3041902ec827d851f87c91b74aa9cd22022a8629
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178 static u64 __read_mostly shadow_present_mask;
179
180 static void mmu_spte_set(u64 *sptep, u64 spte);
181 static void mmu_free_roots(struct kvm_vcpu *vcpu);
182
183 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
184 {
185         shadow_mmio_mask = mmio_mask;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
188
189 /*
190  * the low bit of the generation number is always presumed to be zero.
191  * This disables mmio caching during memslot updates.  The concept is
192  * similar to a seqcount but instead of retrying the access we just punt
193  * and ignore the cache.
194  *
195  * spte bits 3-11 are used as bits 1-9 of the generation number,
196  * the bits 52-61 are used as bits 10-19 of the generation number.
197  */
198 #define MMIO_SPTE_GEN_LOW_SHIFT         2
199 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
200
201 #define MMIO_GEN_SHIFT                  20
202 #define MMIO_GEN_LOW_SHIFT              10
203 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
204 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
205
206 static u64 generation_mmio_spte_mask(unsigned int gen)
207 {
208         u64 mask;
209
210         WARN_ON(gen & ~MMIO_GEN_MASK);
211
212         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
213         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
214         return mask;
215 }
216
217 static unsigned int get_mmio_spte_generation(u64 spte)
218 {
219         unsigned int gen;
220
221         spte &= ~shadow_mmio_mask;
222
223         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
224         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
225         return gen;
226 }
227
228 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
229 {
230         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
231 }
232
233 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
234                            unsigned access)
235 {
236         unsigned int gen = kvm_current_mmio_generation(vcpu);
237         u64 mask = generation_mmio_spte_mask(gen);
238
239         access &= ACC_WRITE_MASK | ACC_USER_MASK;
240         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
241
242         trace_mark_mmio_spte(sptep, gfn, access, gen);
243         mmu_spte_set(sptep, mask);
244 }
245
246 static bool is_mmio_spte(u64 spte)
247 {
248         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
249 }
250
251 static gfn_t get_mmio_spte_gfn(u64 spte)
252 {
253         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
254         return (spte & ~mask) >> PAGE_SHIFT;
255 }
256
257 static unsigned get_mmio_spte_access(u64 spte)
258 {
259         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
260         return (spte & ~mask) & ~PAGE_MASK;
261 }
262
263 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
264                           kvm_pfn_t pfn, unsigned access)
265 {
266         if (unlikely(is_noslot_pfn(pfn))) {
267                 mark_mmio_spte(vcpu, sptep, gfn, access);
268                 return true;
269         }
270
271         return false;
272 }
273
274 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
275 {
276         unsigned int kvm_gen, spte_gen;
277
278         kvm_gen = kvm_current_mmio_generation(vcpu);
279         spte_gen = get_mmio_spte_generation(spte);
280
281         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
282         return likely(kvm_gen == spte_gen);
283 }
284
285 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
286                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
287 {
288         shadow_user_mask = user_mask;
289         shadow_accessed_mask = accessed_mask;
290         shadow_dirty_mask = dirty_mask;
291         shadow_nx_mask = nx_mask;
292         shadow_x_mask = x_mask;
293         shadow_present_mask = p_mask;
294 }
295 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
296
297 static int is_cpuid_PSE36(void)
298 {
299         return 1;
300 }
301
302 static int is_nx(struct kvm_vcpu *vcpu)
303 {
304         return vcpu->arch.efer & EFER_NX;
305 }
306
307 static int is_shadow_present_pte(u64 pte)
308 {
309         return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
310 }
311
312 static int is_large_pte(u64 pte)
313 {
314         return pte & PT_PAGE_SIZE_MASK;
315 }
316
317 static int is_last_spte(u64 pte, int level)
318 {
319         if (level == PT_PAGE_TABLE_LEVEL)
320                 return 1;
321         if (is_large_pte(pte))
322                 return 1;
323         return 0;
324 }
325
326 static kvm_pfn_t spte_to_pfn(u64 pte)
327 {
328         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
329 }
330
331 static gfn_t pse36_gfn_delta(u32 gpte)
332 {
333         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
334
335         return (gpte & PT32_DIR_PSE36_MASK) << shift;
336 }
337
338 #ifdef CONFIG_X86_64
339 static void __set_spte(u64 *sptep, u64 spte)
340 {
341         WRITE_ONCE(*sptep, spte);
342 }
343
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346         WRITE_ONCE(*sptep, spte);
347 }
348
349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350 {
351         return xchg(sptep, spte);
352 }
353
354 static u64 __get_spte_lockless(u64 *sptep)
355 {
356         return ACCESS_ONCE(*sptep);
357 }
358 #else
359 union split_spte {
360         struct {
361                 u32 spte_low;
362                 u32 spte_high;
363         };
364         u64 spte;
365 };
366
367 static void count_spte_clear(u64 *sptep, u64 spte)
368 {
369         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
370
371         if (is_shadow_present_pte(spte))
372                 return;
373
374         /* Ensure the spte is completely set before we increase the count */
375         smp_wmb();
376         sp->clear_spte_count++;
377 }
378
379 static void __set_spte(u64 *sptep, u64 spte)
380 {
381         union split_spte *ssptep, sspte;
382
383         ssptep = (union split_spte *)sptep;
384         sspte = (union split_spte)spte;
385
386         ssptep->spte_high = sspte.spte_high;
387
388         /*
389          * If we map the spte from nonpresent to present, We should store
390          * the high bits firstly, then set present bit, so cpu can not
391          * fetch this spte while we are setting the spte.
392          */
393         smp_wmb();
394
395         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
396 }
397
398 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
399 {
400         union split_spte *ssptep, sspte;
401
402         ssptep = (union split_spte *)sptep;
403         sspte = (union split_spte)spte;
404
405         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
406
407         /*
408          * If we map the spte from present to nonpresent, we should clear
409          * present bit firstly to avoid vcpu fetch the old high bits.
410          */
411         smp_wmb();
412
413         ssptep->spte_high = sspte.spte_high;
414         count_spte_clear(sptep, spte);
415 }
416
417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
418 {
419         union split_spte *ssptep, sspte, orig;
420
421         ssptep = (union split_spte *)sptep;
422         sspte = (union split_spte)spte;
423
424         /* xchg acts as a barrier before the setting of the high bits */
425         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
426         orig.spte_high = ssptep->spte_high;
427         ssptep->spte_high = sspte.spte_high;
428         count_spte_clear(sptep, spte);
429
430         return orig.spte;
431 }
432
433 /*
434  * The idea using the light way get the spte on x86_32 guest is from
435  * gup_get_pte(arch/x86/mm/gup.c).
436  *
437  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
438  * coalesces them and we are running out of the MMU lock.  Therefore
439  * we need to protect against in-progress updates of the spte.
440  *
441  * Reading the spte while an update is in progress may get the old value
442  * for the high part of the spte.  The race is fine for a present->non-present
443  * change (because the high part of the spte is ignored for non-present spte),
444  * but for a present->present change we must reread the spte.
445  *
446  * All such changes are done in two steps (present->non-present and
447  * non-present->present), hence it is enough to count the number of
448  * present->non-present updates: if it changed while reading the spte,
449  * we might have hit the race.  This is done using clear_spte_count.
450  */
451 static u64 __get_spte_lockless(u64 *sptep)
452 {
453         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
454         union split_spte spte, *orig = (union split_spte *)sptep;
455         int count;
456
457 retry:
458         count = sp->clear_spte_count;
459         smp_rmb();
460
461         spte.spte_low = orig->spte_low;
462         smp_rmb();
463
464         spte.spte_high = orig->spte_high;
465         smp_rmb();
466
467         if (unlikely(spte.spte_low != orig->spte_low ||
468               count != sp->clear_spte_count))
469                 goto retry;
470
471         return spte.spte;
472 }
473 #endif
474
475 static bool spte_is_locklessly_modifiable(u64 spte)
476 {
477         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
478                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
479 }
480
481 static bool spte_has_volatile_bits(u64 spte)
482 {
483         /*
484          * Always atomically update spte if it can be updated
485          * out of mmu-lock, it can ensure dirty bit is not lost,
486          * also, it can help us to get a stable is_writable_pte()
487          * to ensure tlb flush is not missed.
488          */
489         if (spte_is_locklessly_modifiable(spte))
490                 return true;
491
492         if (!shadow_accessed_mask)
493                 return false;
494
495         if (!is_shadow_present_pte(spte))
496                 return false;
497
498         if ((spte & shadow_accessed_mask) &&
499               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
500                 return false;
501
502         return true;
503 }
504
505 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
506 {
507         return (old_spte & bit_mask) && !(new_spte & bit_mask);
508 }
509
510 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
511 {
512         return (old_spte & bit_mask) != (new_spte & bit_mask);
513 }
514
515 /* Rules for using mmu_spte_set:
516  * Set the sptep from nonpresent to present.
517  * Note: the sptep being assigned *must* be either not present
518  * or in a state where the hardware will not attempt to update
519  * the spte.
520  */
521 static void mmu_spte_set(u64 *sptep, u64 new_spte)
522 {
523         WARN_ON(is_shadow_present_pte(*sptep));
524         __set_spte(sptep, new_spte);
525 }
526
527 /* Rules for using mmu_spte_update:
528  * Update the state bits, it means the mapped pfn is not changed.
529  *
530  * Whenever we overwrite a writable spte with a read-only one we
531  * should flush remote TLBs. Otherwise rmap_write_protect
532  * will find a read-only spte, even though the writable spte
533  * might be cached on a CPU's TLB, the return value indicates this
534  * case.
535  */
536 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
537 {
538         u64 old_spte = *sptep;
539         bool ret = false;
540
541         WARN_ON(!is_shadow_present_pte(new_spte));
542
543         if (!is_shadow_present_pte(old_spte)) {
544                 mmu_spte_set(sptep, new_spte);
545                 return ret;
546         }
547
548         if (!spte_has_volatile_bits(old_spte))
549                 __update_clear_spte_fast(sptep, new_spte);
550         else
551                 old_spte = __update_clear_spte_slow(sptep, new_spte);
552
553         /*
554          * For the spte updated out of mmu-lock is safe, since
555          * we always atomically update it, see the comments in
556          * spte_has_volatile_bits().
557          */
558         if (spte_is_locklessly_modifiable(old_spte) &&
559               !is_writable_pte(new_spte))
560                 ret = true;
561
562         if (!shadow_accessed_mask) {
563                 /*
564                  * We don't set page dirty when dropping non-writable spte.
565                  * So do it now if the new spte is becoming non-writable.
566                  */
567                 if (ret)
568                         kvm_set_pfn_dirty(spte_to_pfn(old_spte));
569                 return ret;
570         }
571
572         /*
573          * Flush TLB when accessed/dirty bits are changed in the page tables,
574          * to guarantee consistency between TLB and page tables.
575          */
576         if (spte_is_bit_changed(old_spte, new_spte,
577                                 shadow_accessed_mask | shadow_dirty_mask))
578                 ret = true;
579
580         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
581                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
582         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
583                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584
585         return ret;
586 }
587
588 /*
589  * Rules for using mmu_spte_clear_track_bits:
590  * It sets the sptep from present to nonpresent, and track the
591  * state bits, it is used to clear the last level sptep.
592  */
593 static int mmu_spte_clear_track_bits(u64 *sptep)
594 {
595         kvm_pfn_t pfn;
596         u64 old_spte = *sptep;
597
598         if (!spte_has_volatile_bits(old_spte))
599                 __update_clear_spte_fast(sptep, 0ull);
600         else
601                 old_spte = __update_clear_spte_slow(sptep, 0ull);
602
603         if (!is_shadow_present_pte(old_spte))
604                 return 0;
605
606         pfn = spte_to_pfn(old_spte);
607
608         /*
609          * KVM does not hold the refcount of the page used by
610          * kvm mmu, before reclaiming the page, we should
611          * unmap it from mmu first.
612          */
613         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
614
615         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
616                 kvm_set_pfn_accessed(pfn);
617         if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
618                                             PT_WRITABLE_MASK))
619                 kvm_set_pfn_dirty(pfn);
620         return 1;
621 }
622
623 /*
624  * Rules for using mmu_spte_clear_no_track:
625  * Directly clear spte without caring the state bits of sptep,
626  * it is used to set the upper level spte.
627  */
628 static void mmu_spte_clear_no_track(u64 *sptep)
629 {
630         __update_clear_spte_fast(sptep, 0ull);
631 }
632
633 static u64 mmu_spte_get_lockless(u64 *sptep)
634 {
635         return __get_spte_lockless(sptep);
636 }
637
638 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
639 {
640         /*
641          * Prevent page table teardown by making any free-er wait during
642          * kvm_flush_remote_tlbs() IPI to all active vcpus.
643          */
644         local_irq_disable();
645
646         /*
647          * Make sure a following spte read is not reordered ahead of the write
648          * to vcpu->mode.
649          */
650         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
651 }
652
653 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
654 {
655         /*
656          * Make sure the write to vcpu->mode is not reordered in front of
657          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
658          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
659          */
660         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
661         local_irq_enable();
662 }
663
664 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
665                                   struct kmem_cache *base_cache, int min)
666 {
667         void *obj;
668
669         if (cache->nobjs >= min)
670                 return 0;
671         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
672                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
673                 if (!obj)
674                         return -ENOMEM;
675                 cache->objects[cache->nobjs++] = obj;
676         }
677         return 0;
678 }
679
680 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
681 {
682         return cache->nobjs;
683 }
684
685 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
686                                   struct kmem_cache *cache)
687 {
688         while (mc->nobjs)
689                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
690 }
691
692 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
693                                        int min)
694 {
695         void *page;
696
697         if (cache->nobjs >= min)
698                 return 0;
699         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
700                 page = (void *)__get_free_page(GFP_KERNEL);
701                 if (!page)
702                         return -ENOMEM;
703                 cache->objects[cache->nobjs++] = page;
704         }
705         return 0;
706 }
707
708 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
709 {
710         while (mc->nobjs)
711                 free_page((unsigned long)mc->objects[--mc->nobjs]);
712 }
713
714 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
715 {
716         int r;
717
718         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
720         if (r)
721                 goto out;
722         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
723         if (r)
724                 goto out;
725         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
726                                    mmu_page_header_cache, 4);
727 out:
728         return r;
729 }
730
731 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
732 {
733         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
734                                 pte_list_desc_cache);
735         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
736         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
737                                 mmu_page_header_cache);
738 }
739
740 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
741 {
742         void *p;
743
744         BUG_ON(!mc->nobjs);
745         p = mc->objects[--mc->nobjs];
746         return p;
747 }
748
749 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
750 {
751         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
752 }
753
754 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
755 {
756         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
757 }
758
759 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
760 {
761         if (!sp->role.direct)
762                 return sp->gfns[index];
763
764         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
765 }
766
767 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
768 {
769         if (sp->role.direct)
770                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
771         else
772                 sp->gfns[index] = gfn;
773 }
774
775 /*
776  * Return the pointer to the large page information for a given gfn,
777  * handling slots that are not large page aligned.
