Merge remote-tracking branch 'regulator/topic/lp8755' into regulator-next
[cascardo/linux.git] / arch / x86 / kernel / kvmclock.c
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27
28 #include <asm/x86_init.h>
29 #include <asm/reboot.h>
30
31 static int kvmclock = 1;
32 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34
35 static int parse_no_kvmclock(char *arg)
36 {
37         kvmclock = 0;
38         return 0;
39 }
40 early_param("no-kvmclock", parse_no_kvmclock);
41
42 /* The hypervisor will put information about time periodically here */
43 static struct pvclock_vsyscall_time_info *hv_clock;
44 static struct pvclock_wall_clock wall_clock;
45
46 /*
47  * The wallclock is the time of day when we booted. Since then, some time may
48  * have elapsed since the hypervisor wrote the data. So we try to account for
49  * that with system time
50  */
51 static void kvm_get_wallclock(struct timespec *now)
52 {
53         struct pvclock_vcpu_time_info *vcpu_time;
54         int low, high;
55         int cpu;
56
57         low = (int)__pa_symbol(&wall_clock);
58         high = ((u64)__pa_symbol(&wall_clock) >> 32);
59
60         native_write_msr(msr_kvm_wall_clock, low, high);
61
62         preempt_disable();
63         cpu = smp_processor_id();
64
65         vcpu_time = &hv_clock[cpu].pvti;
66         pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67
68         preempt_enable();
69 }
70
71 static int kvm_set_wallclock(const struct timespec *now)
72 {
73         return -1;
74 }
75
76 static cycle_t kvm_clock_read(void)
77 {
78         struct pvclock_vcpu_time_info *src;
79         cycle_t ret;
80         int cpu;
81
82         preempt_disable_notrace();
83         cpu = smp_processor_id();
84         src = &hv_clock[cpu].pvti;
85         ret = pvclock_clocksource_read(src);
86         preempt_enable_notrace();
87         return ret;
88 }
89
90 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
91 {
92         return kvm_clock_read();
93 }
94
95 /*
96  * If we don't do that, there is the possibility that the guest
97  * will calibrate under heavy load - thus, getting a lower lpj -
98  * and execute the delays themselves without load. This is wrong,
99  * because no delay loop can finish beforehand.
100  * Any heuristics is subject to fail, because ultimately, a large
101  * poll of guests can be running and trouble each other. So we preset
102  * lpj here
103  */
104 static unsigned long kvm_get_tsc_khz(void)
105 {
106         struct pvclock_vcpu_time_info *src;
107         int cpu;
108         unsigned long tsc_khz;
109
110         preempt_disable();
111         cpu = smp_processor_id();
112         src = &hv_clock[cpu].pvti;
113         tsc_khz = pvclock_tsc_khz(src);
114         preempt_enable();
115         return tsc_khz;
116 }
117
118 static void kvm_get_preset_lpj(void)
119 {
120         unsigned long khz;
121         u64 lpj;
122
123         khz = kvm_get_tsc_khz();
124
125         lpj = ((u64)khz * 1000);
126         do_div(lpj, HZ);
127         preset_lpj = lpj;
128 }
129
130 bool kvm_check_and_clear_guest_paused(void)
131 {
132         bool ret = false;
133         struct pvclock_vcpu_time_info *src;
134         int cpu = smp_processor_id();
135
136         if (!hv_clock)
137                 return ret;
138
139         src = &hv_clock[cpu].pvti;
140         if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141                 src->flags &= ~PVCLOCK_GUEST_STOPPED;
142                 ret = true;
143         }
144
145         return ret;
146 }
147
148 static struct clocksource kvm_clock = {
149         .name = "kvm-clock",
150         .read = kvm_clock_get_cycles,
151         .rating = 400,
152         .mask = CLOCKSOURCE_MASK(64),
153         .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155
156 int kvm_register_clock(char *txt)
157 {
158         int cpu = smp_processor_id();
159         int low, high, ret;
160         struct pvclock_vcpu_time_info *src;
161
162         if (!hv_clock)
163                 return 0;
164
165         src = &hv_clock[cpu].pvti;
166         low = (int)slow_virt_to_phys(src) | 1;
167         high = ((u64)slow_virt_to_phys(src) >> 32);
168         ret = native_write_msr_safe(msr_kvm_system_time, low, high);
169         printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
170                cpu, high, low, txt);
171
172         return ret;
173 }
174
175 static void kvm_save_sched_clock_state(void)
176 {
177 }
178
179 static void kvm_restore_sched_clock_state(void)
180 {
181         kvm_register_clock("primary cpu clock, resume");
182 }
183
184 #ifdef CONFIG_X86_LOCAL_APIC
185 static void kvm_setup_secondary_clock(void)
186 {
187         /*
188          * Now that the first cpu already had this clocksource initialized,
189          * we shouldn't fail.
