Merge branch 'lpc32xx/core2' of git://git.antcom.de/linux-2.6 into next/soc
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
150 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
152 /* make pte_list_desc fit well in cache line */
153 #define PTE_LIST_EXT 3
154
155 struct pte_list_desc {
156         u64 *sptes[PTE_LIST_EXT];
157         struct pte_list_desc *more;
158 };
159
160 struct kvm_shadow_walk_iterator {
161         u64 addr;
162         hpa_t shadow_addr;
163         u64 *sptep;
164         int level;
165         unsigned index;
166 };
167
168 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
169         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
170              shadow_walk_okay(&(_walker));                      \
171              shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
174         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
175              shadow_walk_okay(&(_walker)) &&                            \
176                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
177              __shadow_walk_next(&(_walker), spte))
178
179 static struct kmem_cache *pte_list_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182
183 static u64 __read_mostly shadow_nx_mask;
184 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185 static u64 __read_mostly shadow_user_mask;
186 static u64 __read_mostly shadow_accessed_mask;
187 static u64 __read_mostly shadow_dirty_mask;
188 static u64 __read_mostly shadow_mmio_mask;
189
190 static void mmu_spte_set(u64 *sptep, u64 spte);
191
192 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193 {
194         shadow_mmio_mask = mmio_mask;
195 }
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199 {
200         access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
202         trace_mark_mmio_spte(sptep, gfn, access);
203         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204 }
205
206 static bool is_mmio_spte(u64 spte)
207 {
208         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209 }
210
211 static gfn_t get_mmio_spte_gfn(u64 spte)
212 {
213         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214 }
215
216 static unsigned get_mmio_spte_access(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219 }
220
221 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222 {
223         if (unlikely(is_noslot_pfn(pfn))) {
224                 mark_mmio_spte(sptep, gfn, access);
225                 return true;
226         }
227
228         return false;
229 }
230
231 static inline u64 rsvd_bits(int s, int e)
232 {
233         return ((1ULL << (e - s + 1)) - 1) << s;
234 }
235
236 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
237                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
238 {
239         shadow_user_mask = user_mask;
240         shadow_accessed_mask = accessed_mask;
241         shadow_dirty_mask = dirty_mask;
242         shadow_nx_mask = nx_mask;
243         shadow_x_mask = x_mask;
244 }
245 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
247 static int is_cpuid_PSE36(void)
248 {
249         return 1;
250 }
251
252 static int is_nx(struct kvm_vcpu *vcpu)
253 {
254         return vcpu->arch.efer & EFER_NX;
255 }
256
257 static int is_shadow_present_pte(u64 pte)
258 {
259         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
260 }
261
262 static int is_large_pte(u64 pte)
263 {
264         return pte & PT_PAGE_SIZE_MASK;
265 }
266
267 static int is_dirty_gpte(unsigned long pte)
268 {
269         return pte & PT_DIRTY_MASK;
270 }
271
272 static int is_rmap_spte(u64 pte)
273 {
274         return is_shadow_present_pte(pte);
275 }
276
277 static int is_last_spte(u64 pte, int level)
278 {
279         if (level == PT_PAGE_TABLE_LEVEL)
280                 return 1;
281         if (is_large_pte(pte))
282                 return 1;
283         return 0;
284 }
285
286 static pfn_t spte_to_pfn(u64 pte)
287 {
288         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
289 }
290
291 static gfn_t pse36_gfn_delta(u32 gpte)
292 {
293         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295         return (gpte & PT32_DIR_PSE36_MASK) << shift;
296 }
297
298 #ifdef CONFIG_X86_64
299 static void __set_spte(u64 *sptep, u64 spte)
300 {
301         *sptep = spte;
302 }
303
304 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310 {
311         return xchg(sptep, spte);
312 }
313
314 static u64 __get_spte_lockless(u64 *sptep)
315 {
316         return ACCESS_ONCE(*sptep);
317 }
318
319 static bool __check_direct_spte_mmio_pf(u64 spte)
320 {
321         /* It is valid if the spte is zapped. */
322         return spte == 0ull;
323 }
324 #else
325 union split_spte {
326         struct {
327                 u32 spte_low;
328                 u32 spte_high;
329         };
330         u64 spte;
331 };
332
333 static void count_spte_clear(u64 *sptep, u64 spte)
334 {
335         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
336
337         if (is_shadow_present_pte(spte))
338                 return;
339
340         /* Ensure the spte is completely set before we increase the count */
341         smp_wmb();
342         sp->clear_spte_count++;
343 }
344
345 static void __set_spte(u64 *sptep, u64 spte)
346 {
347         union split_spte *ssptep, sspte;
348
349         ssptep = (union split_spte *)sptep;
350         sspte = (union split_spte)spte;
351
352         ssptep->spte_high = sspte.spte_high;
353
354         /*
355          * If we map the spte from nonpresent to present, We should store
356          * the high bits firstly, then set present bit, so cpu can not
357          * fetch this spte while we are setting the spte.
