Merge branches '3.14/fbdev', '3.14/dss-misc' and '3.14/dss-fclk' into for-next
[cascardo/linux.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 static u32 xstate_required_size(u64 xstate_bv)
27 {
28         int feature_bit = 0;
29         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
30
31         xstate_bv &= ~XSTATE_FPSSE;
32         while (xstate_bv) {
33                 if (xstate_bv & 0x1) {
34                         u32 eax, ebx, ecx, edx;
35                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36                         ret = max(ret, eax + ebx);
37                 }
38
39                 xstate_bv >>= 1;
40                 feature_bit++;
41         }
42
43         return ret;
44 }
45
46 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
47 {
48         struct kvm_cpuid_entry2 *best;
49         struct kvm_lapic *apic = vcpu->arch.apic;
50
51         best = kvm_find_cpuid_entry(vcpu, 1, 0);
52         if (!best)
53                 return;
54
55         /* Update OSXSAVE bit */
56         if (cpu_has_xsave && best->function == 0x1) {
57                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
58                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
59                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
60         }
61
62         if (apic) {
63                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
64                         apic->lapic_timer.timer_mode_mask = 3 << 17;
65                 else
66                         apic->lapic_timer.timer_mode_mask = 1 << 17;
67         }
68
69         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
70         if (!best) {
71                 vcpu->arch.guest_supported_xcr0 = 0;
72                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
73         } else {
74                 vcpu->arch.guest_supported_xcr0 =
75                         (best->eax | ((u64)best->edx << 32)) &
76                         host_xcr0 & KVM_SUPPORTED_XCR0;
77                 vcpu->arch.guest_xstate_size =
78                         xstate_required_size(vcpu->arch.guest_supported_xcr0);
79         }
80
81         kvm_pmu_cpuid_update(vcpu);
82 }
83
84 static int is_efer_nx(void)
85 {
86         unsigned long long efer = 0;
87
88         rdmsrl_safe(MSR_EFER, &efer);
89         return efer & EFER_NX;
90 }
91
92 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
93 {
94         int i;
95         struct kvm_cpuid_entry2 *e, *entry;
96
97         entry = NULL;
98         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
99                 e = &vcpu->arch.cpuid_entries[i];
100                 if (e->function == 0x80000001) {
101                         entry = e;
102                         break;
103                 }
104         }
105         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
106                 entry->edx &= ~(1 << 20);
107                 printk(KERN_INFO "kvm: guest NX capability removed\n");
108         }
109 }
110
111 /* when an old userspace process fills a new kernel module */
112 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
113                              struct kvm_cpuid *cpuid,
114                              struct kvm_cpuid_entry __user *entries)
115 {
116         int r, i;
117         struct kvm_cpuid_entry *cpuid_entries;
118
119         r = -E2BIG;
120         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
121                 goto out;
122         r = -ENOMEM;
123         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
124         if (!cpuid_entries)
125                 goto out;
126         r = -EFAULT;
127         if (copy_from_user(cpuid_entries, entries,
128                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
129                 goto out_free;
130         for (i = 0; i < cpuid->nent; i++) {
131                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
132                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
133                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
134                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
135                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
136                 vcpu->arch.cpuid_entries[i].index = 0;
137                 vcpu->arch.cpuid_entries[i].flags = 0;
138                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
139                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
140                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
141         }
142         vcpu->arch.cpuid_nent = cpuid->nent;
143         cpuid_fix_nx_cap(vcpu);
144         r = 0;
145         kvm_apic_set_version(vcpu);
146         kvm_x86_ops->cpuid_update(vcpu);
147         kvm_update_cpuid(vcpu);
148
149 out_free:
150         vfree(cpuid_entries);
151 out:
152         return r;
153 }
154
155 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
156                               struct kvm_cpuid2 *cpuid,
157                               struct kvm_cpuid_entry2 __user *entries)
158 {
159         int r;
160
161         r = -E2BIG;
162         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
163                 goto out;
164         r = -EFAULT;
165         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
166                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
167                 goto out;
168         vcpu->arch.cpuid_nent = cpuid->nent;
