 {
1571         struct er_account *era;
1572
1573         /*
1574          * Only put constraint if extra reg was actually allocated. Also takes
1575          * care of event which do not use an extra shared reg.
1576          *
1577          * Also, if this is a fake cpuc we shouldn't touch any event state
1578          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1579          * either since it'll be thrown out.
1580          */
1581         if (!reg->alloc || cpuc->is_fake)
1582                 return;
1583
1584         era = &cpuc->shared_regs->regs[reg->idx];
1585
1586         /* one fewer user */
1587         atomic_dec(&era->ref);
1588
1589         /* allocate again next time */
1590         reg->alloc = 0;
1591 }
1592
1593 static struct event_constraint *
1594 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1595                               struct perf_event *event)
1596 {
1597         struct event_constraint *c = NULL, *d;
1598         struct hw_perf_event_extra *xreg, *breg;
1599
1600         xreg = &event->hw.extra_reg;
1601         if (xreg->idx != EXTRA_REG_NONE) {
1602                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1603                 if (c == &emptyconstraint)
1604                         return c;
1605         }
1606         breg = &event->hw.branch_reg;
1607         if (breg->idx != EXTRA_REG_NONE) {
1608                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1609                 if (d == &emptyconstraint) {
1610                         __intel_shared_reg_put_constraints(cpuc, xreg);
1611                         c = d;
1612                 }
1613         }
1614         return c;
1615 }
1616
1617 struct event_constraint *
1618 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1619 {
1620         struct event_constraint *c;
1621
1622         if (x86_pmu.event_constraints) {
1623                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1624                         if ((event->hw.config & c->cmask) == c->code) {
1625                                 event->hw.flags |= c->flags;
1626                                 return c;
1627                         }
1628                 }
1629         }
1630
1631         return &unconstrained;
1632 }
1633
1634 static struct event_constraint *
1635 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1636 {
1637         struct event_constraint *c;
1638
1639         c = intel_bts_constraints(event);
1640         if (c)
1641                 return c;
1642
1643         c = intel_pebs_constraints(event);
1644         if (c)
1645                 return c;
1646
1647         c = intel_shared_regs_constraints(cpuc, event);
1648         if (c)
1649                 return c;
1650
1651         return x86_get_event_constraints(cpuc, event);
1652 }
1653
1654 static void
1655 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1656                                         struct perf_event *event)
1657 {
1658         struct hw_perf_event_extra *reg;
1659
1660         reg = &event->hw.extra_reg;
1661         if (reg->idx != EXTRA_REG_NONE)
1662                 __intel_shared_reg_put_constraints(cpuc, reg);
1663
1664         reg = &event->hw.branch_reg;
1665         if (reg->idx != EXTRA_REG_NONE)
1666                 __intel_shared_reg_put_constraints(cpuc, reg);
1667 }
1668
1669 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1670                                         struct perf_event *event)
1671 {
1672         intel_put_shared_regs_event_constraints(cpuc, event);
1673 }
1674
1675 static void intel_pebs_aliases_core2(struct perf_event *event)
1676 {
1677         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1678                 /*
1679                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1680                  * (0x003c) so that we can use it with PEBS.
1681                  *
1682                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1683                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1684                  * (0x00c0), which is a PEBS capable event, to get the same
1685                  * count.
1686                  *
1687                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1688                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1689                  * larger than the maximum number of instructions that can be
1690                  * retired per cycle (4) and then inverting the condition, we
1691                  * count all cycles that retire 16 or less instructions, which
1692                  * is every cycle.
1693                  *
1694                  * Thereby we gain a PEBS capable cycle counter.
1695                  */
1696                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1697
1698                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1699                 event->hw.config = alt_config;
1700         }
1701 }
1702
1703 static void intel_pebs_aliases_snb(struct perf_event *event)
1704 {
1705         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1706                 /*
1707                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1708                  * (0x003c) so that we can use it with PEBS.
1709                  *
1710                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1711                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1712                  * (0x01c2), which is a PEBS capable event, to get the same
1713                  * count.
1714                  *
1715                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1716                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1717                  * larger than the maximum number of micro-ops that can be
1718                  * retired per cycle (4) and then inverting the condition, we
1719                  * count all cycles that retire 16 or less micro-ops, which
1720                  * is every cycle.