358          */
359         smp_wmb();
360
361         ssptep->spte_low = sspte.spte_low;
362 }
363
364 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365 {
366         union split_spte *ssptep, sspte;
367
368         ssptep = (union split_spte *)sptep;
369         sspte = (union split_spte)spte;
370
371         ssptep->spte_low = sspte.spte_low;
372
373         /*
374          * If we map the spte from present to nonpresent, we should clear
375          * present bit firstly to avoid vcpu fetch the old high bits.
376          */
377         smp_wmb();
378
379         ssptep->spte_high = sspte.spte_high;
380         count_spte_clear(sptep, spte);
381 }
382
383 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384 {
385         union split_spte *ssptep, sspte, orig;
386
387         ssptep = (union split_spte *)sptep;
388         sspte = (union split_spte)spte;
389
390         /* xchg acts as a barrier before the setting of the high bits */
391         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
392         orig.spte_high = ssptep->spte_high;
393         ssptep->spte_high = sspte.spte_high;
394         count_spte_clear(sptep, spte);
395
396         return orig.spte;
397 }
398
399 /*
400  * The idea using the light way get the spte on x86_32 guest is from
401  * gup_get_pte(arch/x86/mm/gup.c).
402  * The difference is we can not catch the spte tlb flush if we leave
403  * guest mode, so we emulate it by increase clear_spte_count when spte
404  * is cleared.
405  */
406 static u64 __get_spte_lockless(u64 *sptep)
407 {
408         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
409         union split_spte spte, *orig = (union split_spte *)sptep;
410         int count;
411
412 retry:
413         count = sp->clear_spte_count;
414         smp_rmb();
415
416         spte.spte_low = orig->spte_low;
417         smp_rmb();
418
419         spte.spte_high = orig->spte_high;
420         smp_rmb();
421
422         if (unlikely(spte.spte_low != orig->spte_low ||
423               count != sp->clear_spte_count))
424                 goto retry;
425
426         return spte.spte;
427 }
428
429 static bool __check_direct_spte_mmio_pf(u64 spte)
430 {
431         union split_spte sspte = (union split_spte)spte;
432         u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434         /* It is valid if the spte is zapped. */
435         if (spte == 0ull)
436                 return true;
437
438         /* It is valid if the spte is being zapped. */
439         if (sspte.spte_low == 0ull &&
440             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441                 return true;
442
443         return false;
444 }
445 #endif
446
447 static bool spte_has_volatile_bits(u64 spte)
448 {
449         if (!shadow_accessed_mask)
450                 return false;
451
452         if (!is_shadow_present_pte(spte))
453                 return false;
454
455         if ((spte & shadow_accessed_mask) &&
456               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
457                 return false;
458
459         return true;
460 }
461
462 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463 {
464         return (old_spte & bit_mask) && !(new_spte & bit_mask);
465 }
466
467 /* Rules for using mmu_spte_set:
468  * Set the sptep from nonpresent to present.