778  */
779 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
780                                               struct kvm_memory_slot *slot,
781                                               int level)
782 {
783         unsigned long idx;
784
785         idx = gfn_to_index(gfn, slot->base_gfn, level);
786         return &slot->arch.lpage_info[level - 2][idx];
787 }
788
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790                                             gfn_t gfn, int count)
791 {
792         struct kvm_lpage_info *linfo;
793         int i;
794
795         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796                 linfo = lpage_info_slot(gfn, slot, i);
797                 linfo->disallow_lpage += count;
798                 WARN_ON(linfo->disallow_lpage < 0);
799         }
800 }
801
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804         update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809         update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814         struct kvm_memslots *slots;
815         struct kvm_memory_slot *slot;
816         gfn_t gfn;
817
818         kvm->arch.indirect_shadow_pages++;
819         gfn = sp->gfn;
820         slots = kvm_memslots_for_spte_role(kvm, sp->role);
821         slot = __gfn_to_memslot(slots, gfn);
822
823         /* the non-leaf shadow pages are keeping readonly. */
824         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
825                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
826                                                     KVM_PAGE_TRACK_WRITE);
827
828         kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830
831 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833         struct kvm_memslots *slots;
834         struct kvm_memory_slot *slot;
835         gfn_t gfn;
836
837         kvm->arch.indirect_shadow_pages--;
838         gfn = sp->gfn;
839         slots = kvm_memslots_for_spte_role(kvm, sp->role);
840         slot = __gfn_to_memslot(slots, gfn);
841         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
842                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
843                                                        KVM_PAGE_TRACK_WRITE);
844
845         kvm_mmu_gfn_allow_lpage(slot, gfn);
846 }
847
848 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
849                                           struct kvm_memory_slot *slot)
850 {
851         struct kvm_lpage_info *linfo;
852
853         if (slot) {
854                 linfo = lpage_info_slot(gfn, slot, level);
855                 return !!linfo->disallow_lpage;
856         }
857
858         return true;
859 }
860
861 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
862                                         int level)
863 {
864         struct kvm_memory_slot *slot;
865
866         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
867         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
868 }
869
870 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
871 {
872         unsigned long page_size;
873         int i, ret = 0;
874
875         page_size = kvm_host_page_size(kvm, gfn);
876
877         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
878                 if (page_size >= KVM_HPAGE_SIZE(i))
879                         ret = i;
880                 else
881                         break;
882         }
883
884         return ret;
885 }
886
887 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
888                                           bool no_dirty_log)
889 {
890         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
891                 return false;
892         if (no_dirty_log && slot->dirty_bitmap)
893                 return false;
894
895         return true;
896 }
897
898 static struct kvm_memory_slot *
899 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
900                             bool no_dirty_log)
901 {
902         struct kvm_memory_slot *slot;
903
904         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
905         if (!memslot_valid_for_gpte(slot, no_dirty_log))
906                 slot = NULL;
907
908         return slot;
909 }
910
911 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
912                          bool *force_pt_level)
913 {
914         int host_level, level, max_level;
915         struct kvm_memory_slot *slot;
916
917         if (unlikely(*force_pt_level))
918                 return PT_PAGE_TABLE_LEVEL;
919
920         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
921         *force_pt_level = !memslot_valid_for_gpte(slot, true);
922         if (unlikely(*force_pt_level))
923                 return PT_PAGE_TABLE_LEVEL;
924
925         host_level = host_mapping_level(vcpu->kvm, large_gfn);
926
927         if (host_level == PT_PAGE_TABLE_LEVEL)
928                 return host_level;
929
930         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
931
932         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
933                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
934                         break;
935
936         return level - 1;
937 }
938
939 /*
940  * About rmap_head encoding:
941  *
942  * If the bit zero of rmap_head->val is clear, then it points to the only spte
943  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
944  * pte_list_desc containing more mappings.
945  */
946
947 /*
948  * Returns the number of pointers in the rmap chain, not counting the new one.
949  */
950 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
951                         struct kvm_rmap_head *rmap_head)
952 {
953         struct pte_list_desc *desc;
954         int i, count = 0;
955
956         if (!rmap_head->val) {
957                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
958                 rmap_head->val = (unsigned long)spte;
959         } else if (!(rmap_head->val & 1)) {
960                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
961                 desc = mmu_alloc_pte_list_desc(vcpu);
962                 desc->sptes[0] = (u64 *)rmap_head->val;
963                 desc->sptes[1] = spte;
964                 rmap_head->val = (unsigned long)desc | 1;
965                 ++count;
966         } else {
967                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
968                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
969                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
970                         desc = desc->more;
971                         count += PTE_LIST_EXT;
972                 }
973                 if (desc->sptes[PTE_LIST_EXT-1]) {
974                         desc->more = mmu_alloc_pte_list_desc(vcpu);
975                         desc = desc->more;
976                 }
977                 for (i = 0; desc->sptes[i]; ++i)
978                         ++count;
979                 desc->sptes[i] = spte;
980         }
981         return count;
982 }
983
984 static void
985 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
986                            struct pte_list_desc *desc, int i,
987                            struct pte_list_desc *prev_desc)
988 {
989         int j;
990
991         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
992                 ;
993         desc->sptes[i] = desc->sptes[j];
994         desc->sptes[j] = NULL;
995         if (j != 0)
996                 return;
997         if (!prev_desc && !desc->more)
998                 rmap_head->val = (unsigned long)desc->sptes[0];
999         else
1000                 if (prev_desc)
1001                         prev_desc->more = desc->more;
1002                 else
1003                         rmap_head->val = (unsigned long)desc->more | 1;
1004         mmu_free_pte_list_desc(desc);
1005 }
1006
1007 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1008 {
1009         struct pte_list_desc *desc;
1010         struct pte_list_desc *prev_desc;
1011         int i;
1012
1013         if (!rmap_head->val) {
1014                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1015                 BUG();
1016         } else if (!(rmap_head->val & 1)) {
1017                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1018                 if ((u64 *)rmap_head->val != spte) {
1019                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1020                         BUG();
1021                 }
1022                 rmap_head->val = 0;
1023         } else {
1024                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1025                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1026                 prev_desc = NULL;
1027                 while (desc) {
1028                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1029                                 if (desc->sptes[i] == spte) {
1030                                         pte_list_desc_remove_entry(rmap_head,
1031                                                         desc, i, prev_desc);
1032                                         return;
1033                                 }
1034                         }
1035                         prev_desc = desc;
1036                         desc = desc->more;
1037                 }
1038                 pr_err("pte_list_remove: %p many->many\n", spte);
1039                 BUG();
1040         }
1041 }
1042
1043 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1044                                            struct kvm_memory_slot *slot)
1045 {
1046         unsigned long idx;
1047
1048         idx = gfn_to_index(gfn, slot->base_gfn, level);
1049         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1050 }
1051
1052 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1053                                          struct kvm_mmu_page *sp)
1054 {
1055         struct kvm_memslots *slots;
1056         struct kvm_memory_slot *slot;
1057
1058         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1059         slot = __gfn_to_memslot(slots, gfn);
1060         return __gfn_to_rmap(gfn, sp->role.level, slot);
1061 }
1062
1063 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1064 {
1065         struct kvm_mmu_memory_cache *cache;
1066
1067         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1068         return mmu_memory_cache_free_objects(cache);
1069 }
1070
1071 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1072 {
1073         struct kvm_mmu_page *sp;
1074         struct kvm_rmap_head *rmap_head;
1075
1076         sp = page_header(__pa(spte));
1077         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1078         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1079         return pte_list_add(vcpu, spte, rmap_head);
1080 }
1081
1082 static void rmap_remove(struct kvm *kvm, u64 *spte)
1083 {
1084         struct kvm_mmu_page *sp;
1085         gfn_t gfn;
1086         struct kvm_rmap_head *rmap_head;
1087
1088         sp = page_header(__pa(spte));
1089         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1090         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1091         pte_list_remove(spte, rmap_head);
1092 }
1093
1094 /*
1095  * Used by the following functions to iterate through the sptes linked by a
1096  * rmap.  All fields are private and not assumed to be used outside.
1097  */
1098 struct rmap_iterator {
1099         /* private fields */
1100         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1101         int pos;                        /* index of the sptep */
1102 };
1103
1104 /*
1105  * Iteration must be started by this function.  This should also be used after
1106  * removing/dropping sptes from the rmap link because in such cases the
1107  * information in the itererator may not be valid.
1108  *
1109  * Returns sptep if found, NULL otherwise.
1110  */
1111 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1112                            struct rmap_iterator *iter)
1113 {
1114         u64 *sptep;
1115
1116         if (!rmap_head->val)
1117                 return NULL;
1118
1119         if (!(rmap_head->val & 1)) {
1120                 iter->desc = NULL;
1121                 sptep = (u64 *)rmap_head->val;
1122                 goto out;
1123         }
1124
1125         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1126         iter->pos = 0;
1127         sptep = iter->desc->sptes[iter->pos];
1128 out:
1129         BUG_ON(!is_shadow_present_pte(*sptep));
1130         return sptep;
1131 }
1132
1133 /*
1134  * Must be used with a valid iterator: e.g. after rmap_get_first().
1135  *
1136  * Returns sptep if found, NULL otherwise.
1137  */
1138 static u64 *rmap_get_next(struct rmap_iterator *iter)
1139 {
1140         u64 *sptep;
1141
1142         if (iter->desc) {
1143                 if (iter->pos < PTE_LIST_EXT - 1) {
1144                         ++iter->pos;
1145                         sptep = iter->desc->sptes[iter->pos];
1146                         if (sptep)
1147                                 goto out;
1148                 }
1149
1150                 iter->desc = iter->desc->more;
1151
1152                 if (iter->desc) {
1153                         iter->pos = 0;
1154                         /* desc->sptes[0] cannot be NULL */
1155                         sptep = iter->desc->sptes[iter->pos];
1156                         goto out;
1157                 }
1158         }
1159
1160         return NULL;
1161 out:
1162         BUG_ON(!is_shadow_present_pte(*sptep));
1163         return sptep;
1164 }
1165
1166 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1167         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1168              _spte_; _spte_ = rmap_get_next(_iter_))
1169
1170 static void drop_spte(struct kvm *kvm, u64 *sptep)
1171 {
1172         if (mmu_spte_clear_track_bits(sptep))
1173                 rmap_remove(kvm, sptep);
1174 }
1175
1176
1177 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1178 {
1179         if (is_large_pte(*sptep)) {
1180                 WARN_ON(page_header(__pa(sptep))->role.level ==
1181                         PT_PAGE_TABLE_LEVEL);
1182                 drop_spte(kvm, sptep);
1183                 --kvm->stat.lpages;
1184                 return true;
1185         }
1186
1187         return false;
1188 }
1189
1190 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1191 {
1192         if (__drop_large_spte(vcpu->kvm, sptep))
1193                 kvm_flush_remote_tlbs(vcpu->kvm);
1194 }
1195
1196 /*
1197  * Write-protect on the specified @sptep, @pt_protect indicates whether
1198  * spte write-protection is caused by protecting shadow page table.
1199  *
1200  * Note: write protection is difference between dirty logging and spte
1201  * protection:
1202  * - for dirty logging, the spte can be set to writable at anytime if
1203  *   its dirty bitmap is properly set.
1204  * - for spte protection, the spte can be writable only after unsync-ing
1205  *   shadow page.
1206  *
1207  * Return true if tlb need be flushed.
1208  */
1209 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1210 {
1211         u64 spte = *sptep;
1212
1213         if (!is_writable_pte(spte) &&
1214               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1215                 return false;
1216
1217         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1218
1219         if (pt_protect)
1220                 spte &= ~SPTE_MMU_WRITEABLE;
1221         spte = spte & ~PT_WRITABLE_MASK;
1222
1223         return mmu_spte_update(sptep, spte);
1224 }
1225
1226 static bool __rmap_write_protect(struct kvm *kvm,
1227                                  struct kvm_rmap_head *rmap_head,
1228                                  bool pt_protect)
1229 {
1230         u64 *sptep;
1231         struct rmap_iterator iter;
1232         bool flush = false;
1233
1234         for_each_rmap_spte(rmap_head, &iter, sptep)
1235                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1236
1237         return flush;
1238 }
1239
1240 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1241 {
1242         u64 spte = *sptep;
1243
1244         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1245
1246         spte &= ~shadow_dirty_mask;
1247
1248         return mmu_spte_update(sptep, spte);
1249 }
1250
1251 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1252 {
1253         u64 *sptep;
1254         struct rmap_iterator iter;
1255         bool flush = false;
1256
1257         for_each_rmap_spte(rmap_head, &iter, sptep)
1258                 flush |= spte_clear_dirty(kvm, sptep);
1259
1260         return flush;
1261 }
1262
1263 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1264 {
1265         u64 spte = *sptep;
1266
1267         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1268
1269         spte |= shadow_dirty_mask;
1270
1271         return mmu_spte_update(sptep, spte);
1272 }
1273
1274 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1275 {
1276         u64 *sptep;
1277         struct rmap_iterator iter;
1278         bool flush = false;
1279
1280         for_each_rmap_spte(rmap_head, &iter, sptep)
1281                 flush |= spte_set_dirty(kvm, sptep);
1282
1283         return flush;
1284 }
1285
1286 /**
1287  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1288  * @kvm: kvm instance
1289  * @slot: slot to protect
1290  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1291  * @mask: indicates which pages we should protect
1292  *
1293  * Used when we do not need to care about huge page mappings: e.g. during dirty
1294  * logging we do not have any such mappings.
1295  */
1296 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1297                                      struct kvm_memory_slot *slot,
1298                                      gfn_t gfn_offset, unsigned long mask)
1299 {
1300         struct kvm_rmap_head *rmap_head;
1301
1302         while (mask) {
1303                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1304                                           PT_PAGE_TABLE_LEVEL, slot);
1305                 __rmap_write_protect(kvm, rmap_head, false);
1306
1307                 /* clear the first set bit */
1308                 mask &= mask - 1;
1309         }
1310 }
1311
1312 /**
1313  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1314  * @kvm: kvm instance
1315  * @slot: slot to clear D-bit
1316  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1317  * @mask: indicates which pages we should clear D-bit
1318  *
1319  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1320  */
1321 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1322                                      struct kvm_memory_slot *slot,
1323                                      gfn_t gfn_offset, unsigned long mask)
1324 {
1325         struct kvm_rmap_head *rmap_head;
1326
1327         while (mask) {
1328                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1329                                           PT_PAGE_TABLE_LEVEL, slot);
1330                 __rmap_clear_dirty(kvm, rmap_head);
1331
1332                 /* clear the first set bit */
1333                 mask &= mask - 1;
1334         }
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1337
1338 /**
1339  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1340  * PT level pages.
1341  *
1342  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1343  * enable dirty logging for them.
1344  *
1345  * Used when we do not need to care about huge page mappings: e.g. during dirty
1346  * logging we do not have any such mappings.