1721                  *
1722                  * Thereby we gain a PEBS capable cycle counter.
1723                  */
1724                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1725
1726                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1727                 event->hw.config = alt_config;
1728         }
1729 }
1730
1731 static int intel_pmu_hw_config(struct perf_event *event)
1732 {
1733         int ret = x86_pmu_hw_config(event);
1734
1735         if (ret)
1736                 return ret;
1737
1738         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1739                 x86_pmu.pebs_aliases(event);
1740
1741         if (intel_pmu_needs_lbr_smpl(event)) {
1742                 ret = intel_pmu_setup_lbr_filter(event);
1743                 if (ret)
1744                         return ret;
1745         }
1746
1747         if (event->attr.type != PERF_TYPE_RAW)
1748                 return 0;
1749
1750         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1751                 return 0;
1752
1753         if (x86_pmu.version < 3)
1754                 return -EINVAL;
1755
1756         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1757                 return -EACCES;
1758
1759         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1760
1761         return 0;
1762 }
1763
1764 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1765 {
1766         if (x86_pmu.guest_get_msrs)
1767                 return x86_pmu.guest_get_msrs(nr);
1768         *nr = 0;
1769         return NULL;
1770 }
1771 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1772
1773 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1774 {
1775         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1776         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1777
1778         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1779         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1780         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1781         /*
1782          * If PMU counter has PEBS enabled it is not enough to disable counter
1783          * on a guest entry since PEBS memory write can overshoot guest entry
1784          * and corrupt guest memory. Disabling PEBS solves the problem.
1785          */
1786         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1787         arr[1].host = cpuc->pebs_enabled;
1788         arr[1].guest = 0;
1789
1790         *nr = 2;
1791         return arr;
1792 }
1793
1794 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1795 {
1796         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1797         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1798         int idx;
1799
1800         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1801                 struct perf_event *event = cpuc->events[idx];
1802
1803                 arr[idx].msr = x86_pmu_config_addr(idx);
1804                 arr[idx].host = arr[idx].guest = 0;
1805
1806                 if (!test_bit(idx, cpuc->active_mask))
1807                         continue;
1808
1809                 arr[idx].host = arr[idx].guest =
1810                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1811
1812                 if (event->attr.exclude_host)
1813                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1814                 else if (event->attr.exclude_guest)
1815                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1816         }
1817
1818         *nr = x86_pmu.num_counters;
1819         return arr;
1820 }
1821
1822 static void core_pmu_enable_event(struct perf_event *event)
1823 {
1824         if (!event->attr.exclude_host)
1825                 x86_pmu_enable_event(event);
1826 }
1827
1828 static void core_pmu_enable_all(int added)
1829 {
1830         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1831         int idx;
1832
1833         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1834                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1835
1836                 if (!test_bit(idx, cpuc->active_mask) ||
1837                                 cpuc->events[idx]->attr.exclude_host)
1838                         continue;
1839
1840                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1841         }
1842 }
1843
1844 static int hsw_hw_config(struct perf_event *event)
1845 {
1846         int ret = intel_pmu_hw_config(event);
1847
1848         if (ret)
1849                 return ret;
1850         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1851                 return 0;
1852         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1853
1854         /*
1855          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1856          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1857          * this combination.
1858          */
1859         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1860              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1861               event->attr.precise_ip > 0))
1862                 return -EOPNOTSUPP;
1863
1864         if (event_is_checkpointed(event)) {
1865                 /*
1866                  * Sampling of checkpointed events can cause situations where
1867                  * the CPU constantly aborts because of a overflow, which is
1868                  * then checkpointed back and ignored. Forbid checkpointing
1869                  * for sampling.
1870                  *
1871                  * But still allow a long sampling period, so that perf stat
1872                  * from KVM works.