469  * Note: the sptep being assigned *must* be either not present
470  * or in a state where the hardware will not attempt to update
471  * the spte.
472  */
473 static void mmu_spte_set(u64 *sptep, u64 new_spte)
474 {
475         WARN_ON(is_shadow_present_pte(*sptep));
476         __set_spte(sptep, new_spte);
477 }
478
479 /* Rules for using mmu_spte_update:
480  * Update the state bits, it means the mapped pfn is not changged.
481  */
482 static void mmu_spte_update(u64 *sptep, u64 new_spte)
483 {
484         u64 mask, old_spte = *sptep;
485
486         WARN_ON(!is_rmap_spte(new_spte));
487
488         if (!is_shadow_present_pte(old_spte))
489                 return mmu_spte_set(sptep, new_spte);
490
491         new_spte |= old_spte & shadow_dirty_mask;
492
493         mask = shadow_accessed_mask;
494         if (is_writable_pte(old_spte))
495                 mask |= shadow_dirty_mask;
496
497         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
498                 __update_clear_spte_fast(sptep, new_spte);
499         else
500                 old_spte = __update_clear_spte_slow(sptep, new_spte);
501
502         if (!shadow_accessed_mask)
503                 return;
504
505         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
509 }
510
511 /*
512  * Rules for using mmu_spte_clear_track_bits:
513  * It sets the sptep from present to nonpresent, and track the
514  * state bits, it is used to clear the last level sptep.
515  */
516 static int mmu_spte_clear_track_bits(u64 *sptep)
517 {
518         pfn_t pfn;
519         u64 old_spte = *sptep;
520
521         if (!spte_has_volatile_bits(old_spte))
522                 __update_clear_spte_fast(sptep, 0ull);
523         else
524                 old_spte = __update_clear_spte_slow(sptep, 0ull);
525
526         if (!is_rmap_spte(old_spte))
527                 return 0;
528
529         pfn = spte_to_pfn(old_spte);
530         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531                 kvm_set_pfn_accessed(pfn);
532         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533                 kvm_set_pfn_dirty(pfn);
534         return 1;
535 }
536
537 /*
538  * Rules for using mmu_spte_clear_no_track:
539  * Directly clear spte without caring the state bits of sptep,
540  * it is used to set the upper level spte.
541  */
542 static void mmu_spte_clear_no_track(u64 *sptep)
543 {
544         __update_clear_spte_fast(sptep, 0ull);
545 }
546
547 static u64 mmu_spte_get_lockless(u64 *sptep)
548 {
549         return __get_spte_lockless(sptep);
550 }
551
552 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553 {
554         /*
555          * Prevent page table teardown by making any free-er wait during
556          * kvm_flush_remote_tlbs() IPI to all active vcpus.
557          */
558         local_irq_disable();
559         vcpu->mode = READING_SHADOW_PAGE_TABLES;
560         /*
561          * Make sure a following spte read is not reordered ahead of the write
562          * to vcpu->mode.