169         kvm_apic_set_version(vcpu);
170         kvm_x86_ops->cpuid_update(vcpu);
171         kvm_update_cpuid(vcpu);
172         return 0;
173
174 out:
175         return r;
176 }
177
178 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
179                               struct kvm_cpuid2 *cpuid,
180                               struct kvm_cpuid_entry2 __user *entries)
181 {
182         int r;
183
184         r = -E2BIG;
185         if (cpuid->nent < vcpu->arch.cpuid_nent)
186                 goto out;
187         r = -EFAULT;
188         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
189                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
190                 goto out;
191         return 0;
192
193 out:
194         cpuid->nent = vcpu->arch.cpuid_nent;
195         return r;
196 }
197
198 static void cpuid_mask(u32 *word, int wordnum)
199 {
200         *word &= boot_cpu_data.x86_capability[wordnum];
201 }
202
203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
204                            u32 index)
205 {
206         entry->function = function;
207         entry->index = index;
208         cpuid_count(entry->function, entry->index,
209                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
210         entry->flags = 0;
211 }
212
213 static bool supported_xcr0_bit(unsigned bit)
214 {
215         u64 mask = ((u64)1 << bit);
216
217         return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
218 }
219
220 #define F(x) bit(X86_FEATURE_##x)
221
222 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
223                                    u32 func, u32 index, int *nent, int maxnent)
224 {
225         switch (func) {
226         case 0:
227                 entry->eax = 1;         /* only one leaf currently */
228                 ++*nent;
229                 break;
230         case 1:
231                 entry->ecx = F(MOVBE);
232                 ++*nent;
233                 break;
234         default:
235                 break;
236         }
237
238         entry->function = func;
239         entry->index = index;
240
241         return 0;
242 }
243
244 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
245                                  u32 index, int *nent, int maxnent)
246 {
247         int r;
248         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
249 #ifdef CONFIG_X86_64
250         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
251                                 ? F(GBPAGES) : 0;
252         unsigned f_lm = F(LM);
253 #else
254         unsigned f_gbpages = 0;
255         unsigned f_lm = 0;
256 #endif
257         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
258         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
259
260         /* cpuid 1.edx */
261         const u32 kvm_supported_word0_x86_features =
262                 F(FPU) | F(VME) | F(DE) | F(PSE) |
263                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
264                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
265                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
266                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
267                 0 /* Reserved, DS, ACPI */ | F(MMX) |
268                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
269                 0 /* HTT, TM, Reserved, PBE */;
270         /* cpuid 0x80000001.edx */
271         const u32 kvm_supported_word1_x86_features =
272                 F(FPU) | F(VME) | F(DE) | F(PSE) |
273                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
274                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
275                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
276                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
277                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
278                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
279                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
280         /* cpuid 1.ecx */
281         const u32 kvm_supported_word4_x86_features =
282                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
283                 0 /* DS-CPL, VMX, SMX, EST */ |
284                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
285                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
286                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
287                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
288                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
289                 F(F16C) | F(RDRAND);
290         /* cpuid 0x80000001.ecx */
291         const u32 kvm_supported_word6_x86_features =
292                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
293                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
294                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
295                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
296
297         /* cpuid 0xC0000001.edx */
298         const u32 kvm_supported_word5_x86_features =
299                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
300                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
301                 F(PMM) | F(PMM_EN);
302
303         /* cpuid 7.0.ebx */
304         const u32 kvm_supported_word9_x86_features =
305                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