1873                  */
1874                 if (event->attr.sample_period > 0 &&
1875                     event->attr.sample_period < 0x7fffffff)
1876                         return -EOPNOTSUPP;
1877         }
1878         return 0;
1879 }
1880
1881 static struct event_constraint counter2_constraint =
1882                         EVENT_CONSTRAINT(0, 0x4, 0);
1883
1884 static struct event_constraint *
1885 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1886 {
1887         struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1888
1889         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1890         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1891                 if (c->idxmsk64 & (1U << 2))
1892                         return &counter2_constraint;
1893                 return &emptyconstraint;
1894         }
1895
1896         return c;
1897 }
1898
1899 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1900 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1901 PMU_FORMAT_ATTR(edge,   "config:18"     );
1902 PMU_FORMAT_ATTR(pc,     "config:19"     );
1903 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1904 PMU_FORMAT_ATTR(inv,    "config:23"     );
1905 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1906 PMU_FORMAT_ATTR(in_tx,  "config:32");
1907 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1908
1909 static struct attribute *intel_arch_formats_attr[] = {
1910         &format_attr_event.attr,
1911         &format_attr_umask.attr,
1912         &format_attr_edge.attr,
1913         &format_attr_pc.attr,
1914         &format_attr_inv.attr,
1915         &format_attr_cmask.attr,
1916         NULL,
1917 };
1918
1919 ssize_t intel_event_sysfs_show(char *page, u64 config)
1920 {
1921         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1922
1923         return x86_event_sysfs_show(page, config, event);
1924 }
1925
1926 static __initconst const struct x86_pmu core_pmu = {
1927         .name                   = "core",
1928         .handle_irq             = x86_pmu_handle_irq,
1929         .disable_all            = x86_pmu_disable_all,
1930         .enable_all             = core_pmu_enable_all,
1931         .enable                 = core_pmu_enable_event,
1932         .disable                = x86_pmu_disable_event,
1933         .hw_config              = x86_pmu_hw_config,
1934         .schedule_events        = x86_schedule_events,
1935         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1936         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1937         .event_map              = intel_pmu_event_map,
1938         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1939         .apic                   = 1,
1940         /*
1941          * Intel PMCs cannot be accessed sanely above 32 bit width,
1942          * so we install an artificial 1<<31 period regardless of
1943          * the generic event period:
1944          */
1945         .max_period             = (1ULL << 31) - 1,
1946         .get_event_constraints  = intel_get_event_constraints,
1947         .put_event_constraints  = intel_put_event_constraints,
1948         .event_constraints      = intel_core_event_constraints,
1949         .guest_get_msrs         = core_guest_get_msrs,
1950         .format_attrs           = intel_arch_formats_attr,
1951         .events_sysfs_show      = intel_event_sysfs_show,
1952 };
1953
1954 struct intel_shared_regs *allocate_shared_regs(int cpu)
1955 {
1956         struct intel_shared_regs *regs;
1957         int i;
1958
1959         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1960                             GFP_KERNEL, cpu_to_node(cpu));
1961         if (regs) {
1962                 /*
1963                  * initialize the locks to keep lockdep happy
1964                  */
1965                 for (i = 0; i < EXTRA_REG_MAX; i++)
1966                         raw_spin_lock_init(&regs->regs[i].lock);
1967
1968                 regs->core_id = -1;
1969         }
1970         return regs;
1971 }
1972
1973 static int intel_pmu_cpu_prepare(int cpu)
1974 {
1975         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1976
1977         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1978                 return NOTIFY_OK;
1979
1980         cpuc->shared_regs = allocate_shared_regs(cpu);
1981         if (!cpuc->shared_regs)
1982                 return NOTIFY_BAD;
1983
1984         return NOTIFY_OK;
1985 }
1986
1987 static void intel_pmu_cpu_starting(int cpu)
1988 {
1989         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1990         int core_id = topology_core_id(cpu);
1991         int i;
1992
1993         init_debug_store_on_cpu(cpu);
1994         /*
1995          * Deal with CPUs that don't clear their LBRs on power-up.