563          */
564         smp_mb();
565 }
566
567 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
568 {
569         /*
570          * Make sure the write to vcpu->mode is not reordered in front of
571          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
572          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
573          */
574         smp_mb();
575         vcpu->mode = OUTSIDE_GUEST_MODE;
576         local_irq_enable();
577 }
578
579 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
580                                   struct kmem_cache *base_cache, int min)
581 {
582         void *obj;
583
584         if (cache->nobjs >= min)
585                 return 0;
586         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
587                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
588                 if (!obj)
589                         return -ENOMEM;
590                 cache->objects[cache->nobjs++] = obj;
591         }
592         return 0;
593 }
594
595 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
596 {
597         return cache->nobjs;
598 }
599
600 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601                                   struct kmem_cache *cache)
602 {
603         while (mc->nobjs)
604                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
605 }
606
607 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
608                                        int min)
609 {
610         void *page;
611
612         if (cache->nobjs >= min)
613                 return 0;
614         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
615                 page = (void *)__get_free_page(GFP_KERNEL);
616                 if (!page)
617                         return -ENOMEM;
618                 cache->objects[cache->nobjs++] = page;
619         }
620         return 0;
621 }
622
623 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
624 {
625         while (mc->nobjs)
626                 free_page((unsigned long)mc->objects[--mc->nobjs]);
627 }
628
629 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
630 {
631         int r;
632
633         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
634                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
635         if (r)
636                 goto out;
637         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
638         if (r)
639                 goto out;
640         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
641                                    mmu_page_header_cache, 4);
642 out:
643         return r;
644 }
645
646 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
647 {
648         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649                                 pte_list_desc_cache);
650         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
651         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652                                 mmu_page_header_cache);
653 }
654
655 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
656                                     size_t size)
657 {
658         void *p;
659
660         BUG_ON(!mc->nobjs);
661         p = mc->objects[--mc->nobjs];
662         return p;
663 }
664
665 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
666 {
667         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
668                                       sizeof(struct pte_list_desc));
669 }
670
671 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
672 {
673         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
674 }
675
676 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
677 {
678         if (!sp->role.direct)
679                 return sp->gfns[index];
680
681         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
682 }
683
684 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
685 {
686         if (sp->role.direct)
687                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
688         else
689                 sp->gfns[index] = gfn;
690 }
691
692 /*
693  * Return the pointer to the large page information for a given gfn,
694  * handling slots that are not large page aligned.
695  */
696 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
697                                               struct kvm_memory_slot *slot,
698                                               int level)
699 {
700         unsigned long idx;
701
702         idx = gfn_to_index(gfn, slot->base_gfn, level);
703         return &slot->arch.lpage_info[level - 2][idx];
704 }
705
706 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
707 {
708         struct kvm_memory_slot *slot;
709         struct kvm_lpage_info *linfo;
710         int i;
711
712         slot = gfn_to_memslot(kvm, gfn);
713         for (i = PT_DIRECTORY_LEVEL;
714              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
715                 linfo = lpage_info_slot(gfn, slot, i);
716                 linfo->write_count += 1;
717         }
718         kvm->arch.indirect_shadow_pages++;
719 }
720
721 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
722 {
723         struct kvm_memory_slot *slot;
724         struct kvm_lpage_info *linfo;
725         int i;
726
727         slot = gfn_to_memslot(kvm, gfn);
728         for (i = PT_DIRECTORY_LEVEL;
729              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
730                 linfo = lpage_info_slot(gfn, slot, i);
731                 linfo->write_count -= 1;
732                 WARN_ON(linfo->write_count < 0);
733         }
734         kvm->arch.indirect_shadow_pages--;
735 }
736
737 static int has_wrprotected_page(struct kvm *kvm,
738                                 gfn_t gfn,
739                                 int level)
740 {
741         struct kvm_memory_slot *slot;
742         struct kvm_lpage_info *linfo;
743
744         slot = gfn_to_memslot(kvm, gfn);
745         if (slot) {
746                 linfo = lpage_info_slot(gfn, slot, level);
747                 return linfo->write_count;
748         }
749
750         return 1;
751 }
752
753 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
754 {
755         unsigned long page_size;
756         int i, ret = 0;
757
758         page_size = kvm_host_page_size(kvm, gfn);
759
760         for (i = PT_PAGE_TABLE_LEVEL;
761              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
762                 if (page_size >= KVM_HPAGE_SIZE(i))
763                         ret = i;
764                 else
765                         break;
766         }
767
768         return ret;
769 }
770
771 static struct kvm_memory_slot *
772 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
773                             bool no_dirty_log)
774 {
775         struct kvm_memory_slot *slot;
776
777         slot = gfn_to_memslot(vcpu->kvm, gfn);
778         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
779               (no_dirty_log && slot->dirty_bitmap))
780                 slot = NULL;
781
782         return slot;
783 }
784
785 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
786 {
787         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
788 }
789
790 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
791 {
792         int host_level, level, max_level;
793
794         host_level = host_mapping_level(vcpu->kvm, large_gfn);
795
796         if (host_level == PT_PAGE_TABLE_LEVEL)
797                 return host_level;
798
799         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
800                 kvm_x86_ops->get_lpage_level() : host_level;
801
802         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
803                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
804                         break;
805
806         return level - 1;
807 }
808
809 /*
810  * Pte mapping structures:
811  *
812  * If pte_list bit zero is zero, then pte_list point to the spte.