190          */
191         WARN_ON(kvm_register_clock("secondary cpu clock"));
192 }
193 #endif
194
195 /*
196  * After the clock is registered, the host will keep writing to the
197  * registered memory location. If the guest happens to shutdown, this memory
198  * won't be valid. In cases like kexec, in which you install a new kernel, this
199  * means a random memory location will be kept being written. So before any
200  * kind of shutdown from our side, we unregister the clock by writting anything
201  * that does not have the 'enable' bit set in the msr
202  */
203 #ifdef CONFIG_KEXEC
204 static void kvm_crash_shutdown(struct pt_regs *regs)
205 {
206         native_write_msr(msr_kvm_system_time, 0, 0);
207         kvm_disable_steal_time();
208         native_machine_crash_shutdown(regs);
209 }
210 #endif
211
212 static void kvm_shutdown(void)
213 {
214         native_write_msr(msr_kvm_system_time, 0, 0);
215         kvm_disable_steal_time();
216         native_machine_shutdown();
217 }
218
219 void __init kvmclock_init(void)
220 {
221         unsigned long mem;
222         int size;
223
224         size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
225
226         if (!kvm_para_available())
227                 return;
228
229         if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
230                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
231                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
232         } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
233                 return;
234
235         printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
236                 msr_kvm_system_time, msr_kvm_wall_clock);
237
238         mem = memblock_alloc(size, PAGE_SIZE);
239         if (!mem)
240                 return;
241         hv_clock = __va(mem);
242         memset(hv_clock, 0, size);
243
244         if (kvm_register_clock("boot clock")) {
245                 hv_clock = NULL;
246                 memblock_free(mem, size);
247                 return;
248         }
249         pv_time_ops.sched_clock = kvm_clock_read;
250         x86_platform.calibrate_tsc = kvm_get_tsc_khz;
251         x86_platform.get_wallclock = kvm_get_wallclock;
252         x86_platform.set_wallclock = kvm_set_wallclock;
253 #ifdef CONFIG_X86_LOCAL_APIC
254         x86_cpuinit.early_percpu_clock_init =
255                 kvm_setup_secondary_clock;
256 #endif
257         x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
258         x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
259         machine_ops.shutdown  = kvm_shutdown;
260 #ifdef CONFIG_KEXEC
261         machine_ops.crash_shutdown  = kvm_crash_shutdown;
262 #endif
263         kvm_get_preset_lpj();
264         clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
265         pv_info.paravirt_enabled = 1;
266         pv_info.name = "KVM";
267
268         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
269                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
270 }
271
272 int __init kvm_setup_vsyscall_timeinfo(void)
273 {
274 #ifdef CONFIG_X86_64
275         int cpu;
276         int ret;
277         u8 flags;
278         struct pvclock_vcpu_time_info *vcpu_time;
279         unsigned int size;
280
281         if (!hv_clock)
282                 return 0;
283
284         size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
285
286         preempt_disable();
287         cpu = smp_processor_id();
288
289         vcpu_time = &hv_clock[cpu].pvti;
290         flags = pvclock_read_flags(vcpu_time);
291
292         if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
293                 preempt_enable();
294                 return 1;
295         }
296
297         if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
298                 preempt_enable();
299                 return ret;
300         }
301
302         preempt_enable();
303
304         kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
305 #endif
306         return 0;
307 }