1996          */
1997         intel_pmu_lbr_reset();
1998
1999         cpuc->lbr_sel = NULL;
2000
2001         if (!cpuc->shared_regs)
2002                 return;
2003
2004         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2005                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2006                         struct intel_shared_regs *pc;
2007
2008                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2009                         if (pc && pc->core_id == core_id) {
2010                                 cpuc->kfree_on_online = cpuc->shared_regs;
2011                                 cpuc->shared_regs = pc;
2012                                 break;
2013                         }
2014                 }
2015                 cpuc->shared_regs->core_id = core_id;
2016                 cpuc->shared_regs->refcnt++;
2017         }
2018
2019         if (x86_pmu.lbr_sel_map)
2020                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2021 }
2022
2023 static void intel_pmu_cpu_dying(int cpu)
2024 {
2025         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2026         struct intel_shared_regs *pc;
2027
2028         pc = cpuc->shared_regs;
2029         if (pc) {
2030                 if (pc->core_id == -1 || --pc->refcnt == 0)
2031                         kfree(pc);
2032                 cpuc->shared_regs = NULL;
2033         }
2034
2035         fini_debug_store_on_cpu(cpu);
2036 }
2037
2038 static void intel_pmu_flush_branch_stack(void)
2039 {
2040         /*
2041          * Intel LBR does not tag entries with the
2042          * PID of the current task, then we need to
2043          * flush it on ctxsw
2044          * For now, we simply reset it
2045          */
2046         if (x86_pmu.lbr_nr)
2047                 intel_pmu_lbr_reset();
2048 }
2049
2050 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2051
2052 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2053
2054 static struct attribute *intel_arch3_formats_attr[] = {
2055         &format_attr_event.attr,
2056         &format_attr_umask.attr,
2057         &format_attr_edge.attr,
2058         &format_attr_pc.attr,
2059         &format_attr_any.attr,
2060         &format_attr_inv.attr,
2061         &format_attr_cmask.attr,
2062         &format_attr_in_tx.attr,
2063         &format_attr_in_tx_cp.attr,
2064
2065         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2066         &format_attr_ldlat.attr, /* PEBS load latency */
2067         NULL,
2068 };
2069
2070 static __initconst const struct x86_pmu intel_pmu = {
2071         .name                   = "Intel",
2072         .handle_irq             = intel_pmu_handle_irq,
2073         .disable_all            = intel_pmu_disable_all,
2074         .enable_all             = intel_pmu_enable_all,
2075         .enable                 = intel_pmu_enable_event,
2076         .disable                = intel_pmu_disable_event,
2077         .hw_config              = intel_pmu_hw_config,
2078         .schedule_events        = x86_schedule_events,
2079         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2080         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2081         .event_map              = intel_pmu_event_map,
2082         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2083         .apic                   = 1,
2084         /*
2085          * Intel PMCs cannot be accessed sanely above 32 bit width,
2086          * so we install an artificial 1<<31 period regardless of
2087          * the generic event period:
2088          */
2089         .max_period             = (1ULL << 31) - 1,
2090         .get_event_constraints  = intel_get_event_constraints,
2091         .put_event_constraints  = intel_put_event_constraints,
2092         .pebs_aliases           = intel_pebs_aliases_core2,
2093
2094         .format_attrs           = intel_arch3_formats_attr,
2095         .events_sysfs_show      = intel_event_sysfs_show,
2096
2097         .cpu_prepare            = intel_pmu_cpu_prepare,
2098         .cpu_starting           = intel_pmu_cpu_starting,
2099         .cpu_dying              = intel_pmu_cpu_dying,
2100         .guest_get_msrs         = intel_guest_get_msrs,
2101         .flush_branch_stack     = intel_pmu_flush_branch_stack,
2102 };
2103
2104 static __init void intel_clovertown_quirk(void)
2105 {
2106         /*
2107          * PEBS is unreliable due to:
2108          *
2109          *   AJ67  - PEBS may experience CPL leaks
2110          *   AJ68  - PEBS PMI may be delayed by one event
2111          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2112          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2113          *
2114          * AJ67 could be worked around by restricting the OS/USR flags.
2115          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2116          *
2117          * AJ106 could possibly be worked around by not allowing LBR
2118          *       usage from PEBS, including the fixup.
2119          * AJ68  could possibly be worked around by always programming
2120          *       a pebs_event_reset[0] value and coping with the lost events.
2121          *
2122          * But taken together it might just make sense to not enable PEBS on
2123          * these chips.