813  *
814  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
815  * pte_list_desc containing more mappings.
816  *
817  * Returns the number of pte entries before the spte was added or zero if
818  * the spte was not added.
819  *
820  */
821 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
822                         unsigned long *pte_list)
823 {
824         struct pte_list_desc *desc;
825         int i, count = 0;
826
827         if (!*pte_list) {
828                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
829                 *pte_list = (unsigned long)spte;
830         } else if (!(*pte_list & 1)) {
831                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
832                 desc = mmu_alloc_pte_list_desc(vcpu);
833                 desc->sptes[0] = (u64 *)*pte_list;
834                 desc->sptes[1] = spte;
835                 *pte_list = (unsigned long)desc | 1;
836                 ++count;
837         } else {
838                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
839                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
840                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
841                         desc = desc->more;
842                         count += PTE_LIST_EXT;
843                 }
844                 if (desc->sptes[PTE_LIST_EXT-1]) {
845                         desc->more = mmu_alloc_pte_list_desc(vcpu);
846                         desc = desc->more;
847                 }
848                 for (i = 0; desc->sptes[i]; ++i)
849                         ++count;
850                 desc->sptes[i] = spte;
851         }
852         return count;
853 }
854
855 static void
856 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
857                            int i, struct pte_list_desc *prev_desc)
858 {
859         int j;
860
861         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
862                 ;
863         desc->sptes[i] = desc->sptes[j];
864         desc->sptes[j] = NULL;
865         if (j != 0)
866                 return;
867         if (!prev_desc && !desc->more)
868                 *pte_list = (unsigned long)desc->sptes[0];
869         else
870                 if (prev_desc)
871                         prev_desc->more = desc->more;
872                 else
873                         *pte_list = (unsigned long)desc->more | 1;
874         mmu_free_pte_list_desc(desc);
875 }
876
877 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
878 {
879         struct pte_list_desc *desc;
880         struct pte_list_desc *prev_desc;
881         int i;
882
883         if (!*pte_list) {
884                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
885                 BUG();
886         } else if (!(*pte_list & 1)) {
887                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
888                 if ((u64 *)*pte_list != spte) {
889                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
890                         BUG();
891                 }
892                 *pte_list = 0;
893         } else {
894                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
895                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
896                 prev_desc = NULL;
897                 while (desc) {
898                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
899                                 if (desc->sptes[i] == spte) {
900                                         pte_list_desc_remove_entry(pte_list,
901                                                                desc, i,
902                                                                prev_desc);
903                                         return;
904                                 }
905                         prev_desc = desc;
906                         desc = desc->more;
907                 }
908                 pr_err("pte_list_remove: %p many->many\n", spte);
909                 BUG();
910         }
911 }
912
913 typedef void (*pte_list_walk_fn) (u64 *spte);
914 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
915 {
916         struct pte_list_desc *desc;
917         int i;
918
919         if (!*pte_list)
920                 return;
921
922         if (!(*pte_list & 1))
923                 return fn((u64 *)*pte_list);
924
925         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
926         while (desc) {
927                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
928                         fn(desc->sptes[i]);
929                 desc = desc->more;
930         }
931 }
932
933 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
934                                     struct kvm_memory_slot *slot)
935 {
936         struct kvm_lpage_info *linfo;
937
938         if (likely(level == PT_PAGE_TABLE_LEVEL))
939                 return &slot->rmap[gfn - slot->base_gfn];
940
941         linfo = lpage_info_slot(gfn, slot, level);
942         return &linfo->rmap_pde;
943 }
944
945 /*
946  * Take gfn and return the reverse mapping to it.