306                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
307
308         /* all calls to cpuid_count() should be made on the same cpu */
309         get_cpu();
310
311         r = -E2BIG;
312
313         if (*nent >= maxnent)
314                 goto out;
315
316         do_cpuid_1_ent(entry, function, index);
317         ++*nent;
318
319         switch (function) {
320         case 0:
321                 entry->eax = min(entry->eax, (u32)0xd);
322                 break;
323         case 1:
324                 entry->edx &= kvm_supported_word0_x86_features;
325                 cpuid_mask(&entry->edx, 0);
326                 entry->ecx &= kvm_supported_word4_x86_features;
327                 cpuid_mask(&entry->ecx, 4);
328                 /* we support x2apic emulation even if host does not support
329                  * it since we emulate x2apic in software */
330                 entry->ecx |= F(X2APIC);
331                 break;
332         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
333          * may return different values. This forces us to get_cpu() before
334          * issuing the first command, and also to emulate this annoying behavior
335          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
336         case 2: {
337                 int t, times = entry->eax & 0xff;
338
339                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
340                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
341                 for (t = 1; t < times; ++t) {
342                         if (*nent >= maxnent)
343                                 goto out;
344
345                         do_cpuid_1_ent(&entry[t], function, 0);
346                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
347                         ++*nent;
348                 }
349                 break;
350         }
351         /* function 4 has additional index. */
352         case 4: {
353                 int i, cache_type;
354
355                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
356                 /* read more entries until cache_type is zero */
357                 for (i = 1; ; ++i) {
358                         if (*nent >= maxnent)
359                                 goto out;
360
361                         cache_type = entry[i - 1].eax & 0x1f;
362                         if (!cache_type)
363                                 break;
364                         do_cpuid_1_ent(&entry[i], function, i);
365                         entry[i].flags |=
366                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
367                         ++*nent;
368                 }
369                 break;
370         }
371         case 7: {
372                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
373                 /* Mask ebx against host capability word 9 */
374                 if (index == 0) {
375                         entry->ebx &= kvm_supported_word9_x86_features;
376                         cpuid_mask(&entry->ebx, 9);
377                         // TSC_ADJUST is emulated
378                         entry->ebx |= F(TSC_ADJUST);
379                 } else
380                         entry->ebx = 0;
381                 entry->eax = 0;
382                 entry->ecx = 0;
383                 entry->edx = 0;
384                 break;
385         }
386         case 9:
387                 break;
388         case 0xa: { /* Architectural Performance Monitoring */
389                 struct x86_pmu_capability cap;
390                 union cpuid10_eax eax;
391                 union cpuid10_edx edx;
392
393                 perf_get_x86_pmu_capability(&cap);
394
395                 /*
396                  * Only support guest architectural pmu on a host
397                  * with architectural pmu.
398                  */
399                 if (!cap.version)
400                         memset(&cap, 0, sizeof(cap));
401
402                 eax.split.version_id = min(cap.version, 2);
403                 eax.split.num_counters = cap.num_counters_gp;
404                 eax.split.bit_width = cap.bit_width_gp;
405                 eax.split.mask_length = cap.events_mask_len;
406
407                 edx.split.num_counters_fixed = cap.num_counters_fixed;
408                 edx.split.bit_width_fixed = cap.bit_width_fixed;
409                 edx.split.reserved = 0;
410
411                 entry->eax = eax.full;
412                 entry->ebx = cap.events_mask;
413                 entry->ecx = 0;
414                 entry->edx = edx.full;
415                 break;
416         }
417         /* function 0xb has additional index. */
418         case 0xb: {
419                 int i, level_type;
420
421                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
422                 /* read more entries until level_type is zero */
423                 for (i = 1; ; ++i) {
424                         if (*nent >= maxnent)
425                                 goto out;
426
427                         level_type = entry[i - 1].ecx & 0xff00;
428                         if (!level_type)
429                                 break;
430                         do_cpuid_1_ent(&entry[i], function, i);
431                         entry[i].flags |=
432                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
433                         ++*nent;
434                 }
435                 break;
436         }