1347  */
1348 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1349                                 struct kvm_memory_slot *slot,
1350                                 gfn_t gfn_offset, unsigned long mask)
1351 {
1352         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1353                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1354                                 mask);
1355         else
1356                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1357 }
1358
1359 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1360                                     struct kvm_memory_slot *slot, u64 gfn)
1361 {
1362         struct kvm_rmap_head *rmap_head;
1363         int i;
1364         bool write_protected = false;
1365
1366         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1367                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1368                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1369         }
1370
1371         return write_protected;
1372 }
1373
1374 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1375 {
1376         struct kvm_memory_slot *slot;
1377
1378         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1379         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1380 }
1381
1382 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1383 {
1384         u64 *sptep;
1385         struct rmap_iterator iter;
1386         bool flush = false;
1387
1388         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1389                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1390
1391                 drop_spte(kvm, sptep);
1392                 flush = true;
1393         }
1394
1395         return flush;
1396 }
1397
1398 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1399                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1400                            unsigned long data)
1401 {
1402         return kvm_zap_rmapp(kvm, rmap_head);
1403 }
1404
1405 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1406                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1407                              unsigned long data)
1408 {
1409         u64 *sptep;
1410         struct rmap_iterator iter;
1411         int need_flush = 0;
1412         u64 new_spte;
1413         pte_t *ptep = (pte_t *)data;
1414         kvm_pfn_t new_pfn;
1415
1416         WARN_ON(pte_huge(*ptep));
1417         new_pfn = pte_pfn(*ptep);
1418
1419 restart:
1420         for_each_rmap_spte(rmap_head, &iter, sptep) {
1421                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1422                              sptep, *sptep, gfn, level);
1423
1424                 need_flush = 1;
1425
1426                 if (pte_write(*ptep)) {
1427                         drop_spte(kvm, sptep);
1428                         goto restart;
1429                 } else {
1430                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1431                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1432
1433                         new_spte &= ~PT_WRITABLE_MASK;
1434                         new_spte &= ~SPTE_HOST_WRITEABLE;
1435                         new_spte &= ~shadow_accessed_mask;
1436
1437                         mmu_spte_clear_track_bits(sptep);
1438                         mmu_spte_set(sptep, new_spte);
1439                 }
1440         }
1441
1442         if (need_flush)
1443                 kvm_flush_remote_tlbs(kvm);
1444
1445         return 0;
1446 }
1447
1448 struct slot_rmap_walk_iterator {
1449         /* input fields. */
1450         struct kvm_memory_slot *slot;
1451         gfn_t start_gfn;
1452         gfn_t end_gfn;
1453         int start_level;
1454         int end_level;
1455
1456         /* output fields. */
1457         gfn_t gfn;
1458         struct kvm_rmap_head *rmap;
1459         int level;
1460
1461         /* private field. */
1462         struct kvm_rmap_head *end_rmap;
1463 };
1464
1465 static void
1466 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1467 {
1468         iterator->level = level;
1469         iterator->gfn = iterator->start_gfn;
1470         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1471         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1472                                            iterator->slot);
1473 }
1474
1475 static void
1476 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1477                     struct kvm_memory_slot *slot, int start_level,
1478                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1479 {
1480         iterator->slot = slot;
1481         iterator->start_level = start_level;
1482         iterator->end_level = end_level;
1483         iterator->start_gfn = start_gfn;
1484         iterator->end_gfn = end_gfn;
1485
1486         rmap_walk_init_level(iterator, iterator->start_level);
1487 }
1488
1489 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1490 {
1491         return !!iterator->rmap;
1492 }
1493
1494 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1495 {
1496         if (++iterator->rmap <= iterator->end_rmap) {
1497                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1498                 return;
1499         }
1500
1501         if (++iterator->level > iterator->end_level) {
1502                 iterator->rmap = NULL;
1503                 return;
1504         }
1505
1506         rmap_walk_init_level(iterator, iterator->level);
1507 }
1508
1509 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1510            _start_gfn, _end_gfn, _iter_)                                \
1511         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1512                                  _end_level_, _start_gfn, _end_gfn);    \
1513              slot_rmap_walk_okay(_iter_);                               \
1514              slot_rmap_walk_next(_iter_))
1515
1516 static int kvm_handle_hva_range(struct kvm *kvm,
1517                                 unsigned long start,
1518                                 unsigned long end,
1519                                 unsigned long data,
1520                                 int (*handler)(struct kvm *kvm,
1521                                                struct kvm_rmap_head *rmap_head,
1522                                                struct kvm_memory_slot *slot,
1523                                                gfn_t gfn,
1524                                                int level,
1525                                                unsigned long data))
1526 {
1527         struct kvm_memslots *slots;
1528         struct kvm_memory_slot *memslot;
1529         struct slot_rmap_walk_iterator iterator;
1530         int ret = 0;
1531         int i;
1532
1533         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1534                 slots = __kvm_memslots(kvm, i);
1535                 kvm_for_each_memslot(memslot, slots) {
1536                         unsigned long hva_start, hva_end;
1537                         gfn_t gfn_start, gfn_end;
1538
1539                         hva_start = max(start, memslot->userspace_addr);
1540                         hva_end = min(end, memslot->userspace_addr +
1541                                       (memslot->npages << PAGE_SHIFT));
1542                         if (hva_start >= hva_end)
1543                                 continue;
1544                         /*
1545                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1546                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1547                          */
1548                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1549                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1550
1551                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1552                                                  PT_MAX_HUGEPAGE_LEVEL,
1553                                                  gfn_start, gfn_end - 1,
1554                                                  &iterator)
1555                                 ret |= handler(kvm, iterator.rmap, memslot,
1556                                                iterator.gfn, iterator.level, data);
1557                 }
1558         }
1559
1560         return ret;
1561 }
1562
1563 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1564                           unsigned long data,
1565                           int (*handler)(struct kvm *kvm,
1566                                          struct kvm_rmap_head *rmap_head,
1567                                          struct kvm_memory_slot *slot,
1568                                          gfn_t gfn, int level,
1569                                          unsigned long data))
1570 {
1571         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1572 }
1573
1574 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1575 {
1576         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1577 }
1578
1579 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1580 {
1581         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1582 }
1583
1584 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1585 {
1586         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1587 }
1588
1589 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1590                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1591                          unsigned long data)
1592 {
1593         u64 *sptep;
1594         struct rmap_iterator uninitialized_var(iter);
1595         int young = 0;
1596
1597         BUG_ON(!shadow_accessed_mask);
1598
1599         for_each_rmap_spte(rmap_head, &iter, sptep) {
1600                 if (*sptep & shadow_accessed_mask) {
1601                         young = 1;
1602                         clear_bit((ffs(shadow_accessed_mask) - 1),
1603                                  (unsigned long *)sptep);
1604                 }
1605         }
1606
1607         trace_kvm_age_page(gfn, level, slot, young);
1608         return young;
1609 }
1610
1611 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612                               struct kvm_memory_slot *slot, gfn_t gfn,
1613                               int level, unsigned long data)
1614 {
1615         u64 *sptep;
1616         struct rmap_iterator iter;
1617         int young = 0;
1618
1619         /*
1620          * If there's no access bit in the secondary pte set by the
1621          * hardware it's up to gup-fast/gup to set the access bit in
1622          * the primary pte or in the page structure.
1623          */
1624         if (!shadow_accessed_mask)
1625                 goto out;
1626
1627         for_each_rmap_spte(rmap_head, &iter, sptep) {
1628                 if (*sptep & shadow_accessed_mask) {
1629                         young = 1;
1630                         break;
1631                 }
1632         }
1633 out:
1634         return young;
1635 }
1636
1637 #define RMAP_RECYCLE_THRESHOLD 1000
1638
1639 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1640 {
1641         struct kvm_rmap_head *rmap_head;
1642         struct kvm_mmu_page *sp;
1643
1644         sp = page_header(__pa(spte));
1645
1646         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1647
1648         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1649         kvm_flush_remote_tlbs(vcpu->kvm);
1650 }
1651
1652 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1653 {
1654         /*
1655          * In case of absence of EPT Access and Dirty Bits supports,
1656          * emulate the accessed bit for EPT, by checking if this page has
1657          * an EPT mapping, and clearing it if it does. On the next access,
1658          * a new EPT mapping will be established.
1659          * This has some overhead, but not as much as the cost of swapping
1660          * out actively used pages or breaking up actively used hugepages.
1661          */
1662         if (!shadow_accessed_mask) {
1663                 /*
1664                  * We are holding the kvm->mmu_lock, and we are blowing up
1665                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1666                  * This is correct as long as we don't decouple the mmu_lock
1667                  * protected regions (like invalidate_range_start|end does).
1668                  */
1669                 kvm->mmu_notifier_seq++;
1670                 return kvm_handle_hva_range(kvm, start, end, 0,
1671                                             kvm_unmap_rmapp);
1672         }
1673
1674         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1675 }
1676
1677 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1678 {
1679         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1680 }
1681
1682 #ifdef MMU_DEBUG
1683 static int is_empty_shadow_page(u64 *spt)
1684 {
1685         u64 *pos;
1686         u64 *end;
1687
1688         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1689                 if (is_shadow_present_pte(*pos)) {
1690                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1691                                pos, *pos);
1692                         return 0;
1693                 }
1694         return 1;
1695 }
1696 #endif
1697
1698 /*
1699  * This value is the sum of all of the kvm instances's
1700  * kvm->arch.n_used_mmu_pages values.  We need a global,
1701  * aggregate version in order to make the slab shrinker
1702  * faster
1703  */
1704 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1705 {
1706         kvm->arch.n_used_mmu_pages += nr;
1707         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1708 }
1709
1710 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1711 {
1712         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1713         hlist_del(&sp->hash_link);
1714         list_del(&sp->link);
1715         free_page((unsigned long)sp->spt);
1716         if (!sp->role.direct)
1717                 free_page((unsigned long)sp->gfns);
1718         kmem_cache_free(mmu_page_header_cache, sp);
1719 }
1720
1721 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1722 {
1723         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1724 }
1725
1726 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1727                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1728 {
1729         if (!parent_pte)
1730                 return;
1731
1732         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1733 }
1734
1735 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1736                                        u64 *parent_pte)
1737 {
1738         pte_list_remove(parent_pte, &sp->parent_ptes);
1739 }
1740
1741 static void drop_parent_pte(struct kvm_mmu_page *sp,
1742                             u64 *parent_pte)
1743 {
1744         mmu_page_remove_parent_pte(sp, parent_pte);
1745         mmu_spte_clear_no_track(parent_pte);
1746 }
1747
1748 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1749 {
1750         struct kvm_mmu_page *sp;
1751
1752         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1753         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754         if (!direct)
1755                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1756         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1757
1758         /*
1759          * The active_mmu_pages list is the FIFO list, do not move the
1760          * page until it is zapped. kvm_zap_obsolete_pages depends on
1761          * this feature. See the comments in kvm_zap_obsolete_pages().
1762          */
1763         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1764         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1765         return sp;
1766 }
1767
1768 static void mark_unsync(u64 *spte);
1769 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1770 {
1771         u64 *sptep;
1772         struct rmap_iterator iter;
1773
1774         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1775                 mark_unsync(sptep);
1776         }
1777 }
1778
1779 static void mark_unsync(u64 *spte)
1780 {
1781         struct kvm_mmu_page *sp;
1782         unsigned int index;
1783
1784         sp = page_header(__pa(spte));
1785         index = spte - sp->spt;
1786         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1787                 return;
1788         if (sp->unsync_children++)
1789                 return;
1790         kvm_mmu_mark_parents_unsync(sp);
1791 }
1792
1793 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1794                                struct kvm_mmu_page *sp)
1795 {
1796         return 0;
1797 }
1798
1799 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1800 {
1801 }
1802
1803 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1804                                  struct kvm_mmu_page *sp, u64 *spte,
1805                                  const void *pte)
1806 {
1807         WARN_ON(1);
1808 }
1809
1810 #define KVM_PAGE_ARRAY_NR 16
1811
1812 struct kvm_mmu_pages {
1813         struct mmu_page_and_offset {
1814                 struct kvm_mmu_page *sp;
1815                 unsigned int idx;
1816         } page[KVM_PAGE_ARRAY_NR];
1817         unsigned int nr;
1818 };
1819
1820 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1821                          int idx)
1822 {
1823         int i;
1824
1825         if (sp->unsync)
1826                 for (i=0; i < pvec->nr; i++)
1827                         if (pvec->page[i].sp == sp)
1828                                 return 0;
1829
1830         pvec->page[pvec->nr].sp = sp;
1831         pvec->page[pvec->nr].idx = idx;
1832         pvec->nr++;
1833         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1834 }
1835
1836 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1837 {
1838         --sp->unsync_children;
1839         WARN_ON((int)sp->unsync_children < 0);
1840         __clear_bit(idx, sp->unsync_child_bitmap);
1841 }
1842
1843 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1844                            struct kvm_mmu_pages *pvec)
1845 {
1846         int i, ret, nr_unsync_leaf = 0;
1847
1848         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1849                 struct kvm_mmu_page *child;
1850                 u64 ent = sp->spt[i];
1851
1852                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1853                         clear_unsync_child_bit(sp, i);
1854                         continue;
1855                 }
1856
1857                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1858
1859                 if (child->unsync_children) {
1860                         if (mmu_pages_add(pvec, child, i))
1861                                 return -ENOSPC;
1862
1863                         ret = __mmu_unsync_walk(child, pvec);
1864                         if (!ret) {
1865                                 clear_unsync_child_bit(sp, i);
1866                                 continue;
1867                         } else if (ret > 0) {
1868                                 nr_unsync_leaf += ret;
1869                         } else
1870                                 return ret;
1871                 } else if (child->unsync) {
1872                         nr_unsync_leaf++;
1873                         if (mmu_pages_add(pvec, child, i))
1874                                 return -ENOSPC;
1875                 } else
1876                         clear_unsync_child_bit(sp, i);
1877         }
1878
1879         return nr_unsync_leaf;
1880 }
1881
1882 #define INVALID_INDEX (-1)
1883
1884 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1885                            struct kvm_mmu_pages *pvec)
1886 {
1887         pvec->nr = 0;
1888         if (!sp->unsync_children)
1889                 return 0;
1890
1891         mmu_pages_add(pvec, sp, INVALID_INDEX);
1892         return __mmu_unsync_walk(sp, pvec);
1893 }
1894
1895 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1896 {
1897         WARN_ON(!sp->unsync);
1898         trace_kvm_mmu_sync_page(sp);
1899         sp->unsync = 0;
1900         --kvm->stat.mmu_unsync;
1901 }
1902
1903 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1904                                     struct list_head *invalid_list);
1905 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1906                                     struct list_head *invalid_list);
1907
1908 /*
1909  * NOTE: we should pay more attention on the zapped-obsolete page
1910  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1911  * since it has been deleted from active_mmu_pages but still can be found
1912  * at hast list.
1913  *
1914  * for_each_gfn_valid_sp() has skipped that kind of pages.
1915  */
1916 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1917         hlist_for_each_entry(_sp,                                       \
1918           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919                 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1920                         || (_sp)->role.invalid) {} else
1921
1922 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1923         for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1924                 if ((_sp)->role.direct) {} else
1925
1926 /* @sp->gfn should be write-protected at the call site */
1927 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1928                             struct list_head *invalid_list)
1929 {
1930         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1931                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1932                 return false;
1933         }
1934
1935         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1936                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1937                 return false;
1938         }
1939
1940         return true;
1941 }
1942
1943 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1944                                  struct list_head *invalid_list,
1945                                  bool remote_flush, bool local_flush)
1946 {
1947         if (!list_empty(invalid_list)) {
1948                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1949                 return;
1950         }
1951
1952         if (remote_flush)
1953                 kvm_flush_remote_tlbs(vcpu->kvm);
1954         else if (local_flush)
1955                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1956 }
1957
1958 #ifdef CONFIG_KVM_MMU_AUDIT
1959 #include "mmu_audit.c"
1960 #else
1961 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1962 static void mmu_audit_disable(void) { }
1963 #endif
1964
1965 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1966 {
1967         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1968 }
1969
1970 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1971                          struct list_head *invalid_list)
1972 {
1973         kvm_unlink_unsync_page(vcpu->kvm, sp);
1974         return __kvm_sync_page(vcpu, sp, invalid_list);
1975 }
1976
1977 /* @gfn should be write-protected at the call site */
1978 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1979                            struct list_head *invalid_list)
1980 {
1981         struct kvm_mmu_page *s;
1982         bool ret = false;
1983
1984         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1985                 if (!s->unsync)
1986                         continue;
1987
1988                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1989                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1990         }
1991
1992         return ret;
1993 }
1994
1995 struct mmu_page_path {
1996         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1997         unsigned int idx[PT64_ROOT_LEVEL];
1998 };
1999
2000 #define for_each_sp(pvec, sp, parents, i)                       \
2001                 for (i = mmu_pages_first(&pvec, &parents);      \
2002                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2003                         i = mmu_pages_next(&pvec, &parents, i))
2004
2005 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2006                           struct mmu_page_path *parents,
2007                           int i)
2008 {
2009         int n;
2010
2011         for (n = i+1; n < pvec->nr; n++) {
2012                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2013                 unsigned idx = pvec->page[n].idx;
2014                 int level = sp->role.level;
2015
2016                 parents->idx[level-1] = idx;
2017                 if (level == PT_PAGE_TABLE_LEVEL)
2018                         break;
2019
2020                 parents->parent[level-2] = sp;
2021         }
2022
2023         return n;
2024 }
2025
2026 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2027                            struct mmu_page_path *parents)
2028 {
2029         struct kvm_mmu_page *sp;
2030         int level;
2031
2032         if (pvec->nr == 0)
2033                 return 0;
2034
2035         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2036
2037         sp = pvec->page[0].sp;
2038         level = sp->role.level;
2039         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2040
2041         parents->parent[level-2] = sp;
2042
2043         /* Also set up a sentinel.  Further entries in pvec are all
2044          * children of sp, so this element is never overwritten.
2045          */
2046         parents->parent[level-1] = NULL;
2047         return mmu_pages_next(pvec, parents, 0);
2048 }
2049
2050 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2051 {
2052         struct kvm_mmu_page *sp;
2053         unsigned int level = 0;
2054
2055         do {
2056                 unsigned int idx = parents->idx[level];
2057                 sp = parents->parent[level];
2058                 if (!sp)
2059                         return;
2060
2061                 WARN_ON(idx == INVALID_INDEX);
2062                 clear_unsync_child_bit(sp, idx);
2063                 level++;
2064         } while (!sp->unsync_children);
2065 }
2066
2067 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2068                               struct kvm_mmu_page *parent)
2069 {
2070         int i;
2071         struct kvm_mmu_page *sp;
2072         struct mmu_page_path parents;
2073         struct kvm_mmu_pages pages;
2074         LIST_HEAD(invalid_list);
2075         bool flush = false;
2076
2077         while (mmu_unsync_walk(parent, &pages)) {
2078                 bool protected = false;
2079
2080                 for_each_sp(pages, sp, parents, i)
2081                         protected |= rmap_write_protect(vcpu, sp->gfn);
2082
2083                 if (protected) {
2084                         kvm_flush_remote_tlbs(vcpu->kvm);
2085                         flush = false;
2086                 }
2087
2088                 for_each_sp(pages, sp, parents, i) {
2089                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2090                         mmu_pages_clear_parents(&parents);
2091                 }
2092                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2093                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2094                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2095                         flush = false;
2096                 }
2097         }
2098
2099         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2100 }
2101
2102 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2103 {
2104         atomic_set(&sp->write_flooding_count,  0);
2105 }
2106
2107 static void clear_sp_write_flooding_count(u64 *spte)
2108 {
2109         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2110
2111         __clear_sp_write_flooding_count(sp);
2112 }
2113
2114 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2115                                              gfn_t gfn,
2116                                              gva_t gaddr,
2117                                              unsigned level,
2118                                              int direct,
2119                                              unsigned access)
2120 {
2121         union kvm_mmu_page_role role;
2122         unsigned quadrant;
2123         struct kvm_mmu_page *sp;
2124         bool need_sync = false;
2125         bool flush = false;
2126         LIST_HEAD(invalid_list);
2127
2128         role = vcpu->arch.mmu.base_role;
2129         role.level = level;
2130         role.direct = direct;
2131         if (role.direct)
2132                 role.cr4_pae = 0;
2133         role.access = access;
2134         if (!vcpu->arch.mmu.direct_map
2135             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2136                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2137                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2138                 role.quadrant = quadrant;
2139         }
2140         for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2141                 if (!need_sync && sp->unsync)
2142                         need_sync = true;
2143
2144                 if (sp->role.word != role.word)
2145                         continue;
2146
2147                 if (sp->unsync) {
2148                         /* The page is good, but __kvm_sync_page might still end
2149                          * up zapping it.  If so, break in order to rebuild it.