947  */
948 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
949 {
950         struct kvm_memory_slot *slot;
951
952         slot = gfn_to_memslot(kvm, gfn);
953         return __gfn_to_rmap(gfn, level, slot);
954 }
955
956 static bool rmap_can_add(struct kvm_vcpu *vcpu)
957 {
958         struct kvm_mmu_memory_cache *cache;
959
960         cache = &vcpu->arch.mmu_pte_list_desc_cache;
961         return mmu_memory_cache_free_objects(cache);
962 }
963
964 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
965 {
966         struct kvm_mmu_page *sp;
967         unsigned long *rmapp;
968
969         sp = page_header(__pa(spte));
970         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
971         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
972         return pte_list_add(vcpu, spte, rmapp);
973 }
974
975 static void rmap_remove(struct kvm *kvm, u64 *spte)
976 {
977         struct kvm_mmu_page *sp;
978         gfn_t gfn;
979         unsigned long *rmapp;
980
981         sp = page_header(__pa(spte));
982         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
983         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
984         pte_list_remove(spte, rmapp);
985 }
986
987 /*
988  * Used by the following functions to iterate through the sptes linked by a
989  * rmap.  All fields are private and not assumed to be used outside.
990  */
991 struct rmap_iterator {
992         /* private fields */
993         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
994         int pos;                        /* index of the sptep */
995 };
996
997 /*
998  * Iteration must be started by this function.  This should also be used after
999  * removing/dropping sptes from the rmap link because in such cases the
1000  * information in the itererator may not be valid.
1001  *
1002  * Returns sptep if found, NULL otherwise.
1003  */
1004 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1005 {
1006         if (!rmap)
1007                 return NULL;
1008
1009         if (!(rmap & 1)) {
1010                 iter->desc = NULL;
1011                 return (u64 *)rmap;
1012         }
1013
1014         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1015         iter->pos = 0;
1016         return iter->desc->sptes[iter->pos];
1017 }
1018
1019 /*
1020  * Must be used with a valid iterator: e.g. after rmap_get_first().
1021  *
1022  * Returns sptep if found, NULL otherwise.
1023  */
1024 static u64 *rmap_get_next(struct rmap_iterator *iter)
1025 {
1026         if (iter->desc) {
1027                 if (iter->pos < PTE_LIST_EXT - 1) {
1028                         u64 *sptep;
1029
1030                         ++iter->pos;
1031                         sptep = iter->desc->sptes[iter->pos];
1032                         if (sptep)
1033                                 return sptep;
1034                 }
1035
1036                 iter->desc = iter->desc->more;
1037
1038                 if (iter->desc) {
1039                         iter->pos = 0;
1040                         /* desc->sptes[0] cannot be NULL */
1041                         return iter->desc->sptes[iter->pos];
1042                 }
1043         }
1044
1045         return NULL;
1046 }
1047
1048 static void drop_spte(struct kvm *kvm, u64 *sptep)
1049 {
1050         if (mmu_spte_clear_track_bits(sptep))
1051                 rmap_remove(kvm, sptep);
1052 }
1053
1054 static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
1055 {
1056         u64 *sptep;
1057         struct rmap_iterator iter;
1058         int write_protected = 0;
1059
1060         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062                 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1063
1064                 if (!is_writable_pte(*sptep)) {
1065                         sptep = rmap_get_next(&iter);
1066                         continue;
1067                 }
1068
1069                 if (level == PT_PAGE_TABLE_LEVEL) {
1070                         mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071                         sptep = rmap_get_next(&iter);
1072                 } else {
1073                         BUG_ON(!is_large_pte(*sptep));
1074                         drop_spte(kvm, sptep);
1075                         --kvm->stat.lpages;
1076                         sptep = rmap_get_first(*rmapp, &iter);
1077                 }
1078
1079                 write_protected = 1;
1080         }
1081
1082         return write_protected;
1083 }
1084
1085 /**
1086  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087  * @kvm: kvm instance
1088  * @slot: slot to protect
1089  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090  * @mask: indicates which pages we should protect
1091  *
1092  * Used when we do not need to care about huge page mappings: e.g. during dirty
1093  * logging we do not have any such mappings.