437         case 0xd: {
438                 int idx, i;
439
440                 entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
441                 entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
442                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
443                 for (idx = 1, i = 1; idx < 64; ++idx) {
444                         if (*nent >= maxnent)
445                                 goto out;
446
447                         do_cpuid_1_ent(&entry[i], function, idx);
448                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
449                                 continue;
450                         entry[i].flags |=
451                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
452                         ++*nent;
453                         ++i;
454                 }
455                 break;
456         }
457         case KVM_CPUID_SIGNATURE: {
458                 static const char signature[12] = "KVMKVMKVM\0\0";
459                 const u32 *sigptr = (const u32 *)signature;
460                 entry->eax = KVM_CPUID_FEATURES;
461                 entry->ebx = sigptr[0];
462                 entry->ecx = sigptr[1];
463                 entry->edx = sigptr[2];
464                 break;
465         }
466         case KVM_CPUID_FEATURES:
467                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
468                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
469                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
470                              (1 << KVM_FEATURE_ASYNC_PF) |
471                              (1 << KVM_FEATURE_PV_EOI) |
472                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
473                              (1 << KVM_FEATURE_PV_UNHALT);
474
475                 if (sched_info_on())
476                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
477
478                 entry->ebx = 0;
479                 entry->ecx = 0;
480                 entry->edx = 0;
481                 break;
482         case 0x80000000:
483                 entry->eax = min(entry->eax, 0x8000001a);
484                 break;
485         case 0x80000001:
486                 entry->edx &= kvm_supported_word1_x86_features;
487                 cpuid_mask(&entry->edx, 1);
488                 entry->ecx &= kvm_supported_word6_x86_features;
489                 cpuid_mask(&entry->ecx, 6);
490                 break;
491         case 0x80000008: {
492                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
493                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
494                 unsigned phys_as = entry->eax & 0xff;
495
496                 if (!g_phys_as)
497                         g_phys_as = phys_as;
498                 entry->eax = g_phys_as | (virt_as << 8);
499                 entry->ebx = entry->edx = 0;
500                 break;
501         }
502         case 0x80000019:
503                 entry->ecx = entry->edx = 0;
504                 break;
505         case 0x8000001a:
506                 break;
507         case 0x8000001d:
508                 break;
509         /*Add support for Centaur's CPUID instruction*/
510         case 0xC0000000:
511                 /*Just support up to 0xC0000004 now*/
512                 entry->eax = min(entry->eax, 0xC0000004);
513                 break;
514         case 0xC0000001:
515                 entry->edx &= kvm_supported_word5_x86_features;
516                 cpuid_mask(&entry->edx, 5);
517                 break;
518         case 3: /* Processor serial number */
519         case 5: /* MONITOR/MWAIT */
520         case 6: /* Thermal management */
521         case 0x80000007: /* Advanced power management */
522         case 0xC0000002:
523         case 0xC0000003:
524         case 0xC0000004:
525         default:
526                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
527                 break;
528         }
529
530         kvm_x86_ops->set_supported_cpuid(function, entry);
531
532         r = 0;
533
534 out:
535         put_cpu();
536
537         return r;
538 }
539
540 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
541                         u32 idx, int *nent, int maxnent, unsigned int type)
542 {
543         if (type == KVM_GET_EMULATED_CPUID)
544                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
545
546         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
547 }
548
549 #undef F
550
551 struct kvm_cpuid_param {
552         u32 func;
553         u32 idx;
554         bool has_leaf_count;
555         bool (*qualifier)(const struct kvm_cpuid_param *param);
556 };
557
558 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
559 {
560         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
561 }
562
563 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
564                                  __u32 num_entries, unsigned int ioctl_type)
565 {
566         int i;
567         __u32 pad[3];
568
569         if (ioctl_type != KVM_GET_EMULATED_CPUID)
570                 return false;
571
572         /*
573          * We want to make sure that ->padding is being passed clean from
574          * userspace in case we want to use it for something in the future.
575          *
576          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
577          * have to give ourselves satisfied only with the emulated side. /me
578          * sheds a tear.