2150                          */
2151                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2152                                 break;
2153
2154                         WARN_ON(!list_empty(&invalid_list));
2155                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2156                 }
2157
2158                 if (sp->unsync_children)
2159                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2160
2161                 __clear_sp_write_flooding_count(sp);
2162                 trace_kvm_mmu_get_page(sp, false);
2163                 return sp;
2164         }
2165
2166         ++vcpu->kvm->stat.mmu_cache_miss;
2167
2168         sp = kvm_mmu_alloc_page(vcpu, direct);
2169
2170         sp->gfn = gfn;
2171         sp->role = role;
2172         hlist_add_head(&sp->hash_link,
2173                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2174         if (!direct) {
2175                 /*
2176                  * we should do write protection before syncing pages
2177                  * otherwise the content of the synced shadow page may
2178                  * be inconsistent with guest page table.
2179                  */
2180                 account_shadowed(vcpu->kvm, sp);
2181                 if (level == PT_PAGE_TABLE_LEVEL &&
2182                       rmap_write_protect(vcpu, gfn))
2183                         kvm_flush_remote_tlbs(vcpu->kvm);
2184
2185                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2186                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2187         }
2188         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189         clear_page(sp->spt);
2190         trace_kvm_mmu_get_page(sp, true);
2191
2192         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2193         return sp;
2194 }
2195
2196 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2197                              struct kvm_vcpu *vcpu, u64 addr)
2198 {
2199         iterator->addr = addr;
2200         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2201         iterator->level = vcpu->arch.mmu.shadow_root_level;
2202
2203         if (iterator->level == PT64_ROOT_LEVEL &&
2204             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2205             !vcpu->arch.mmu.direct_map)
2206                 --iterator->level;
2207
2208         if (iterator->level == PT32E_ROOT_LEVEL) {
2209                 iterator->shadow_addr
2210                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2211                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2212                 --iterator->level;
2213                 if (!iterator->shadow_addr)
2214                         iterator->level = 0;
2215         }
2216 }
2217
2218 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2219 {
2220         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2221                 return false;
2222
2223         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2224         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2225         return true;
2226 }
2227
2228 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2229                                u64 spte)
2230 {
2231         if (is_last_spte(spte, iterator->level)) {
2232                 iterator->level = 0;
2233                 return;
2234         }
2235
2236         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2237         --iterator->level;
2238 }
2239
2240 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2241 {
2242         return __shadow_walk_next(iterator, *iterator->sptep);
2243 }
2244
2245 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2246                              struct kvm_mmu_page *sp)
2247 {
2248         u64 spte;
2249
2250         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2251
2252         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2253                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2254
2255         mmu_spte_set(sptep, spte);
2256
2257         mmu_page_add_parent_pte(vcpu, sp, sptep);
2258
2259         if (sp->unsync_children || sp->unsync)
2260                 mark_unsync(sptep);
2261 }
2262
2263 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2264                                    unsigned direct_access)
2265 {
2266         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2267                 struct kvm_mmu_page *child;
2268
2269                 /*
2270                  * For the direct sp, if the guest pte's dirty bit
2271                  * changed form clean to dirty, it will corrupt the
2272                  * sp's access: allow writable in the read-only sp,
2273                  * so we should update the spte at this point to get
2274                  * a new sp with the correct access.
2275                  */
2276                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2277                 if (child->role.access == direct_access)
2278                         return;
2279
2280                 drop_parent_pte(child, sptep);
2281                 kvm_flush_remote_tlbs(vcpu->kvm);
2282         }
2283 }
2284
2285 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2286                              u64 *spte)
2287 {
2288         u64 pte;
2289         struct kvm_mmu_page *child;
2290
2291         pte = *spte;
2292         if (is_shadow_present_pte(pte)) {
2293                 if (is_last_spte(pte, sp->role.level)) {
2294                         drop_spte(kvm, spte);
2295                         if (is_large_pte(pte))
2296                                 --kvm->stat.lpages;
2297                 } else {
2298                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2299                         drop_parent_pte(child, spte);
2300                 }
2301                 return true;
2302         }
2303
2304         if (is_mmio_spte(pte))
2305                 mmu_spte_clear_no_track(spte);
2306
2307         return false;
2308 }
2309
2310 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2311                                          struct kvm_mmu_page *sp)
2312 {
2313         unsigned i;
2314
2315         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2316                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2317 }
2318
2319 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2320 {
2321         u64 *sptep;
2322         struct rmap_iterator iter;
2323
2324         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2325                 drop_parent_pte(sp, sptep);
2326 }
2327
2328 static int mmu_zap_unsync_children(struct kvm *kvm,
2329                                    struct kvm_mmu_page *parent,
2330                                    struct list_head *invalid_list)
2331 {
2332         int i, zapped = 0;
2333         struct mmu_page_path parents;
2334         struct kvm_mmu_pages pages;
2335
2336         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2337                 return 0;
2338
2339         while (mmu_unsync_walk(parent, &pages)) {
2340                 struct kvm_mmu_page *sp;
2341
2342                 for_each_sp(pages, sp, parents, i) {
2343                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2344                         mmu_pages_clear_parents(&parents);
2345                         zapped++;
2346                 }
2347         }
2348
2349         return zapped;
2350 }
2351
2352 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2353                                     struct list_head *invalid_list)
2354 {
2355         int ret;
2356
2357         trace_kvm_mmu_prepare_zap_page(sp);
2358         ++kvm->stat.mmu_shadow_zapped;
2359         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2360         kvm_mmu_page_unlink_children(kvm, sp);
2361         kvm_mmu_unlink_parents(kvm, sp);
2362
2363         if (!sp->role.invalid && !sp->role.direct)
2364                 unaccount_shadowed(kvm, sp);
2365
2366         if (sp->unsync)
2367                 kvm_unlink_unsync_page(kvm, sp);
2368         if (!sp->root_count) {
2369                 /* Count self */
2370                 ret++;
2371                 list_move(&sp->link, invalid_list);
2372                 kvm_mod_used_mmu_pages(kvm, -1);
2373         } else {
2374                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2375
2376                 /*
2377                  * The obsolete pages can not be used on any vcpus.
2378                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2379                  */
2380                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2381                         kvm_reload_remote_mmus(kvm);
2382         }
2383
2384         sp->role.invalid = 1;
2385         return ret;
2386 }
2387
2388 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2389                                     struct list_head *invalid_list)
2390 {
2391         struct kvm_mmu_page *sp, *nsp;
2392
2393         if (list_empty(invalid_list))
2394                 return;
2395
2396         /*
2397          * We need to make sure everyone sees our modifications to
2398          * the page tables and see changes to vcpu->mode here. The barrier
2399          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2400          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2401          *
2402          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2403          * guest mode and/or lockless shadow page table walks.
2404          */
2405         kvm_flush_remote_tlbs(kvm);
2406
2407         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2408                 WARN_ON(!sp->role.invalid || sp->root_count);
2409                 kvm_mmu_free_page(sp);
2410         }
2411 }
2412
2413 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2414                                         struct list_head *invalid_list)
2415 {
2416         struct kvm_mmu_page *sp;
2417
2418         if (list_empty(&kvm->arch.active_mmu_pages))
2419                 return false;
2420
2421         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2422                              struct kvm_mmu_page, link);
2423         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2424
2425         return true;
2426 }
2427
2428 /*
2429  * Changing the number of mmu pages allocated to the vm
2430  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2431  */
2432 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2433 {
2434         LIST_HEAD(invalid_list);
2435
2436         spin_lock(&kvm->mmu_lock);
2437
2438         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2439                 /* Need to free some mmu pages to achieve the goal. */
2440                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2441                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2442                                 break;
2443
2444                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2445                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2446         }
2447
2448         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2449
2450         spin_unlock(&kvm->mmu_lock);
2451 }
2452
2453 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2454 {
2455         struct kvm_mmu_page *sp;
2456         LIST_HEAD(invalid_list);
2457         int r;
2458
2459         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2460         r = 0;
2461         spin_lock(&kvm->mmu_lock);
2462         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2463                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2464                          sp->role.word);
2465                 r = 1;
2466                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2467         }
2468         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2469         spin_unlock(&kvm->mmu_lock);
2470
2471         return r;
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2474
2475 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2476 {
2477         trace_kvm_mmu_unsync_page(sp);
2478         ++vcpu->kvm->stat.mmu_unsync;
2479         sp->unsync = 1;
2480
2481         kvm_mmu_mark_parents_unsync(sp);
2482 }
2483
2484 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2485                                    bool can_unsync)
2486 {
2487         struct kvm_mmu_page *sp;
2488
2489         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2490                 return true;
2491
2492         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2493                 if (!can_unsync)
2494                         return true;
2495
2496                 if (sp->unsync)
2497                         continue;
2498
2499                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2500                 kvm_unsync_page(vcpu, sp);
2501         }
2502
2503         return false;
2504 }
2505
2506 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2507 {
2508         if (pfn_valid(pfn))
2509                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2510
2511         return true;
2512 }
2513
2514 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515                     unsigned pte_access, int level,
2516                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2517                     bool can_unsync, bool host_writable)
2518 {
2519         u64 spte = 0;
2520         int ret = 0;
2521
2522         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2523                 return 0;
2524
2525         /*
2526          * For the EPT case, shadow_present_mask is 0 if hardware
2527          * supports exec-only page table entries.  In that case,
2528          * ACC_USER_MASK and shadow_user_mask are used to represent
2529          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2530          */
2531         spte |= shadow_present_mask;
2532         if (!speculative)
2533                 spte |= shadow_accessed_mask;
2534
2535         if (pte_access & ACC_EXEC_MASK)
2536                 spte |= shadow_x_mask;
2537         else
2538                 spte |= shadow_nx_mask;
2539
2540         if (pte_access & ACC_USER_MASK)
2541                 spte |= shadow_user_mask;
2542
2543         if (level > PT_PAGE_TABLE_LEVEL)
2544                 spte |= PT_PAGE_SIZE_MASK;
2545         if (tdp_enabled)
2546                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2547                         kvm_is_mmio_pfn(pfn));
2548
2549         if (host_writable)
2550                 spte |= SPTE_HOST_WRITEABLE;
2551         else
2552                 pte_access &= ~ACC_WRITE_MASK;
2553
2554         spte |= (u64)pfn << PAGE_SHIFT;
2555
2556         if (pte_access & ACC_WRITE_MASK) {
2557
2558                 /*
2559                  * Other vcpu creates new sp in the window between
2560                  * mapping_level() and acquiring mmu-lock. We can
2561                  * allow guest to retry the access, the mapping can
2562                  * be fixed if guest refault.
2563                  */
2564                 if (level > PT_PAGE_TABLE_LEVEL &&
2565                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2566                         goto done;
2567
2568                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2569
2570                 /*
2571                  * Optimization: for pte sync, if spte was writable the hash
2572                  * lookup is unnecessary (and expensive). Write protection
2573                  * is responsibility of mmu_get_page / kvm_sync_page.
2574                  * Same reasoning can be applied to dirty page accounting.
2575                  */
2576                 if (!can_unsync && is_writable_pte(*sptep))
2577                         goto set_pte;
2578
2579                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2580                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2581                                  __func__, gfn);
2582                         ret = 1;
2583                         pte_access &= ~ACC_WRITE_MASK;
2584                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2585                 }
2586         }
2587
2588         if (pte_access & ACC_WRITE_MASK) {
2589                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590                 spte |= shadow_dirty_mask;
2591         }
2592
2593 set_pte:
2594         if (mmu_spte_update(sptep, spte))
2595                 kvm_flush_remote_tlbs(vcpu->kvm);
2596 done:
2597         return ret;
2598 }
2599
2600 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2601                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2602                          bool speculative, bool host_writable)
2603 {
2604         int was_rmapped = 0;
2605         int rmap_count;
2606         bool emulate = false;
2607
2608         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2609                  *sptep, write_fault, gfn);
2610
2611         if (is_shadow_present_pte(*sptep)) {
2612                 /*
2613                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2614                  * the parent of the now unreachable PTE.
2615                  */
2616                 if (level > PT_PAGE_TABLE_LEVEL &&
2617                     !is_large_pte(*sptep)) {
2618                         struct kvm_mmu_page *child;
2619                         u64 pte = *sptep;
2620
2621                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2622                         drop_parent_pte(child, sptep);
2623                         kvm_flush_remote_tlbs(vcpu->kvm);
2624                 } else if (pfn != spte_to_pfn(*sptep)) {
2625                         pgprintk("hfn old %llx new %llx\n",
2626                                  spte_to_pfn(*sptep), pfn);
2627                         drop_spte(vcpu->kvm, sptep);
2628                         kvm_flush_remote_tlbs(vcpu->kvm);
2629                 } else
2630                         was_rmapped = 1;
2631         }
2632
2633         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2634               true, host_writable)) {
2635                 if (write_fault)
2636                         emulate = true;
2637                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2638         }
2639
2640         if (unlikely(is_mmio_spte(*sptep)))
2641                 emulate = true;
2642
2643         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2644         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2645                  is_large_pte(*sptep)? "2MB" : "4kB",
2646                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2647                  *sptep, sptep);
2648         if (!was_rmapped && is_large_pte(*sptep))
2649                 ++vcpu->kvm->stat.lpages;
2650
2651         if (is_shadow_present_pte(*sptep)) {
2652                 if (!was_rmapped) {
2653                         rmap_count = rmap_add(vcpu, sptep, gfn);
2654                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2655                                 rmap_recycle(vcpu, sptep, gfn);
2656                 }
2657         }
2658
2659         kvm_release_pfn_clean(pfn);
2660
2661         return emulate;
2662 }
2663
2664 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2665                                      bool no_dirty_log)
2666 {
2667         struct kvm_memory_slot *slot;
2668
2669         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2670         if (!slot)
2671                 return KVM_PFN_ERR_FAULT;
2672
2673         return gfn_to_pfn_memslot_atomic(slot, gfn);
2674 }
2675
2676 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2677                                     struct kvm_mmu_page *sp,
2678                                     u64 *start, u64 *end)
2679 {
2680         struct page *pages[PTE_PREFETCH_NUM];
2681         struct kvm_memory_slot *slot;
2682         unsigned access = sp->role.access;
2683         int i, ret;
2684         gfn_t gfn;
2685
2686         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2687         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2688         if (!slot)
2689                 return -1;
2690
2691         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2692         if (ret <= 0)
2693                 return -1;
2694
2695         for (i = 0; i < ret; i++, gfn++, start++)
2696                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2697                              page_to_pfn(pages[i]), true, true);
2698
2699         return 0;
2700 }
2701
2702 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2703                                   struct kvm_mmu_page *sp, u64 *sptep)
2704 {
2705         u64 *spte, *start = NULL;
2706         int i;
2707
2708         WARN_ON(!sp->role.direct);
2709
2710         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2711         spte = sp->spt + i;
2712
2713         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2714                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2715                         if (!start)
2716                                 continue;
2717                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2718                                 break;
2719                         start = NULL;
2720                 } else if (!start)
2721                         start = spte;
2722         }
2723 }
2724
2725 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2726 {
2727         struct kvm_mmu_page *sp;
2728
2729         /*
2730          * Since it's no accessed bit on EPT, it's no way to
2731          * distinguish between actually accessed translations
2732          * and prefetched, so disable pte prefetch if EPT is
2733          * enabled.