2124          */
2125         pr_warn("PEBS disabled due to CPU errata\n");
2126         x86_pmu.pebs = 0;
2127         x86_pmu.pebs_constraints = NULL;
2128 }
2129
2130 static int intel_snb_pebs_broken(int cpu)
2131 {
2132         u32 rev = UINT_MAX; /* default to broken for unknown models */
2133
2134         switch (cpu_data(cpu).x86_model) {
2135         case 42: /* SNB */
2136                 rev = 0x28;
2137                 break;
2138
2139         case 45: /* SNB-EP */
2140                 switch (cpu_data(cpu).x86_mask) {
2141                 case 6: rev = 0x618; break;
2142                 case 7: rev = 0x70c; break;
2143                 }
2144         }
2145
2146         return (cpu_data(cpu).microcode < rev);
2147 }
2148
2149 static void intel_snb_check_microcode(void)
2150 {
2151         int pebs_broken = 0;
2152         int cpu;
2153
2154         get_online_cpus();
2155         for_each_online_cpu(cpu) {
2156                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2157                         break;
2158         }
2159         put_online_cpus();
2160
2161         if (pebs_broken == x86_pmu.pebs_broken)
2162                 return;
2163
2164         /*
2165          * Serialized by the microcode lock..
2166          */
2167         if (x86_pmu.pebs_broken) {
2168                 pr_info("PEBS enabled due to microcode update\n");
2169                 x86_pmu.pebs_broken = 0;
2170         } else {
2171                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2172                 x86_pmu.pebs_broken = 1;
2173         }
2174 }
2175
2176 static __init void intel_sandybridge_quirk(void)
2177 {
2178         x86_pmu.check_microcode = intel_snb_check_microcode;
2179         intel_snb_check_microcode();
2180 }
2181
2182 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2183         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2184         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2185         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2186         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2187         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2188         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2189         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2190 };
2191
2192 static __init void intel_arch_events_quirk(void)
2193 {
2194         int bit;
2195
2196         /* disable event that reported as not presend by cpuid */
2197         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2198                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2199                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2200                         intel_arch_events_map[bit].name);
2201         }
2202 }
2203
2204 static __init void intel_nehalem_quirk(void)
2205 {
2206         union cpuid10_ebx ebx;
2207
2208         ebx.full = x86_pmu.events_maskl;
2209         if (ebx.split.no_branch_misses_retired) {
2210                 /*
2211                  * Erratum AAJ80 detected, we work it around by using
2212                  * the BR_MISP_EXEC.ANY event. This will over-count
2213                  * branch-misses, but it's still much better than the
2214                  * architectural event which is often completely bogus:
2215                  */
2216                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2217                 ebx.split.no_branch_misses_retired = 0;
2218                 x86_pmu.events_maskl = ebx.full;
2219                 pr_info("CPU erratum AAJ80 worked around\n");
2220         }
2221 }
2222
2223 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2224 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2225
2226 /* Haswell special events */
2227 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2228 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2229 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2230 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2231 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2232 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2233 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2234 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2235 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2236 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2237 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2238 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2239
2240 static struct attribute *hsw_events_attrs[] = {
2241         EVENT_PTR(tx_start),
2242         EVENT_PTR(tx_commit),
2243         EVENT_PTR(tx_abort),
2244         EVENT_PTR(tx_capacity),
2245         EVENT_PTR(tx_conflict),
2246         EVENT_PTR(el_start),
2247         EVENT_PTR(el_commit),
2248         EVENT_PTR(el_abort),
2249         EVENT_PTR(el_capacity),
2250         EVENT_PTR(el_conflict),
2251         EVENT_PTR(cycles_t),
2252         EVENT_PTR(cycles_ct),
2253         EVENT_PTR(mem_ld_hsw),
2254         EVENT_PTR(mem_st_hsw),
2255         NULL
2256 };
2257
2258 __init int intel_pmu_init(void)
2259 {
2260         union cpuid10_edx edx;
2261         union cpuid10_eax eax;
2262         union cpuid10_ebx ebx;
2263         struct event_constraint *c;
2264         unsigned int unused;
2265         int version;
2266
2267         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2268                 switch (boot_cpu_data.x86) {
2269                 case 0x6:
2270                         return p6_pmu_init();
2271                 case 0xb:
2272                         return knc_pmu_init();
2273                 case 0xf:
2274                         return p4_pmu_init();
2275                 }
2276                 return -ENODEV;
2277         }
2278
2279         /*
2280          * Check whether the Architectural PerfMon supports
2281          * Branch Misses Retired hw_event or not.