1094  */
1095 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096                                      struct kvm_memory_slot *slot,
1097                                      gfn_t gfn_offset, unsigned long mask)
1098 {
1099         unsigned long *rmapp;
1100
1101         while (mask) {
1102                 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
1104
1105                 /* clear the first set bit */
1106                 mask &= mask - 1;
1107         }
1108 }
1109
1110 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1111 {
1112         struct kvm_memory_slot *slot;
1113         unsigned long *rmapp;
1114         int i;
1115         int write_protected = 0;
1116
1117         slot = gfn_to_memslot(kvm, gfn);
1118
1119         for (i = PT_PAGE_TABLE_LEVEL;
1120              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121                 rmapp = __gfn_to_rmap(gfn, i, slot);
1122                 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123         }
1124
1125         return write_protected;
1126 }
1127
1128 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129                            unsigned long data)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         int need_tlb_flush = 0;
1134
1135         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139                 drop_spte(kvm, sptep);
1140                 need_tlb_flush = 1;
1141         }
1142
1143         return need_tlb_flush;
1144 }
1145
1146 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147                              unsigned long data)
1148 {
1149         u64 *sptep;
1150         struct rmap_iterator iter;
1151         int need_flush = 0;
1152         u64 new_spte;
1153         pte_t *ptep = (pte_t *)data;
1154         pfn_t new_pfn;
1155
1156         WARN_ON(pte_huge(*ptep));
1157         new_pfn = pte_pfn(*ptep);
1158
1159         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160                 BUG_ON(!is_shadow_present_pte(*sptep));
1161                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
1163                 need_flush = 1;
1164
1165                 if (pte_write(*ptep)) {
1166                         drop_spte(kvm, sptep);
1167                         sptep = rmap_get_first(*rmapp, &iter);
1168                 } else {
1169                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1170                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172                         new_spte &= ~PT_WRITABLE_MASK;
1173                         new_spte &= ~SPTE_HOST_WRITEABLE;
1174                         new_spte &= ~shadow_accessed_mask;
1175
1176                         mmu_spte_clear_track_bits(sptep);
1177                         mmu_spte_set(sptep, new_spte);
1178                         sptep = rmap_get_next(&iter);
1179                 }
1180         }
1181
1182         if (need_flush)
1183                 kvm_flush_remote_tlbs(kvm);
1184
1185         return 0;
1186 }
1187
1188 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189                           unsigned long data,
1190                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1191                                          unsigned long data))
1192 {
1193         int j;
1194         int ret;
1195         int retval = 0;
1196         struct kvm_memslots *slots;
1197         struct kvm_memory_slot *memslot;
1198
1199         slots = kvm_memslots(kvm);
1200
1201         kvm_for_each_memslot(memslot, slots) {
1202                 unsigned long start = memslot->userspace_addr;
1203                 unsigned long end;
1204
1205                 end = start + (memslot->npages << PAGE_SHIFT);
1206                 if (hva >= start && hva < end) {
1207                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1208                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1209
1210                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1211
1212                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1213                                 struct kvm_lpage_info *linfo;
1214
1215                                 linfo = lpage_info_slot(gfn, memslot,
1216                                                         PT_DIRECTORY_LEVEL + j);
1217                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1218                         }
1219                         trace_kvm_age_page(hva, memslot, ret);
1220                         retval |= ret;
1221                 }
1222         }
1223
1224         return retval;
1225 }
1226
1227 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228 {
1229         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230 }
1231
1232 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233 {
1234         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1235 }
1236
1237 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238                          unsigned long data)
1239 {
1240         u64 *sptep;
1241         struct rmap_iterator iter;
1242         int young = 0;
1243
1244         /*
1245          * Emulate the accessed bit for EPT, by checking if this page has
1246          * an EPT mapping, and clearing it if it does. On the next access,
1247          * a new EPT mapping will be established.