2734          */
2735         if (!shadow_accessed_mask)
2736                 return;
2737
2738         sp = page_header(__pa(sptep));
2739         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2740                 return;
2741
2742         __direct_pte_prefetch(vcpu, sp, sptep);
2743 }
2744
2745 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2746                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2747 {
2748         struct kvm_shadow_walk_iterator iterator;
2749         struct kvm_mmu_page *sp;
2750         int emulate = 0;
2751         gfn_t pseudo_gfn;
2752
2753         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2754                 return 0;
2755
2756         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2757                 if (iterator.level == level) {
2758                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2759                                                write, level, gfn, pfn, prefault,
2760                                                map_writable);
2761                         direct_pte_prefetch(vcpu, iterator.sptep);
2762                         ++vcpu->stat.pf_fixed;
2763                         break;
2764                 }
2765
2766                 drop_large_spte(vcpu, iterator.sptep);
2767                 if (!is_shadow_present_pte(*iterator.sptep)) {
2768                         u64 base_addr = iterator.addr;
2769
2770                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2771                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2772                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2773                                               iterator.level - 1, 1, ACC_ALL);
2774
2775                         link_shadow_page(vcpu, iterator.sptep, sp);
2776                 }
2777         }
2778         return emulate;
2779 }
2780
2781 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2782 {
2783         siginfo_t info;
2784
2785         info.si_signo   = SIGBUS;
2786         info.si_errno   = 0;
2787         info.si_code    = BUS_MCEERR_AR;
2788         info.si_addr    = (void __user *)address;
2789         info.si_addr_lsb = PAGE_SHIFT;
2790
2791         send_sig_info(SIGBUS, &info, tsk);
2792 }
2793
2794 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2795 {
2796         /*
2797          * Do not cache the mmio info caused by writing the readonly gfn
2798          * into the spte otherwise read access on readonly gfn also can
2799          * caused mmio page fault and treat it as mmio access.
2800          * Return 1 to tell kvm to emulate it.
2801          */
2802         if (pfn == KVM_PFN_ERR_RO_FAULT)
2803                 return 1;
2804
2805         if (pfn == KVM_PFN_ERR_HWPOISON) {
2806                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2807                 return 0;
2808         }
2809
2810         return -EFAULT;
2811 }
2812
2813 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2814                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2815                                         int *levelp)
2816 {
2817         kvm_pfn_t pfn = *pfnp;
2818         gfn_t gfn = *gfnp;
2819         int level = *levelp;
2820
2821         /*
2822          * Check if it's a transparent hugepage. If this would be an
2823          * hugetlbfs page, level wouldn't be set to
2824          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2825          * here.
2826          */
2827         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2828             level == PT_PAGE_TABLE_LEVEL &&
2829             PageTransCompoundMap(pfn_to_page(pfn)) &&
2830             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2831                 unsigned long mask;
2832                 /*
2833                  * mmu_notifier_retry was successful and we hold the
2834                  * mmu_lock here, so the pmd can't become splitting
2835                  * from under us, and in turn
2836                  * __split_huge_page_refcount() can't run from under
2837                  * us and we can safely transfer the refcount from
2838                  * PG_tail to PG_head as we switch the pfn to tail to
2839                  * head.
2840                  */
2841                 *levelp = level = PT_DIRECTORY_LEVEL;
2842                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2843                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2844                 if (pfn & mask) {
2845                         gfn &= ~mask;
2846                         *gfnp = gfn;
2847                         kvm_release_pfn_clean(pfn);
2848                         pfn &= ~mask;
2849                         kvm_get_pfn(pfn);
2850                         *pfnp = pfn;
2851                 }
2852         }
2853 }
2854
2855 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2856                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2857 {
2858         /* The pfn is invalid, report the error! */
2859         if (unlikely(is_error_pfn(pfn))) {
2860                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2861                 return true;
2862         }
2863
2864         if (unlikely(is_noslot_pfn(pfn)))
2865                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2866
2867         return false;
2868 }
2869
2870 static bool page_fault_can_be_fast(u32 error_code)
2871 {
2872         /*
2873          * Do not fix the mmio spte with invalid generation number which
2874          * need to be updated by slow page fault path.
2875          */
2876         if (unlikely(error_code & PFERR_RSVD_MASK))
2877                 return false;
2878
2879         /*
2880          * #PF can be fast only if the shadow page table is present and it
2881          * is caused by write-protect, that means we just need change the
2882          * W bit of the spte which can be done out of mmu-lock.
2883          */
2884         if (!(error_code & PFERR_PRESENT_MASK) ||
2885               !(error_code & PFERR_WRITE_MASK))
2886                 return false;
2887
2888         return true;
2889 }
2890
2891 static bool
2892 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2893                         u64 *sptep, u64 spte)
2894 {
2895         gfn_t gfn;
2896
2897         WARN_ON(!sp->role.direct);
2898
2899         /*
2900          * The gfn of direct spte is stable since it is calculated
2901          * by sp->gfn.
2902          */
2903         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2904
2905         /*
2906          * Theoretically we could also set dirty bit (and flush TLB) here in
2907          * order to eliminate unnecessary PML logging. See comments in
2908          * set_spte. But fast_page_fault is very unlikely to happen with PML
2909          * enabled, so we do not do this. This might result in the same GPA
2910          * to be logged in PML buffer again when the write really happens, and
2911          * eventually to be called by mark_page_dirty twice. But it's also no
2912          * harm. This also avoids the TLB flush needed after setting dirty bit
2913          * so non-PML cases won't be impacted.
2914          *
2915          * Compare with set_spte where instead shadow_dirty_mask is set.
2916          */
2917         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2918                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2919
2920         return true;
2921 }
2922
2923 /*
2924  * Return value:
2925  * - true: let the vcpu to access on the same address again.
2926  * - false: let the real page fault path to fix it.
2927  */
2928 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2929                             u32 error_code)
2930 {
2931         struct kvm_shadow_walk_iterator iterator;
2932         struct kvm_mmu_page *sp;
2933         bool ret = false;
2934         u64 spte = 0ull;
2935
2936         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2937                 return false;
2938
2939         if (!page_fault_can_be_fast(error_code))
2940                 return false;
2941
2942         walk_shadow_page_lockless_begin(vcpu);
2943         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2944                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2945                         break;
2946
2947         /*
2948          * If the mapping has been changed, let the vcpu fault on the
2949          * same address again.
2950          */
2951         if (!is_shadow_present_pte(spte)) {
2952                 ret = true;
2953                 goto exit;
2954         }
2955
2956         sp = page_header(__pa(iterator.sptep));
2957         if (!is_last_spte(spte, sp->role.level))
2958                 goto exit;
2959
2960         /*
2961          * Check if it is a spurious fault caused by TLB lazily flushed.
2962          *
2963          * Need not check the access of upper level table entries since
2964          * they are always ACC_ALL.
2965          */
2966          if (is_writable_pte(spte)) {
2967                 ret = true;
2968                 goto exit;
2969         }
2970
2971         /*
2972          * Currently, to simplify the code, only the spte write-protected
2973          * by dirty-log can be fast fixed.
2974          */
2975         if (!spte_is_locklessly_modifiable(spte))
2976                 goto exit;
2977
2978         /*
2979          * Do not fix write-permission on the large spte since we only dirty
2980          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2981          * that means other pages are missed if its slot is dirty-logged.
2982          *
2983          * Instead, we let the slow page fault path create a normal spte to
2984          * fix the access.
2985          *
2986          * See the comments in kvm_arch_commit_memory_region().
2987          */
2988         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2989                 goto exit;
2990
2991         /*
2992          * Currently, fast page fault only works for direct mapping since
2993          * the gfn is not stable for indirect shadow page.
2994          * See Documentation/virtual/kvm/locking.txt to get more detail.
2995          */
2996         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2997 exit:
2998         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2999                               spte, ret);
3000         walk_shadow_page_lockless_end(vcpu);
3001
3002         return ret;
3003 }
3004
3005 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3006                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3007 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3008
3009 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3010                          gfn_t gfn, bool prefault)
3011 {
3012         int r;
3013         int level;
3014         bool force_pt_level = false;
3015         kvm_pfn_t pfn;
3016         unsigned long mmu_seq;
3017         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3018
3019         level = mapping_level(vcpu, gfn, &force_pt_level);
3020         if (likely(!force_pt_level)) {
3021                 /*
3022                  * This path builds a PAE pagetable - so we can map
3023                  * 2mb pages at maximum. Therefore check if the level
3024                  * is larger than that.
3025                  */
3026                 if (level > PT_DIRECTORY_LEVEL)
3027                         level = PT_DIRECTORY_LEVEL;
3028
3029                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3030         }
3031
3032         if (fast_page_fault(vcpu, v, level, error_code))
3033                 return 0;
3034
3035         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3036         smp_rmb();
3037
3038         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3039                 return 0;
3040
3041         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3042                 return r;
3043
3044         spin_lock(&vcpu->kvm->mmu_lock);
3045         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3046                 goto out_unlock;
3047         make_mmu_pages_available(vcpu);
3048         if (likely(!force_pt_level))
3049                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3050         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3051         spin_unlock(&vcpu->kvm->mmu_lock);
3052
3053         return r;
3054
3055 out_unlock:
3056         spin_unlock(&vcpu->kvm->mmu_lock);
3057         kvm_release_pfn_clean(pfn);
3058         return 0;
3059 }
3060
3061
3062 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3063 {
3064         int i;
3065         struct kvm_mmu_page *sp;
3066         LIST_HEAD(invalid_list);
3067
3068         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3069                 return;
3070
3071         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3072             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3073              vcpu->arch.mmu.direct_map)) {
3074                 hpa_t root = vcpu->arch.mmu.root_hpa;
3075
3076                 spin_lock(&vcpu->kvm->mmu_lock);
3077                 sp = page_header(root);
3078                 --sp->root_count;
3079                 if (!sp->root_count && sp->role.invalid) {
3080                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3081                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3082                 }
3083                 spin_unlock(&vcpu->kvm->mmu_lock);
3084                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3085                 return;
3086         }
3087
3088         spin_lock(&vcpu->kvm->mmu_lock);
3089         for (i = 0; i < 4; ++i) {
3090                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3091
3092                 if (root) {
3093                         root &= PT64_BASE_ADDR_MASK;
3094                         sp = page_header(root);
3095                         --sp->root_count;
3096                         if (!sp->root_count && sp->role.invalid)
3097                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3098                                                          &invalid_list);
3099                 }
3100                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3101         }
3102         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3103         spin_unlock(&vcpu->kvm->mmu_lock);
3104         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3105 }
3106
3107 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3108 {
3109         int ret = 0;
3110
3111         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3112                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3113                 ret = 1;
3114         }
3115
3116         return ret;
3117 }
3118
3119 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3120 {
3121         struct kvm_mmu_page *sp;
3122         unsigned i;
3123
3124         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3125                 spin_lock(&vcpu->kvm->mmu_lock);
3126                 make_mmu_pages_available(vcpu);
3127                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3128                 ++sp->root_count;
3129                 spin_unlock(&vcpu->kvm->mmu_lock);
3130                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3131         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3132                 for (i = 0; i < 4; ++i) {
3133                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3134
3135                         MMU_WARN_ON(VALID_PAGE(root));
3136                         spin_lock(&vcpu->kvm->mmu_lock);
3137                         make_mmu_pages_available(vcpu);
3138                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3139                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3140                         root = __pa(sp->spt);
3141                         ++sp->root_count;
3142                         spin_unlock(&vcpu->kvm->mmu_lock);
3143                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3144                 }
3145                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3146         } else
3147                 BUG();
3148
3149         return 0;
3150 }
3151
3152 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3153 {
3154         struct kvm_mmu_page *sp;
3155         u64 pdptr, pm_mask;
3156         gfn_t root_gfn;
3157         int i;
3158
3159         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3160
3161         if (mmu_check_root(vcpu, root_gfn))
3162                 return 1;
3163
3164         /*
3165          * Do we shadow a long mode page table? If so we need to
3166          * write-protect the guests page table root.
3167          */
3168         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3169                 hpa_t root = vcpu->arch.mmu.root_hpa;
3170
3171                 MMU_WARN_ON(VALID_PAGE(root));
3172
3173                 spin_lock(&vcpu->kvm->mmu_lock);
3174                 make_mmu_pages_available(vcpu);
3175                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3176                                       0, ACC_ALL);
3177                 root = __pa(sp->spt);
3178                 ++sp->root_count;
3179                 spin_unlock(&vcpu->kvm->mmu_lock);
3180                 vcpu->arch.mmu.root_hpa = root;
3181                 return 0;
3182         }
3183
3184         /*
3185          * We shadow a 32 bit page table. This may be a legacy 2-level
3186          * or a PAE 3-level page table. In either case we need to be aware that
3187          * the shadow page table may be a PAE or a long mode page table.
3188          */
3189         pm_mask = PT_PRESENT_MASK;
3190         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3191                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3192
3193         for (i = 0; i < 4; ++i) {
3194                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3195
3196                 MMU_WARN_ON(VALID_PAGE(root));
3197                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3198                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3199                         if (!(pdptr & PT_PRESENT_MASK)) {
3200                                 vcpu->arch.mmu.pae_root[i] = 0;
3201                                 continue;
3202                         }
3203                         root_gfn = pdptr >> PAGE_SHIFT;
3204                         if (mmu_check_root(vcpu, root_gfn))
3205                                 return 1;
3206                 }
3207                 spin_lock(&vcpu->kvm->mmu_lock);
3208                 make_mmu_pages_available(vcpu);
3209                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3210                                       0, ACC_ALL);
3211                 root = __pa(sp->spt);
3212                 ++sp->root_count;
3213                 spin_unlock(&vcpu->kvm->mmu_lock);
3214
3215                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3216         }
3217         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3218
3219         /*
3220          * If we shadow a 32 bit page table with a long mode page
3221          * table we enter this path.
3222          */
3223         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3224                 if (vcpu->arch.mmu.lm_root == NULL) {
3225                         /*
3226                          * The additional page necessary for this is only
3227                          * allocated on demand.
3228                          */
3229
3230                         u64 *lm_root;
3231
3232                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3233                         if (lm_root == NULL)
3234                                 return 1;
3235
3236                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3237
3238                         vcpu->arch.mmu.lm_root = lm_root;
3239                 }
3240
3241                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3242         }
3243
3244         return 0;
3245 }
3246
3247 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3248 {
3249         if (vcpu->arch.mmu.direct_map)
3250                 return mmu_alloc_direct_roots(vcpu);
3251         else
3252                 return mmu_alloc_shadow_roots(vcpu);
3253 }
3254
3255 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3256 {
3257         int i;
3258         struct kvm_mmu_page *sp;
3259
3260         if (vcpu->arch.mmu.direct_map)
3261                 return;
3262
3263         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3264                 return;
3265
3266         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3267         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3268         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3269                 hpa_t root = vcpu->arch.mmu.root_hpa;
3270                 sp = page_header(root);
3271                 mmu_sync_children(vcpu, sp);
3272                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3273                 return;
3274         }
3275         for (i = 0; i < 4; ++i) {
3276                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3277
3278                 if (root && VALID_PAGE(root)) {
3279                         root &= PT64_BASE_ADDR_MASK;
3280                         sp = page_header(root);
3281                         mmu_sync_children(vcpu, sp);
3282                 }
3283         }
3284         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3285 }
3286
3287 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3288 {
3289         spin_lock(&vcpu->kvm->mmu_lock);
3290         mmu_sync_roots(vcpu);
3291         spin_unlock(&vcpu->kvm->mmu_lock);
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3294
3295 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3296                                   u32 access, struct x86_exception *exception)
3297 {
3298         if (exception)
3299                 exception->error_code = 0;
3300         return vaddr;
3301 }
3302
3303 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3304                                          u32 access,
3305                                          struct x86_exception *exception)
3306 {
3307         if (exception)
3308                 exception->error_code = 0;
3309         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3310 }
3311
3312 static bool
3313 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3314 {
3315         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3316
3317         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3318                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3319 }
3320
3321 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3322 {
3323         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3324 }
3325
3326 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3327 {
3328         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3329 }
3330
3331 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3332 {
3333         if (direct)
3334                 return vcpu_match_mmio_gpa(vcpu, addr);
3335
3336         return vcpu_match_mmio_gva(vcpu, addr);
3337 }
3338
3339 /* return true if reserved bit is detected on spte. */
3340 static bool
3341 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3342 {
3343         struct kvm_shadow_walk_iterator iterator;
3344         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3345         int root, leaf;
3346         bool reserved = false;
3347
3348         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3349                 goto exit;
3350
3351         walk_shadow_page_lockless_begin(vcpu);
3352
3353         for (shadow_walk_init(&iterator, vcpu, addr),
3354                  leaf = root = iterator.level;
3355              shadow_walk_okay(&iterator);
3356              __shadow_walk_next(&iterator, spte)) {
3357                 spte = mmu_spte_get_lockless(iterator.sptep);
3358
3359                 sptes[leaf - 1] = spte;
3360                 leaf--;
3361
3362                 if (!is_shadow_present_pte(spte))
3363                         break;
3364
3365                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3366                                                     iterator.level);
3367         }
3368
3369         walk_shadow_page_lockless_end(vcpu);
3370
3371         if (reserved) {
3372                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3373                        __func__, addr);
3374                 while (root > leaf) {
3375                         pr_err("------ spte 0x%llx level %d.\n",
3376                                sptes[root - 1], root);
3377                         root--;
3378                 }
3379         }
3380 exit:
3381         *sptep = spte;
3382         return reserved;
3383 }
3384
3385 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3386 {
3387         u64 spte;
3388         bool reserved;
3389
3390         if (mmio_info_in_cache(vcpu, addr, direct))
3391                 return RET_MMIO_PF_EMULATE;
3392
3393         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3394         if (WARN_ON(reserved))
3395                 return RET_MMIO_PF_BUG;
3396
3397         if (is_mmio_spte(spte)) {
3398                 gfn_t gfn = get_mmio_spte_gfn(spte);
3399                 unsigned access = get_mmio_spte_access(spte);
3400
3401                 if (!check_mmio_spte(vcpu, spte))
3402                         return RET_MMIO_PF_INVALID;
3403
3404                 if (direct)
3405                         addr = 0;
3406
3407                 trace_handle_mmio_page_fault(addr, gfn, access);
3408                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3409                 return RET_MMIO_PF_EMULATE;
3410         }
3411
3412         /*
3413          * If the page table is zapped by other cpus, let CPU fault again on
3414          * the address.