579          */
580         for (i = 0; i < num_entries; i++) {
581                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
582                         return true;
583
584                 if (pad[0] || pad[1] || pad[2])
585                         return true;
586         }
587         return false;
588 }
589
590 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
591                             struct kvm_cpuid_entry2 __user *entries,
592                             unsigned int type)
593 {
594         struct kvm_cpuid_entry2 *cpuid_entries;
595         int limit, nent = 0, r = -E2BIG, i;
596         u32 func;
597         static const struct kvm_cpuid_param param[] = {
598                 { .func = 0, .has_leaf_count = true },
599                 { .func = 0x80000000, .has_leaf_count = true },
600                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
601                 { .func = KVM_CPUID_SIGNATURE },
602                 { .func = KVM_CPUID_FEATURES },
603         };
604
605         if (cpuid->nent < 1)
606                 goto out;
607         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
608                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
609
610         if (sanity_check_entries(entries, cpuid->nent, type))
611                 return -EINVAL;
612
613         r = -ENOMEM;
614         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
615         if (!cpuid_entries)
616                 goto out;
617
618         r = 0;
619         for (i = 0; i < ARRAY_SIZE(param); i++) {
620                 const struct kvm_cpuid_param *ent = &param[i];
621
622                 if (ent->qualifier && !ent->qualifier(ent))
623                         continue;
624
625                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
626                                 &nent, cpuid->nent, type);
627
628                 if (r)
629                         goto out_free;
630
631                 if (!ent->has_leaf_count)
632                         continue;
633
634                 limit = cpuid_entries[nent - 1].eax;
635                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
636                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
637                                      &nent, cpuid->nent, type);
638
639                 if (r)
640                         goto out_free;
641         }
642
643         r = -EFAULT;
644         if (copy_to_user(entries, cpuid_entries,
645                          nent * sizeof(struct kvm_cpuid_entry2)))
646                 goto out_free;
647         cpuid->nent = nent;
648         r = 0;
649
650 out_free:
651         vfree(cpuid_entries);
652 out:
653         return r;
654 }
655
656 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
657 {
658         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
659         int j, nent = vcpu->arch.cpuid_nent;
660
661         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
662         /* when no next entry is found, the current entry[i] is reselected */
663         for (j = i + 1; ; j = (j + 1) % nent) {
664                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
665                 if (ej->function == e->function) {
666                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
667                         return j;
668                 }
669         }
670         return 0; /* silence gcc, even though control never reaches here */
671 }
672
673 /* find an entry with matching function, matching index (if needed), and that
674  * should be read next (if it's stateful) */
675 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
676         u32 function, u32 index)
677 {
678         if (e->function != function)
679                 return 0;
680         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
681                 return 0;
682         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
683             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
684                 return 0;
685         return 1;
686 }
687
688 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
689                                               u32 function, u32 index)
690 {
691         int i;
692         struct kvm_cpuid_entry2 *best = NULL;
693
694         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
695                 struct kvm_cpuid_entry2 *e;
696
697                 e = &vcpu->arch.cpuid_entries[i];
698                 if (is_matching_cpuid_entry(e, function, index)) {
699                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
700                                 move_to_next_stateful_cpuid_entry(vcpu, i);
701                         best = e;
702                         break;
703                 }
704         }
705         return best;
706 }
707 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
708
709 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
710 {
711         struct kvm_cpuid_entry2 *best;
712
713         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
714         if (!best || best->eax < 0x80000008)
715                 goto not_found;
716         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
717         if (best)
718                 return best->eax & 0xff;
719 not_found:
720         return 36;
721 }
722
723 /*
724  * If no match is found, check whether we exceed the vCPU's limit
725  * and return the content of the highest valid _standard_ leaf instead.
726  * This is to satisfy the CPUID specification.
727  */
728 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
729                                                   u32 function, u32 index)
730 {
731         struct kvm_cpuid_entry2 *maxlevel;
732
733         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
734         if (!maxlevel || maxlevel->eax >= function)
735                 return NULL;
736         if (function & 0x80000000) {
737                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
738                 if (!maxlevel)
739                         return NULL;
740         }
741         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
742 }
743
744 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
745 {
746         u32 function = *eax, index = *ecx;
747         struct kvm_cpuid_entry2 *best;
748
749         best = kvm_find_cpuid_entry(vcpu, function, index);
750
751         if (!best)
752                 best = check_cpuid_limit(vcpu, function, index);
753
754         if (best) {
755                 *eax = best->eax;
756                 *ebx = best->ebx;
757                 *ecx = best->ecx;
758                 *edx = best->edx;
759         } else
760                 *eax = *ebx = *ecx = *edx = 0;
761         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
762 }
763 EXPORT_SYMBOL_GPL(kvm_cpuid);
764
765 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
766 {
767         u32 function, eax, ebx, ecx, edx;
768
769         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
770         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
771         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
772         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
773         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
774         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
775         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
776         kvm_x86_ops->skip_emulated_instruction(vcpu);
777 }
778 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);