2282          */
2283         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2284         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2285                 return -ENODEV;
2286
2287         version = eax.split.version_id;
2288         if (version < 2)
2289                 x86_pmu = core_pmu;
2290         else
2291                 x86_pmu = intel_pmu;
2292
2293         x86_pmu.version                 = version;
2294         x86_pmu.num_counters            = eax.split.num_counters;
2295         x86_pmu.cntval_bits             = eax.split.bit_width;
2296         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2297
2298         x86_pmu.events_maskl            = ebx.full;
2299         x86_pmu.events_mask_len         = eax.split.mask_length;
2300
2301         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2302
2303         /*
2304          * Quirk: v2 perfmon does not report fixed-purpose events, so
2305          * assume at least 3 events:
2306          */
2307         if (version > 1)
2308                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2309
2310         if (boot_cpu_has(X86_FEATURE_PDCM)) {
2311                 u64 capabilities;
2312
2313                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2314                 x86_pmu.intel_cap.capabilities = capabilities;
2315         }
2316
2317         intel_ds_init();
2318
2319         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2320
2321         /*
2322          * Install the hw-cache-events table:
2323          */
2324         switch (boot_cpu_data.x86_model) {
2325         case 14: /* 65 nm core solo/duo, "Yonah" */
2326                 pr_cont("Core events, ");
2327                 break;
2328
2329         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2330                 x86_add_quirk(intel_clovertown_quirk);
2331         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2332         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2333         case 29: /* six-core 45 nm xeon "Dunnington" */
2334                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2335                        sizeof(hw_cache_event_ids));
2336
2337                 intel_pmu_lbr_init_core();
2338
2339                 x86_pmu.event_constraints = intel_core2_event_constraints;
2340                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2341                 pr_cont("Core2 events, ");
2342                 break;
2343
2344         case 26: /* 45 nm nehalem, "Bloomfield" */
2345         case 30: /* 45 nm nehalem, "Lynnfield" */
2346         case 46: /* 45 nm nehalem-ex, "Beckton" */
2347                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2348                        sizeof(hw_cache_event_ids));
2349                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2350                        sizeof(hw_cache_extra_regs));
2351
2352                 intel_pmu_lbr_init_nhm();
2353
2354                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2355                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2356                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2357                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2358
2359                 x86_pmu.cpu_events = nhm_events_attrs;
2360
2361                 /* UOPS_ISSUED.STALLED_CYCLES */
2362                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2363                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2364                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2365                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2366                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2367
2368                 x86_add_quirk(intel_nehalem_quirk);
2369
2370                 pr_cont("Nehalem events, ");
2371                 break;
2372
2373         case 28: /* Atom */
2374         case 38: /* Lincroft */
2375         case 39: /* Penwell */
2376         case 53: /* Cloverview */
2377         case 54: /* Cedarview */
2378                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2379                        sizeof(hw_cache_event_ids));
2380
2381                 intel_pmu_lbr_init_atom();
2382
2383                 x86_pmu.event_constraints = intel_gen_event_constraints;
2384                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2385                 pr_cont("Atom events, ");
2386                 break;
2387
2388         case 55: /* Atom 22nm "Silvermont" */
2389         case 77: /* Avoton "Silvermont" */
2390                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2391                         sizeof(hw_cache_event_ids));
2392                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2393                        sizeof(hw_cache_extra_regs));
2394
2395                 intel_pmu_lbr_init_atom();
2396
2397                 x86_pmu.event_constraints = intel_slm_event_constraints;
2398                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2399                 x86_pmu.extra_regs = intel_slm_extra_regs;
2400                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2401                 pr_cont("Silvermont events, ");
2402                 break;
2403
2404         case 37: /* 32 nm nehalem, "Clarkdale" */
2405         case 44: /* 32 nm nehalem, "Gulftown" */
2406         case 47: /* 32 nm Xeon E7 */
2407                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2408                        sizeof(hw_cache_event_ids));
2409                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2410                        sizeof(hw_cache_extra_regs));
2411
2412                 intel_pmu_lbr_init_nhm();
2413
2414                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2415                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2416                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2417                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2418                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2419
2420                 x86_pmu.cpu_events = nhm_events_attrs;
2421
2422                 /* UOPS_ISSUED.STALLED_CYCLES */
2423                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2424                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2425                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2426                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2427                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2428
2429                 pr_cont("Westmere events, ");
2430                 break;
2431
2432         case 42: /* SandyBridge */
2433         case 45: /* SandyBridge, "Romely-EP" */
2434                 x86_add_quirk(intel_sandybridge_quirk);