3415          */
3416         return RET_MMIO_PF_RETRY;
3417 }
3418 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3419
3420 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3421                                          u32 error_code, gfn_t gfn)
3422 {
3423         if (unlikely(error_code & PFERR_RSVD_MASK))
3424                 return false;
3425
3426         if (!(error_code & PFERR_PRESENT_MASK) ||
3427               !(error_code & PFERR_WRITE_MASK))
3428                 return false;
3429
3430         /*
3431          * guest is writing the page which is write tracked which can
3432          * not be fixed by page fault handler.
3433          */
3434         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3435                 return true;
3436
3437         return false;
3438 }
3439
3440 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3441 {
3442         struct kvm_shadow_walk_iterator iterator;
3443         u64 spte;
3444
3445         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3446                 return;
3447
3448         walk_shadow_page_lockless_begin(vcpu);
3449         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3450                 clear_sp_write_flooding_count(iterator.sptep);
3451                 if (!is_shadow_present_pte(spte))
3452                         break;
3453         }
3454         walk_shadow_page_lockless_end(vcpu);
3455 }
3456
3457 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3458                                 u32 error_code, bool prefault)
3459 {
3460         gfn_t gfn = gva >> PAGE_SHIFT;
3461         int r;
3462
3463         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3464
3465         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3466                 return 1;
3467
3468         r = mmu_topup_memory_caches(vcpu);
3469         if (r)
3470                 return r;
3471
3472         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3473
3474
3475         return nonpaging_map(vcpu, gva & PAGE_MASK,
3476                              error_code, gfn, prefault);
3477 }
3478
3479 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3480 {
3481         struct kvm_arch_async_pf arch;
3482
3483         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3484         arch.gfn = gfn;
3485         arch.direct_map = vcpu->arch.mmu.direct_map;
3486         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3487
3488         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3489 }
3490
3491 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3492 {
3493         if (unlikely(!lapic_in_kernel(vcpu) ||
3494                      kvm_event_needs_reinjection(vcpu)))
3495                 return false;
3496
3497         return kvm_x86_ops->interrupt_allowed(vcpu);
3498 }
3499
3500 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3501                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3502 {
3503         struct kvm_memory_slot *slot;
3504         bool async;
3505
3506         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3507         async = false;
3508         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3509         if (!async)
3510                 return false; /* *pfn has correct page already */
3511
3512         if (!prefault && can_do_async_pf(vcpu)) {
3513                 trace_kvm_try_async_get_page(gva, gfn);
3514                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3515                         trace_kvm_async_pf_doublefault(gva, gfn);
3516                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3517                         return true;
3518                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3519                         return true;
3520         }
3521
3522         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3523         return false;
3524 }
3525
3526 static bool
3527 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3528 {
3529         int page_num = KVM_PAGES_PER_HPAGE(level);
3530
3531         gfn &= ~(page_num - 1);
3532
3533         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3534 }
3535
3536 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3537                           bool prefault)
3538 {
3539         kvm_pfn_t pfn;
3540         int r;
3541         int level;
3542         bool force_pt_level;
3543         gfn_t gfn = gpa >> PAGE_SHIFT;
3544         unsigned long mmu_seq;
3545         int write = error_code & PFERR_WRITE_MASK;
3546         bool map_writable;
3547
3548         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3549
3550         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3551                 return 1;
3552
3553         r = mmu_topup_memory_caches(vcpu);
3554         if (r)
3555                 return r;
3556
3557         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3558                                                            PT_DIRECTORY_LEVEL);
3559         level = mapping_level(vcpu, gfn, &force_pt_level);
3560         if (likely(!force_pt_level)) {
3561                 if (level > PT_DIRECTORY_LEVEL &&
3562                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3563                         level = PT_DIRECTORY_LEVEL;
3564                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3565         }
3566
3567         if (fast_page_fault(vcpu, gpa, level, error_code))
3568                 return 0;
3569
3570         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3571         smp_rmb();
3572
3573         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3574                 return 0;
3575
3576         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3577                 return r;
3578
3579         spin_lock(&vcpu->kvm->mmu_lock);
3580         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3581                 goto out_unlock;
3582         make_mmu_pages_available(vcpu);
3583         if (likely(!force_pt_level))
3584                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3585         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3586         spin_unlock(&vcpu->kvm->mmu_lock);
3587
3588         return r;
3589
3590 out_unlock:
3591         spin_unlock(&vcpu->kvm->mmu_lock);
3592         kvm_release_pfn_clean(pfn);
3593         return 0;
3594 }
3595
3596 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3597                                    struct kvm_mmu *context)
3598 {
3599         context->page_fault = nonpaging_page_fault;
3600         context->gva_to_gpa = nonpaging_gva_to_gpa;
3601         context->sync_page = nonpaging_sync_page;
3602         context->invlpg = nonpaging_invlpg;
3603         context->update_pte = nonpaging_update_pte;
3604         context->root_level = 0;
3605         context->shadow_root_level = PT32E_ROOT_LEVEL;
3606         context->root_hpa = INVALID_PAGE;
3607         context->direct_map = true;
3608         context->nx = false;
3609 }
3610
3611 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3612 {
3613         mmu_free_roots(vcpu);
3614 }
3615
3616 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3617 {
3618         return kvm_read_cr3(vcpu);
3619 }
3620
3621 static void inject_page_fault(struct kvm_vcpu *vcpu,
3622                               struct x86_exception *fault)
3623 {
3624         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3625 }
3626
3627 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3628                            unsigned access, int *nr_present)
3629 {
3630         if (unlikely(is_mmio_spte(*sptep))) {
3631                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3632                         mmu_spte_clear_no_track(sptep);
3633                         return true;
3634                 }
3635
3636                 (*nr_present)++;
3637                 mark_mmio_spte(vcpu, sptep, gfn, access);
3638                 return true;
3639         }
3640
3641         return false;
3642 }
3643
3644 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3645                                 unsigned level, unsigned gpte)
3646 {
3647         /*
3648          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3649          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3650          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3651          */
3652         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3653
3654         /*
3655          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3656          * If it is clear, there are no large pages at this level, so clear
3657          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3658          */
3659         gpte &= level - mmu->last_nonleaf_level;
3660
3661         return gpte & PT_PAGE_SIZE_MASK;
3662 }
3663
3664 #define PTTYPE_EPT 18 /* arbitrary */
3665 #define PTTYPE PTTYPE_EPT
3666 #include "paging_tmpl.h"
3667 #undef PTTYPE
3668
3669 #define PTTYPE 64
3670 #include "paging_tmpl.h"
3671 #undef PTTYPE
3672
3673 #define PTTYPE 32
3674 #include "paging_tmpl.h"
3675 #undef PTTYPE
3676
3677 static void
3678 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3679                         struct rsvd_bits_validate *rsvd_check,
3680                         int maxphyaddr, int level, bool nx, bool gbpages,
3681                         bool pse, bool amd)
3682 {
3683         u64 exb_bit_rsvd = 0;
3684         u64 gbpages_bit_rsvd = 0;
3685         u64 nonleaf_bit8_rsvd = 0;
3686
3687         rsvd_check->bad_mt_xwr = 0;
3688
3689         if (!nx)
3690                 exb_bit_rsvd = rsvd_bits(63, 63);
3691         if (!gbpages)
3692                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3693
3694         /*
3695          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3696          * leaf entries) on AMD CPUs only.
3697          */
3698         if (amd)
3699                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3700
3701         switch (level) {
3702         case PT32_ROOT_LEVEL:
3703                 /* no rsvd bits for 2 level 4K page table entries */
3704                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3705                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3706                 rsvd_check->rsvd_bits_mask[1][0] =
3707                         rsvd_check->rsvd_bits_mask[0][0];
3708
3709                 if (!pse) {
3710                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3711                         break;
3712                 }
3713
3714                 if (is_cpuid_PSE36())
3715                         /* 36bits PSE 4MB page */
3716                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3717                 else
3718                         /* 32 bits PSE 4MB page */
3719                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3720                 break;
3721         case PT32E_ROOT_LEVEL:
3722                 rsvd_check->rsvd_bits_mask[0][2] =
3723                         rsvd_bits(maxphyaddr, 63) |
3724                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3725                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3726                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3727                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3728                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3729                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3730                         rsvd_bits(maxphyaddr, 62) |
3731                         rsvd_bits(13, 20);              /* large page */
3732                 rsvd_check->rsvd_bits_mask[1][0] =
3733                         rsvd_check->rsvd_bits_mask[0][0];
3734                 break;
3735         case PT64_ROOT_LEVEL:
3736                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3737                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3738                         rsvd_bits(maxphyaddr, 51);
3739                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3740                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3741                         rsvd_bits(maxphyaddr, 51);
3742                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3743                         rsvd_bits(maxphyaddr, 51);
3744                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3745                         rsvd_bits(maxphyaddr, 51);
3746                 rsvd_check->rsvd_bits_mask[1][3] =
3747                         rsvd_check->rsvd_bits_mask[0][3];
3748                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3749                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3750                         rsvd_bits(13, 29);
3751                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3752                         rsvd_bits(maxphyaddr, 51) |
3753                         rsvd_bits(13, 20);              /* large page */
3754                 rsvd_check->rsvd_bits_mask[1][0] =
3755                         rsvd_check->rsvd_bits_mask[0][0];
3756                 break;
3757         }
3758 }
3759
3760 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3761                                   struct kvm_mmu *context)
3762 {
3763         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3764                                 cpuid_maxphyaddr(vcpu), context->root_level,
3765                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3766                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3767 }
3768
3769 static void
3770 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3771                             int maxphyaddr, bool execonly)
3772 {
3773         u64 bad_mt_xwr;
3774
3775         rsvd_check->rsvd_bits_mask[0][3] =
3776                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3777         rsvd_check->rsvd_bits_mask[0][2] =
3778                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3779         rsvd_check->rsvd_bits_mask[0][1] =
3780                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3781         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3782
3783         /* large page */
3784         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3785         rsvd_check->rsvd_bits_mask[1][2] =
3786                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3787         rsvd_check->rsvd_bits_mask[1][1] =
3788                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3789         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3790
3791         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3792         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3793         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3794         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3795         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3796         if (!execonly) {
3797                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3798                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3799         }
3800         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3801 }
3802
3803 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3804                 struct kvm_mmu *context, bool execonly)
3805 {
3806         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3807                                     cpuid_maxphyaddr(vcpu), execonly);
3808 }
3809
3810 /*
3811  * the page table on host is the shadow page table for the page
3812  * table in guest or amd nested guest, its mmu features completely
3813  * follow the features in guest.
3814  */
3815 void
3816 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3817 {
3818         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3819
3820         /*
3821          * Passing "true" to the last argument is okay; it adds a check
3822          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3823          */
3824         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3825                                 boot_cpu_data.x86_phys_bits,
3826                                 context->shadow_root_level, uses_nx,
3827                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3828                                 true);
3829 }
3830 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3831
3832 static inline bool boot_cpu_is_amd(void)
3833 {
3834         WARN_ON_ONCE(!tdp_enabled);
3835         return shadow_x_mask == 0;
3836 }
3837
3838 /*
3839  * the direct page table on host, use as much mmu features as
3840  * possible, however, kvm currently does not do execution-protection.
3841  */
3842 static void
3843 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3844                                 struct kvm_mmu *context)
3845 {
3846         if (boot_cpu_is_amd())
3847                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3848                                         boot_cpu_data.x86_phys_bits,
3849                                         context->shadow_root_level, false,
3850                                         boot_cpu_has(X86_FEATURE_GBPAGES),
3851                                         true, true);
3852         else
3853                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3854                                             boot_cpu_data.x86_phys_bits,
3855                                             false);
3856
3857 }
3858
3859 /*
3860  * as the comments in reset_shadow_zero_bits_mask() except it
3861  * is the shadow page table for intel nested guest.
3862  */
3863 static void
3864 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3865                                 struct kvm_mmu *context, bool execonly)
3866 {
3867         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3868                                     boot_cpu_data.x86_phys_bits, execonly);
3869 }
3870
3871 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3872                                       struct kvm_mmu *mmu, bool ept)
3873 {
3874         unsigned bit, byte, pfec;
3875         u8 map;
3876         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3877
3878         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3879         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3880         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3881                 pfec = byte << 1;
3882                 map = 0;
3883                 wf = pfec & PFERR_WRITE_MASK;
3884                 uf = pfec & PFERR_USER_MASK;
3885                 ff = pfec & PFERR_FETCH_MASK;
3886                 /*
3887                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3888                  * subject to SMAP restrictions, and cleared otherwise. The
3889                  * bit is only meaningful if the SMAP bit is set in CR4.
3890                  */
3891                 smapf = !(pfec & PFERR_RSVD_MASK);
3892                 for (bit = 0; bit < 8; ++bit) {
3893                         x = bit & ACC_EXEC_MASK;
3894                         w = bit & ACC_WRITE_MASK;
3895                         u = bit & ACC_USER_MASK;
3896
3897                         if (!ept) {
3898                                 /* Not really needed: !nx will cause pte.nx to fault */
3899                                 x |= !mmu->nx;
3900                                 /* Allow supervisor writes if !cr0.wp */
3901                                 w |= !is_write_protection(vcpu) && !uf;
3902                                 /* Disallow supervisor fetches of user code if cr4.smep */
3903                                 x &= !(cr4_smep && u && !uf);
3904
3905                                 /*
3906                                  * SMAP:kernel-mode data accesses from user-mode
3907                                  * mappings should fault. A fault is considered
3908                                  * as a SMAP violation if all of the following
3909                                  * conditions are ture:
3910                                  *   - X86_CR4_SMAP is set in CR4
3911                                  *   - An user page is accessed
3912                                  *   - Page fault in kernel mode
3913                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3914                                  *
3915                                  *   Here, we cover the first three conditions.
3916                                  *   The fourth is computed dynamically in
3917                                  *   permission_fault() and is in smapf.
3918                                  *
3919                                  *   Also, SMAP does not affect instruction
3920                                  *   fetches, add the !ff check here to make it
3921                                  *   clearer.
3922                                  */
3923                                 smap = cr4_smap && u && !uf && !ff;
3924                         }
3925
3926                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3927                                 (smapf && smap);
3928                         map |= fault << bit;
3929                 }
3930                 mmu->permissions[byte] = map;
3931         }
3932 }
3933
3934 /*
3935 * PKU is an additional mechanism by which the paging controls access to
3936 * user-mode addresses based on the value in the PKRU register.  Protection
3937 * key violations are reported through a bit in the page fault error code.
3938 * Unlike other bits of the error code, the PK bit is not known at the
3939 * call site of e.g. gva_to_gpa; it must be computed directly in
3940 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3941 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3942 *
3943 * In particular the following conditions come from the error code, the
3944 * page tables and the machine state:
3945 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3946 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3947 * - PK is always zero if U=0 in the page tables
3948 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3949 *
3950 * The PKRU bitmask caches the result of these four conditions.  The error
3951 * code (minus the P bit) and the page table's U bit form an index into the
3952 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3953 * with the two bits of the PKRU register corresponding to the protection key.
3954 * For the first three conditions above the bits will be 00, thus masking
3955 * away both AD and WD.  For all reads or if the last condition holds, WD
3956 * only will be masked away.
3957 */
3958 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3959                                 bool ept)
3960 {
3961         unsigned bit;
3962         bool wp;
3963
3964         if (ept) {
3965                 mmu->pkru_mask = 0;
3966                 return;
3967         }
3968
3969         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3970         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3971                 mmu->pkru_mask = 0;
3972                 return;
3973         }
3974
3975         wp = is_write_protection(vcpu);
3976
3977         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3978                 unsigned pfec, pkey_bits;
3979                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3980
3981                 pfec = bit << 1;
3982                 ff = pfec & PFERR_FETCH_MASK;
3983                 uf = pfec & PFERR_USER_MASK;
3984                 wf = pfec & PFERR_WRITE_MASK;
3985
3986                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3987                 pte_user = pfec & PFERR_RSVD_MASK;
3988
3989                 /*
3990                  * Only need to check the access which is not an
3991                  * instruction fetch and is to a user page.
3992                  */
3993                 check_pkey = (!ff && pte_user);
3994                 /*
3995                  * write access is controlled by PKRU if it is a
3996                  * user access or CR0.WP = 1.
3997                  */
3998                 check_write = check_pkey && wf && (uf || wp);
3999
4000                 /* PKRU.AD stops both read and write access. */
4001                 pkey_bits = !!check_pkey;
4002                 /* PKRU.WD stops write access. */
4003                 pkey_bits |= (!!check_write) << 1;
4004
4005                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4006         }
4007 }
4008
4009 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4010 {
4011         unsigned root_level = mmu->root_level;
4012
4013         mmu->last_nonleaf_level = root_level;
4014         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4015                 mmu->last_nonleaf_level++;
4016 }
4017
4018 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4019                                          struct kvm_mmu *context,
4020                                          int level)
4021 {
4022         context->nx = is_nx(vcpu);
4023         context->root_level = level;
4024
4025         reset_rsvds_bits_mask(vcpu, context);
4026         update_permission_bitmask(vcpu, context, false);
4027         update_pkru_bitmask(vcpu, context, false);
4028         update_last_nonleaf_level(vcpu, context);
4029
4030         MMU_WARN_ON(!is_pae(vcpu));
4031         context->page_fault = paging64_page_fault;
4032         context->gva_to_gpa = paging64_gva_to_gpa;
4033         context->sync_page = paging64_sync_page;
4034         context->invlpg = paging64_invlpg;
4035         context->update_pte = paging64_update_pte;
4036         context->shadow_root_level = level;
4037         context->root_hpa = INVALID_PAGE;
4038         context->direct_map = false;
4039 }
4040
4041 static void paging64_init_context(struct kvm_vcpu *vcpu,
4042                                   struct kvm_mmu *context)
4043 {
4044         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4045 }
4046
4047 static void paging32_init_context(struct kvm_vcpu *vcpu,
4048                                   struct kvm_mmu *context)
4049 {
4050         context->nx = false;
4051         context->root_level = PT32_ROOT_LEVEL;
4052
4053         reset_rsvds_bits_mask(vcpu, context);
4054         update_permission_bitmask(vcpu, context, false);
4055         update_pkru_bitmask(vcpu, context, false);
4056         update_last_nonleaf_level(vcpu, context);
4057
4058         context->page_fault = paging32_page_fault;
4059         context->gva_to_gpa = paging32_gva_to_gpa;
4060         context->sync_page = paging32_sync_page;
4061         context->invlpg = paging32_invlpg;
4062         context->update_pte = paging32_update_pte;
4063         context->shadow_root_level = PT32E_ROOT_LEVEL;
4064         context->root_hpa = INVALID_PAGE;
4065         context->direct_map = false;
4066 }
4067
4068 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4069                                    struct kvm_mmu *context)
4070 {
4071         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4072 }
4073
4074 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4075 {
4076         struct kvm_mmu *context = &vcpu->arch.mmu;
4077
4078         context->base_role.word = 0;
4079         context->base_role.smm = is_smm(vcpu);
4080         context->page_fault = tdp_page_fault;
4081         context->sync_page = nonpaging_sync_page;
4082         context->invlpg = nonpaging_invlpg;
4083         context->update_pte = nonpaging_update_pte;
4084         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4085         context->root_hpa = INVALID_PAGE;
4086         context->direct_map = true;
4087         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4088         context->get_cr3 = get_cr3;
4089         context->get_pdptr = kvm_pdptr_read;
4090         context->inject_page_fault = kvm_inject_page_fault;
4091
4092         if (!is_paging(vcpu)) {
4093                 context->nx = false;
4094                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4095                 context->root_level = 0;
4096         } else if (is_long_mode(vcpu)) {
4097                 context->nx = is_nx(vcpu);
4098                 context->root_level = PT64_ROOT_LEVEL;
4099                 reset_rsvds_bits_mask(vcpu, context);
4100                 context->gva_to_gpa = paging64_gva_to_gpa;
4101         } else if (is_pae(vcpu)) {
4102                 context->nx = is_nx(vcpu);
4103                 context->root_level = PT32E_ROOT_LEVEL;
4104                 reset_rsvds_bits_mask(vcpu, context);
4105                 context->gva_to_gpa = paging64_gva_to_gpa;
4106         } else {
4107                 context->nx = false;
4108                 context->root_level = PT32_ROOT_LEVEL;
4109                 reset_rsvds_bits_mask(vcpu, context);
4110                 context->gva_to_gpa = paging32_gva_to_gpa;
4111         }
4112
4113         update_permission_bitmask(vcpu, context, false);
4114         update_pkru_bitmask(vcpu, context, false);
4115         update_last_nonleaf_level(vcpu, context);
4116         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4117 }
4118
4119 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4120 {
4121         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4122         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4123         struct kvm_mmu *context = &vcpu->arch.mmu;
4124
4125         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4126
4127         if (!is_paging(vcpu))
4128                 nonpaging_init_context(vcpu, context);
4129         else if (is_long_mode(vcpu))
4130                 paging64_init_context(vcpu, context);
4131         else if (is_pae(vcpu))
4132                 paging32E_init_context(vcpu, context);
4133         else
4134                 paging32_init_context(vcpu, context);
4135
4136         context->base_role.nxe = is_nx(vcpu);
4137         context->base_role.cr4_pae = !!is_pae(vcpu);
4138         context->base_role.cr0_wp  = is_write_protection(vcpu);
4139         context->base_role.smep_andnot_wp
4140                 = smep && !is_write_protection(vcpu);
4141         context->base_role.smap_andnot_wp
4142                 = smap && !is_write_protection(vcpu);
4143         context->base_role.smm = is_smm(vcpu);
4144         reset_shadow_zero_bits_mask(vcpu, context);
4145 }
4146 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4147
4148 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4149 {
4150         struct kvm_mmu *context = &vcpu->arch.mmu;
4151
4152         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4153
4154         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4155
4156         context->nx = true;
4157         context->page_fault = ept_page_fault;
4158         context->gva_to_gpa = ept_gva_to_gpa;
4159         context->sync_page = ept_sync_page;
4160         context->invlpg = ept_invlpg;
4161         context->update_pte = ept_update_pte;
4162         context->root_level = context->shadow_root_level;
4163         context->root_hpa = INVALID_PAGE;
4164         context->direct_map = false;
4165
4166         update_permission_bitmask(vcpu, context, true);
4167         update_pkru_bitmask(vcpu, context, true);
4168         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4169         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4172
4173 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4174 {
4175         struct kvm_mmu *context = &vcpu->arch.mmu;
4176
4177         kvm_init_shadow_mmu(vcpu);
4178         context->set_cr3           = kvm_x86_ops->set_cr3;
4179         context->get_cr3           = get_cr3;
4180         context->get_pdptr         = kvm_pdptr_read;
4181         context->inject_page_fault = kvm_inject_page_fault;
4182 }
4183
4184 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4185 {
4186         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4187
4188         g_context->get_cr3           = get_cr3;
4189         g_context->get_pdptr         = kvm_pdptr_read;
4190         g_context->inject_page_fault = kvm_inject_page_fault;
4191
4192         /*
4193          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4194          * L1's nested page tables (e.g. EPT12). The nested translation
4195          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4196          * L2's page tables as the first level of translation and L1's
4197          * nested page tables as the second level of translation. Basically
4198          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4199          */
4200         if (!is_paging(vcpu)) {
4201                 g_context->nx = false;
4202                 g_context->root_level = 0;
4203                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4204         } else if (is_long_mode(vcpu)) {
4205                 g_context->nx = is_nx(vcpu);
4206                 g_context->root_level = PT64_ROOT_LEVEL;
4207                 reset_rsvds_bits_mask(vcpu, g_context);
4208                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4209         } else if (is_pae(vcpu)) {
4210                 g_context->nx = is_nx(vcpu);
4211                 g_context->root_level = PT32E_ROOT_LEVEL;
4212                 reset_rsvds_bits_mask(vcpu, g_context);
4213                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4214         } else {
4215                 g_context->nx = false;
4216                 g_context->root_level = PT32_ROOT_LEVEL;
4217                 reset_rsvds_bits_mask(vcpu, g_context);
4218                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4219         }
4220
4221         update_permission_bitmask(vcpu, g_context, false);
4222         update_pkru_bitmask(vcpu, g_context, false);
4223         update_last_nonleaf_level(vcpu, g_context);
4224 }
4225
4226 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4227 {
4228         if (mmu_is_nested(vcpu))
4229                 init_kvm_nested_mmu(vcpu);
4230         else if (tdp_enabled)
4231                 init_kvm_tdp_mmu(vcpu);
4232         else
4233                 init_kvm_softmmu(vcpu);
4234 }
4235
4236 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4237 {
4238         kvm_mmu_unload(vcpu);
4239         init_kvm_mmu(vcpu);
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4242
4243 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4244 {
4245         int r;
4246
4247         r = mmu_topup_memory_caches(vcpu);
4248         if (r)
4249                 goto out;
4250         r = mmu_alloc_roots(vcpu);
4251         kvm_mmu_sync_roots(vcpu);
4252         if (r)
4253                 goto out;
4254         /* set_cr3() should ensure TLB has been flushed */
4255         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4256 out:
4257         return r;
4258 }
4259 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4260
4261 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4262 {
4263         mmu_free_roots(vcpu);
4264         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4265 }
4266 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4267
4268 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4269                                   struct kvm_mmu_page *sp, u64 *spte,
4270                                   const void *new)
4271 {
4272         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4273                 ++vcpu->kvm->stat.mmu_pde_zapped;
4274                 return;
4275         }
4276
4277         ++vcpu->kvm->stat.mmu_pte_updated;
4278         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4279 }
4280
4281 static bool need_remote_flush(u64 old, u64 new)
4282 {
4283         if (!is_shadow_present_pte(old))
4284                 return false;
4285         if (!is_shadow_present_pte(new))
4286                 return true;
4287         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4288                 return true;
4289         old ^= shadow_nx_mask;
4290         new ^= shadow_nx_mask;
4291         return (old & ~new & PT64_PERM_MASK) != 0;
4292 }
4293
4294 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4295                                     const u8 *new, int *bytes)
4296 {
4297         u64 gentry;
4298         int r;
4299
4300         /*
4301          * Assume that the pte write on a page table of the same type
4302          * as the current vcpu paging mode since we update the sptes only
4303          * when they have the same mode.
4304          */
4305         if (is_pae(vcpu) && *bytes == 4) {
4306                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4307                 *gpa &= ~(gpa_t)7;
4308                 *bytes = 8;
4309                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4310                 if (r)
4311                         gentry = 0;
4312                 new = (const u8 *)&gentry;
4313         }
4314
4315         switch (*bytes) {
4316         case 4:
4317                 gentry = *(const u32 *)new;
4318                 break;
4319         case 8:
4320                 gentry = *(const u64 *)new;
4321                 break;
4322         default:
4323                 gentry = 0;
4324                 break;
4325         }
4326
4327         return gentry;
4328 }
4329
4330 /*
4331  * If we're seeing too many writes to a page, it may no longer be a page table,
4332  * or we may be forking, in which case it is better to unmap the page.
4333  */
4334 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4335 {
4336         /*
4337          * Skip write-flooding detected for the sp whose level is 1, because
4338          * it can become unsync, then the guest page is not write-protected.
4339          */
4340         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4341                 return false;
4342
4343         atomic_inc(&sp->write_flooding_count);
4344         return atomic_read(&sp->write_flooding_count) >= 3;
4345 }
4346
4347 /*
4348  * Misaligned accesses are too much trouble to fix up; also, they usually
4349  * indicate a page is not used as a page table.
4350  */
4351 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4352                                     int bytes)
4353 {
4354         unsigned offset, pte_size, misaligned;
4355
4356         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4357                  gpa, bytes, sp->role.word);
4358
4359         offset = offset_in_page(gpa);
4360         pte_size = sp->role.cr4_pae ? 8 : 4;
4361
4362         /*
4363          * Sometimes, the OS only writes the last one bytes to update status
4364          * bits, for example, in linux, andb instruction is used in clear_bit().
4365          */
4366         if (!(offset & (pte_size - 1)) && bytes == 1)
4367                 return false;
4368
4369         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4370         misaligned |= bytes < 4;
4371
4372         return misaligned;
4373 }
4374
4375 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4376 {
4377         unsigned page_offset, quadrant;
4378         u64 *spte;
4379         int level;
4380
4381         page_offset = offset_in_page(gpa);
4382         level = sp->role.level;
4383         *nspte = 1;
4384         if (!sp->role.cr4_pae) {
4385                 page_offset <<= 1;      /* 32->64 */
4386                 /*
4387                  * A 32-bit pde maps 4MB while the shadow pdes map
4388                  * only 2MB.  So we need to double the offset again
4389                  * and zap two pdes instead of one.
4390                  */
4391                 if (level == PT32_ROOT_LEVEL) {
4392                         page_offset &= ~7; /* kill rounding error */
4393                         page_offset <<= 1;
4394                         *nspte = 2;
4395                 }
4396                 quadrant = page_offset >> PAGE_SHIFT;
4397                 page_offset &= ~PAGE_MASK;
4398                 if (quadrant != sp->role.quadrant)
4399                         return NULL;
4400         }
4401
4402         spte = &sp->spt[page_offset / sizeof(*spte)];
4403         return spte;
4404 }
4405
4406 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4407                               const u8 *new, int bytes)
4408 {
4409         gfn_t gfn = gpa >> PAGE_SHIFT;
4410         struct kvm_mmu_page *sp;
4411         LIST_HEAD(invalid_list);
4412         u64 entry, gentry, *spte;
4413         int npte;
4414         bool remote_flush, local_flush;
4415         union kvm_mmu_page_role mask = { };
4416
4417         mask.cr0_wp = 1;
4418         mask.cr4_pae = 1;
4419         mask.nxe = 1;
4420         mask.smep_andnot_wp = 1;
4421         mask.smap_andnot_wp = 1;
4422         mask.smm = 1;
4423
4424         /*
4425          * If we don't have indirect shadow pages, it means no page is
4426          * write-protected, so we can exit simply.
4427          */
4428         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4429                 return;
4430
4431         remote_flush = local_flush = false;
4432
4433         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4434
4435         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4436
4437         /*
4438          * No need to care whether allocation memory is successful
4439          * or not since pte prefetch is skiped if it does not have
4440          * enough objects in the cache.