2435                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2436                        sizeof(hw_cache_event_ids));
2437                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2438                        sizeof(hw_cache_extra_regs));
2439
2440                 intel_pmu_lbr_init_snb();
2441
2442                 x86_pmu.event_constraints = intel_snb_event_constraints;
2443                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2444                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2445                 if (boot_cpu_data.x86_model == 45)
2446                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2447                 else
2448                         x86_pmu.extra_regs = intel_snb_extra_regs;
2449                 /* all extra regs are per-cpu when HT is on */
2450                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2451                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2452
2453                 x86_pmu.cpu_events = snb_events_attrs;
2454
2455                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2456                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2457                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2458                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2459                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2460                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2461
2462                 pr_cont("SandyBridge events, ");
2463                 break;
2464         case 58: /* IvyBridge */
2465         case 62: /* IvyBridge EP */
2466                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2467                        sizeof(hw_cache_event_ids));
2468                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2469                        sizeof(hw_cache_extra_regs));
2470
2471                 intel_pmu_lbr_init_snb();
2472
2473                 x86_pmu.event_constraints = intel_ivb_event_constraints;
2474                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2475                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2476                 if (boot_cpu_data.x86_model == 62)
2477                         x86_pmu.extra_regs = intel_snbep_extra_regs;
2478                 else
2479                         x86_pmu.extra_regs = intel_snb_extra_regs;
2480                 /* all extra regs are per-cpu when HT is on */
2481                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2482                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2483
2484                 x86_pmu.cpu_events = snb_events_attrs;
2485
2486                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2487                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2488                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2489
2490                 pr_cont("IvyBridge events, ");
2491                 break;
2492
2493
2494         case 60: /* Haswell Client */
2495         case 70:
2496         case 71:
2497         case 63:
2498         case 69:
2499                 x86_pmu.late_ack = true;
2500                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2501                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2502
2503                 intel_pmu_lbr_init_snb();
2504
2505                 x86_pmu.event_constraints = intel_hsw_event_constraints;
2506                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2507                 x86_pmu.extra_regs = intel_snb_extra_regs;
2508                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2509                 /* all extra regs are per-cpu when HT is on */
2510                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2511                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2512
2513                 x86_pmu.hw_config = hsw_hw_config;
2514                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2515                 x86_pmu.cpu_events = hsw_events_attrs;
2516                 x86_pmu.lbr_double_abort = true;
2517                 pr_cont("Haswell events, ");
2518                 break;
2519
2520         default:
2521                 switch (x86_pmu.version) {
2522                 case 1:
2523                         x86_pmu.event_constraints = intel_v1_event_constraints;
2524                         pr_cont("generic architected perfmon v1, ");
2525                         break;
2526                 default:
2527                         /*
2528                          * default constraints for v2 and up
2529                          */
2530                         x86_pmu.event_constraints = intel_gen_event_constraints;
2531                         pr_cont("generic architected perfmon, ");
2532                         break;
2533                 }
2534         }
2535
2536         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2537                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2538                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2539                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2540         }
2541         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2542
2543         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2544                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2545                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2546                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2547         }
2548
2549         x86_pmu.intel_ctrl |=
2550                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2551
2552         if (x86_pmu.event_constraints) {
2553                 /*
2554                  * event on fixed counter2 (REF_CYCLES) only works on this
2555                  * counter, so do not extend mask to generic counters
2556                  */
2557                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2558                         if (c->cmask != FIXED_EVENT_FLAGS
2559                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2560                                 continue;
2561                         }
2562
2563                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2564                         c->weight += x86_pmu.num_counters;
2565                 }
2566         }
2567
2568         /* Support full width counters using alternative MSR range */
2569         if (x86_pmu.intel_cap.full_width_write) {
2570                 x86_pmu.max_period = x86_pmu.cntval_mask;
2571                 x86_pmu.perfctr = MSR_IA32_PMC0;
2572                 pr_cont("full-width counters, ");
2573         }
2574
2575         return 0;
2576 }