4441          */
4442         mmu_topup_memory_caches(vcpu);
4443
4444         spin_lock(&vcpu->kvm->mmu_lock);
4445         ++vcpu->kvm->stat.mmu_pte_write;
4446         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4447
4448         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4449                 if (detect_write_misaligned(sp, gpa, bytes) ||
4450                       detect_write_flooding(sp)) {
4451                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4452                         ++vcpu->kvm->stat.mmu_flooded;
4453                         continue;
4454                 }
4455
4456                 spte = get_written_sptes(sp, gpa, &npte);
4457                 if (!spte)
4458                         continue;
4459
4460                 local_flush = true;
4461                 while (npte--) {
4462                         entry = *spte;
4463                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4464                         if (gentry &&
4465                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4466                               & mask.word) && rmap_can_add(vcpu))
4467                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4468                         if (need_remote_flush(entry, *spte))
4469                                 remote_flush = true;
4470                         ++spte;
4471                 }
4472         }
4473         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4474         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4475         spin_unlock(&vcpu->kvm->mmu_lock);
4476 }
4477
4478 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4479 {
4480         gpa_t gpa;
4481         int r;
4482
4483         if (vcpu->arch.mmu.direct_map)
4484                 return 0;
4485
4486         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4487
4488         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4489
4490         return r;
4491 }
4492 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4493
4494 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4495 {
4496         LIST_HEAD(invalid_list);
4497
4498         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4499                 return;
4500
4501         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4502                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4503                         break;
4504
4505                 ++vcpu->kvm->stat.mmu_recycled;
4506         }
4507         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4508 }
4509
4510 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4511                        void *insn, int insn_len)
4512 {
4513         int r, emulation_type = EMULTYPE_RETRY;
4514         enum emulation_result er;
4515         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4516
4517         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4518                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4519                 if (r == RET_MMIO_PF_EMULATE) {
4520                         emulation_type = 0;
4521                         goto emulate;
4522                 }
4523                 if (r == RET_MMIO_PF_RETRY)
4524                         return 1;
4525                 if (r < 0)
4526                         return r;
4527         }
4528
4529         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4530         if (r < 0)
4531                 return r;
4532         if (!r)
4533                 return 1;
4534
4535         if (mmio_info_in_cache(vcpu, cr2, direct))
4536                 emulation_type = 0;
4537 emulate:
4538         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4539
4540         switch (er) {
4541         case EMULATE_DONE:
4542                 return 1;
4543         case EMULATE_USER_EXIT:
4544                 ++vcpu->stat.mmio_exits;
4545                 /* fall through */
4546         case EMULATE_FAIL:
4547                 return 0;
4548         default:
4549                 BUG();
4550         }
4551 }
4552 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4553
4554 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4555 {
4556         vcpu->arch.mmu.invlpg(vcpu, gva);
4557         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4558         ++vcpu->stat.invlpg;
4559 }
4560 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4561
4562 void kvm_enable_tdp(void)
4563 {
4564         tdp_enabled = true;
4565 }
4566 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4567
4568 void kvm_disable_tdp(void)
4569 {
4570         tdp_enabled = false;
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4573
4574 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4575 {
4576         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4577         if (vcpu->arch.mmu.lm_root != NULL)
4578                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4579 }
4580
4581 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4582 {
4583         struct page *page;
4584         int i;
4585
4586         /*
4587          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4588          * Therefore we need to allocate shadow page tables in the first
4589          * 4GB of memory, which happens to fit the DMA32 zone.
4590          */
4591         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4592         if (!page)
4593                 return -ENOMEM;
4594
4595         vcpu->arch.mmu.pae_root = page_address(page);
4596         for (i = 0; i < 4; ++i)
4597                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4598
4599         return 0;
4600 }
4601
4602 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4603 {
4604         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4605         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4606         vcpu->arch.mmu.translate_gpa = translate_gpa;
4607         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4608
4609         return alloc_mmu_pages(vcpu);
4610 }
4611
4612 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4613 {
4614         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4615
4616         init_kvm_mmu(vcpu);
4617 }
4618
4619 void kvm_mmu_init_vm(struct kvm *kvm)
4620 {
4621         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4622
4623         node->track_write = kvm_mmu_pte_write;
4624         kvm_page_track_register_notifier(kvm, node);
4625 }
4626
4627 void kvm_mmu_uninit_vm(struct kvm *kvm)
4628 {
4629         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4630
4631         kvm_page_track_unregister_notifier(kvm, node);
4632 }
4633
4634 /* The return value indicates if tlb flush on all vcpus is needed. */
4635 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4636
4637 /* The caller should hold mmu-lock before calling this function. */
4638 static bool
4639 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4640                         slot_level_handler fn, int start_level, int end_level,
4641                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4642 {
4643         struct slot_rmap_walk_iterator iterator;
4644         bool flush = false;
4645
4646         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4647                         end_gfn, &iterator) {
4648                 if (iterator.rmap)
4649                         flush |= fn(kvm, iterator.rmap);
4650
4651                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4652                         if (flush && lock_flush_tlb) {
4653                                 kvm_flush_remote_tlbs(kvm);
4654                                 flush = false;
4655                         }
4656                         cond_resched_lock(&kvm->mmu_lock);
4657                 }
4658         }
4659
4660         if (flush && lock_flush_tlb) {
4661                 kvm_flush_remote_tlbs(kvm);
4662                 flush = false;
4663         }
4664
4665         return flush;
4666 }
4667
4668 static bool
4669 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4670                   slot_level_handler fn, int start_level, int end_level,
4671                   bool lock_flush_tlb)
4672 {
4673         return slot_handle_level_range(kvm, memslot, fn, start_level,
4674                         end_level, memslot->base_gfn,
4675                         memslot->base_gfn + memslot->npages - 1,
4676                         lock_flush_tlb);
4677 }
4678
4679 static bool
4680 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4681                       slot_level_handler fn, bool lock_flush_tlb)
4682 {
4683         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4684                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4685 }
4686
4687 static bool
4688 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4689                         slot_level_handler fn, bool lock_flush_tlb)
4690 {
4691         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4692                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4693 }
4694
4695 static bool
4696 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4697                  slot_level_handler fn, bool lock_flush_tlb)
4698 {
4699         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4700                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4701 }
4702
4703 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4704 {
4705         struct kvm_memslots *slots;
4706         struct kvm_memory_slot *memslot;
4707         int i;
4708
4709         spin_lock(&kvm->mmu_lock);
4710         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4711                 slots = __kvm_memslots(kvm, i);
4712                 kvm_for_each_memslot(memslot, slots) {
4713                         gfn_t start, end;
4714
4715                         start = max(gfn_start, memslot->base_gfn);
4716                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4717                         if (start >= end)
4718                                 continue;
4719
4720                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4721                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4722                                                 start, end - 1, true);
4723                 }
4724         }
4725
4726         spin_unlock(&kvm->mmu_lock);
4727 }
4728
4729 static bool slot_rmap_write_protect(struct kvm *kvm,
4730                                     struct kvm_rmap_head *rmap_head)
4731 {
4732         return __rmap_write_protect(kvm, rmap_head, false);
4733 }
4734
4735 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4736                                       struct kvm_memory_slot *memslot)
4737 {
4738         bool flush;
4739
4740         spin_lock(&kvm->mmu_lock);
4741         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4742                                       false);
4743         spin_unlock(&kvm->mmu_lock);
4744
4745         /*
4746          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4747          * which do tlb flush out of mmu-lock should be serialized by
4748          * kvm->slots_lock otherwise tlb flush would be missed.
4749          */
4750         lockdep_assert_held(&kvm->slots_lock);
4751
4752         /*
4753          * We can flush all the TLBs out of the mmu lock without TLB
4754          * corruption since we just change the spte from writable to
4755          * readonly so that we only need to care the case of changing
4756          * spte from present to present (changing the spte from present
4757          * to nonpresent will flush all the TLBs immediately), in other
4758          * words, the only case we care is mmu_spte_update() where we
4759          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4760          * instead of PT_WRITABLE_MASK, that means it does not depend
4761          * on PT_WRITABLE_MASK anymore.
4762          */
4763         if (flush)
4764                 kvm_flush_remote_tlbs(kvm);
4765 }
4766
4767 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4768                                          struct kvm_rmap_head *rmap_head)
4769 {
4770         u64 *sptep;
4771         struct rmap_iterator iter;
4772         int need_tlb_flush = 0;
4773         kvm_pfn_t pfn;
4774         struct kvm_mmu_page *sp;
4775
4776 restart:
4777         for_each_rmap_spte(rmap_head, &iter, sptep) {
4778                 sp = page_header(__pa(sptep));
4779                 pfn = spte_to_pfn(*sptep);
4780
4781                 /*
4782                  * We cannot do huge page mapping for indirect shadow pages,
4783                  * which are found on the last rmap (level = 1) when not using
4784                  * tdp; such shadow pages are synced with the page table in
4785                  * the guest, and the guest page table is using 4K page size
4786                  * mapping if the indirect sp has level = 1.
4787                  */
4788                 if (sp->role.direct &&
4789                         !kvm_is_reserved_pfn(pfn) &&
4790                         PageTransCompoundMap(pfn_to_page(pfn))) {
4791                         drop_spte(kvm, sptep);
4792                         need_tlb_flush = 1;
4793                         goto restart;
4794                 }
4795         }
4796
4797         return need_tlb_flush;
4798 }
4799
4800 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4801                                    const struct kvm_memory_slot *memslot)
4802 {
4803         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4804         spin_lock(&kvm->mmu_lock);
4805         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4806                          kvm_mmu_zap_collapsible_spte, true);
4807         spin_unlock(&kvm->mmu_lock);
4808 }
4809
4810 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4811                                    struct kvm_memory_slot *memslot)
4812 {
4813         bool flush;
4814
4815         spin_lock(&kvm->mmu_lock);
4816         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4817         spin_unlock(&kvm->mmu_lock);
4818
4819         lockdep_assert_held(&kvm->slots_lock);
4820
4821         /*
4822          * It's also safe to flush TLBs out of mmu lock here as currently this
4823          * function is only used for dirty logging, in which case flushing TLB
4824          * out of mmu lock also guarantees no dirty pages will be lost in
4825          * dirty_bitmap.
4826          */
4827         if (flush)
4828                 kvm_flush_remote_tlbs(kvm);
4829 }
4830 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4831
4832 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4833                                         struct kvm_memory_slot *memslot)
4834 {
4835         bool flush;
4836
4837         spin_lock(&kvm->mmu_lock);
4838         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4839                                         false);
4840         spin_unlock(&kvm->mmu_lock);
4841
4842         /* see kvm_mmu_slot_remove_write_access */
4843         lockdep_assert_held(&kvm->slots_lock);
4844
4845         if (flush)
4846                 kvm_flush_remote_tlbs(kvm);
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4849
4850 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4851                             struct kvm_memory_slot *memslot)
4852 {
4853         bool flush;
4854
4855         spin_lock(&kvm->mmu_lock);
4856         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4857         spin_unlock(&kvm->mmu_lock);
4858
4859         lockdep_assert_held(&kvm->slots_lock);
4860
4861         /* see kvm_mmu_slot_leaf_clear_dirty */
4862         if (flush)
4863                 kvm_flush_remote_tlbs(kvm);
4864 }
4865 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4866
4867 #define BATCH_ZAP_PAGES 10
4868 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4869 {
4870         struct kvm_mmu_page *sp, *node;
4871         int batch = 0;
4872
4873 restart:
4874         list_for_each_entry_safe_reverse(sp, node,
4875               &kvm->arch.active_mmu_pages, link) {
4876                 int ret;
4877
4878                 /*
4879                  * No obsolete page exists before new created page since
4880                  * active_mmu_pages is the FIFO list.
4881                  */
4882                 if (!is_obsolete_sp(kvm, sp))
4883                         break;
4884
4885                 /*
4886                  * Since we are reversely walking the list and the invalid
4887                  * list will be moved to the head, skip the invalid page
4888                  * can help us to avoid the infinity list walking.
4889                  */
4890                 if (sp->role.invalid)
4891                         continue;
4892
4893                 /*
4894                  * Need not flush tlb since we only zap the sp with invalid
4895                  * generation number.
4896                  */
4897                 if (batch >= BATCH_ZAP_PAGES &&
4898                       cond_resched_lock(&kvm->mmu_lock)) {
4899                         batch = 0;
4900                         goto restart;
4901                 }
4902
4903                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4904                                 &kvm->arch.zapped_obsolete_pages);
4905                 batch += ret;
4906
4907                 if (ret)
4908                         goto restart;
4909         }
4910
4911         /*
4912          * Should flush tlb before free page tables since lockless-walking
4913          * may use the pages.
4914          */
4915         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4916 }
4917
4918 /*
4919  * Fast invalidate all shadow pages and use lock-break technique
4920  * to zap obsolete pages.
4921  *
4922  * It's required when memslot is being deleted or VM is being
4923  * destroyed, in these cases, we should ensure that KVM MMU does
4924  * not use any resource of the being-deleted slot or all slots
4925  * after calling the function.
4926  */
4927 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4928 {
4929         spin_lock(&kvm->mmu_lock);
4930         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4931         kvm->arch.mmu_valid_gen++;
4932
4933         /*
4934          * Notify all vcpus to reload its shadow page table
4935          * and flush TLB. Then all vcpus will switch to new
4936          * shadow page table with the new mmu_valid_gen.
4937          *
4938          * Note: we should do this under the protection of
4939          * mmu-lock, otherwise, vcpu would purge shadow page
4940          * but miss tlb flush.
4941          */
4942         kvm_reload_remote_mmus(kvm);
4943
4944         kvm_zap_obsolete_pages(kvm);
4945         spin_unlock(&kvm->mmu_lock);
4946 }
4947
4948 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4949 {
4950         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4951 }
4952
4953 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4954 {
4955         /*
4956          * The very rare case: if the generation-number is round,
4957          * zap all shadow pages.
4958          */
4959         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4960                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4961                 kvm_mmu_invalidate_zap_all_pages(kvm);
4962         }
4963 }
4964
4965 static unsigned long
4966 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4967 {
4968         struct kvm *kvm;
4969         int nr_to_scan = sc->nr_to_scan;
4970         unsigned long freed = 0;
4971
4972         spin_lock(&kvm_lock);
4973
4974         list_for_each_entry(kvm, &vm_list, vm_list) {
4975                 int idx;
4976                 LIST_HEAD(invalid_list);
4977
4978                 /*
4979                  * Never scan more than sc->nr_to_scan VM instances.
4980                  * Will not hit this condition practically since we do not try
4981                  * to shrink more than one VM and it is very unlikely to see
4982                  * !n_used_mmu_pages so many times.
4983                  */
4984                 if (!nr_to_scan--)
4985                         break;
4986                 /*
4987                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4988                  * here. We may skip a VM instance errorneosly, but we do not
4989                  * want to shrink a VM that only started to populate its MMU
4990                  * anyway.
4991                  */
4992                 if (!kvm->arch.n_used_mmu_pages &&
4993                       !kvm_has_zapped_obsolete_pages(kvm))
4994                         continue;
4995
4996                 idx = srcu_read_lock(&kvm->srcu);
4997                 spin_lock(&kvm->mmu_lock);
4998
4999                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5000                         kvm_mmu_commit_zap_page(kvm,
5001                               &kvm->arch.zapped_obsolete_pages);
5002                         goto unlock;
5003                 }
5004
5005                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5006                         freed++;
5007                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5008
5009 unlock:
5010                 spin_unlock(&kvm->mmu_lock);
5011                 srcu_read_unlock(&kvm->srcu, idx);
5012
5013                 /*
5014                  * unfair on small ones
5015                  * per-vm shrinkers cry out
5016                  * sadness comes quickly
5017                  */
5018                 list_move_tail(&kvm->vm_list, &vm_list);
5019                 break;
5020         }
5021
5022         spin_unlock(&kvm_lock);
5023         return freed;
5024 }
5025
5026 static unsigned long
5027 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5028 {
5029         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5030 }
5031
5032 static struct shrinker mmu_shrinker = {
5033         .count_objects = mmu_shrink_count,
5034         .scan_objects = mmu_shrink_scan,
5035         .seeks = DEFAULT_SEEKS * 10,
5036 };
5037
5038 static void mmu_destroy_caches(void)
5039 {
5040         if (pte_list_desc_cache)
5041                 kmem_cache_destroy(pte_list_desc_cache);
5042         if (mmu_page_header_cache)
5043                 kmem_cache_destroy(mmu_page_header_cache);
5044 }
5045
5046 int kvm_mmu_module_init(void)
5047 {
5048         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5049                                             sizeof(struct pte_list_desc),
5050                                             0, 0, NULL);
5051         if (!pte_list_desc_cache)
5052                 goto nomem;
5053
5054         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5055                                                   sizeof(struct kvm_mmu_page),
5056                                                   0, 0, NULL);
5057         if (!mmu_page_header_cache)
5058                 goto nomem;
5059
5060         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5061                 goto nomem;
5062
5063         register_shrinker(&mmu_shrinker);
5064
5065         return 0;
5066
5067 nomem:
5068         mmu_destroy_caches();
5069         return -ENOMEM;
5070 }
5071
5072 /*
5073  * Caculate mmu pages needed for kvm.
5074  */
5075 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5076 {
5077         unsigned int nr_mmu_pages;
5078         unsigned int  nr_pages = 0;
5079         struct kvm_memslots *slots;
5080         struct kvm_memory_slot *memslot;
5081         int i;
5082
5083         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5084                 slots = __kvm_memslots(kvm, i);
5085
5086                 kvm_for_each_memslot(memslot, slots)
5087                         nr_pages += memslot->npages;
5088         }
5089
5090         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5091         nr_mmu_pages = max(nr_mmu_pages,
5092                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5093
5094         return nr_mmu_pages;
5095 }
5096
5097 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5098 {
5099         kvm_mmu_unload(vcpu);
5100         free_mmu_pages(vcpu);
5101         mmu_free_memory_caches(vcpu);
5102 }
5103
5104 void kvm_mmu_module_exit(void)
5105 {
5106         mmu_destroy_caches();
5107         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5108         unregister_shrinker(&mmu_shrinker);
5109         mmu_audit_disable();
5110 }