1248          * This has some overhead, but not as much as the cost of swapping
1249          * out actively used pages or breaking up actively used hugepages.
1250          */
1251         if (!shadow_accessed_mask)
1252                 return kvm_unmap_rmapp(kvm, rmapp, data);
1253
1254         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1255              sptep = rmap_get_next(&iter)) {
1256                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1257
1258                 if (*sptep & PT_ACCESSED_MASK) {
1259                         young = 1;
1260                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)sptep);
1261                 }
1262         }
1263
1264         return young;
1265 }
1266
1267 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1268                               unsigned long data)
1269 {
1270         u64 *sptep;
1271         struct rmap_iterator iter;
1272         int young = 0;
1273
1274         /*
1275          * If there's no access bit in the secondary pte set by the
1276          * hardware it's up to gup-fast/gup to set the access bit in
1277          * the primary pte or in the page structure.
1278          */
1279         if (!shadow_accessed_mask)
1280                 goto out;
1281
1282         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1283              sptep = rmap_get_next(&iter)) {
1284                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1285
1286                 if (*sptep & PT_ACCESSED_MASK) {
1287                         young = 1;
1288                         break;
1289                 }
1290         }
1291 out:
1292         return young;
1293 }
1294
1295 #define RMAP_RECYCLE_THRESHOLD 1000
1296
1297 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1298 {
1299         unsigned long *rmapp;
1300         struct kvm_mmu_page *sp;
1301
1302         sp = page_header(__pa(spte));
1303
1304         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1305
1306         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1307         kvm_flush_remote_tlbs(vcpu->kvm);
1308 }
1309
1310 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1311 {
1312         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1313 }
1314
1315 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1316 {
1317         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1318 }
1319
1320 #ifdef MMU_DEBUG
1321 static int is_empty_shadow_page(u64 *spt)
1322 {
1323         u64 *pos;
1324         u64 *end;
1325
1326         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1327                 if (is_shadow_present_pte(*pos)) {
1328                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1329                                pos, *pos);
1330                         return 0;
1331                 }
1332         return 1;
1333 }
1334 #endif
1335
1336 /*
1337  * This value is the sum of all of the kvm instances's
1338  * kvm->arch.n_used_mmu_pages values.  We need a global,
1339  * aggregate version in order to make the slab shrinker
1340  * faster
1341  */
1342 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1343 {
1344         kvm->arch.n_used_mmu_pages += nr;
1345         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1346 }
1347
1348 /*
1349  * Remove the sp from shadow page cache, after call it,
1350  * we can not find this sp from the cache, and the shadow
1351  * page table is still valid.
1352  * It should be under the protection of mmu lock.
1353  */
1354 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1355 {
1356         ASSERT(is_empty_shadow_page(sp->spt));
1357         hlist_del(&sp->hash_link);
1358         if (!sp->role.direct)
1359                 free_page((unsigned long)sp->gfns);
1360 }
1361
1362 /*
1363  * Free the shadow page table and the sp, we can do it
1364  * out of the protection of mmu lock.
1365  */
1366 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1367 {
1368         list_del(&sp->link);
1369         free_page((unsigned long)sp->spt);
1370         kmem_cache_free(mmu_page_header_cache, sp);
1371 }
1372
1373 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1374 {
1375         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1376 }
1377
1378 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1379                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1380 {
1381         if (!parent_pte)
1382                 return;
1383
1384         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1385 }
1386
1387 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1388                                        u64 *parent_pte)
1389 {
1390         pte_list_remove(parent_pte, &sp->parent_ptes);
1391 }
1392
1393 static void drop_parent_pte(struct kvm_mmu_page *sp,
1394                             u64 *parent_pte)
1395 {
1396         mmu_page_remove_parent_pte(sp, parent_pte);
1397         mmu_spte_clear_no_track(parent_pte);
1398 }
1399
1400 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1401                                                u64 *parent_pte, int direct)
1402 {
1403         struct kvm_mmu_page *sp;
1404         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1405                                         sizeof *sp);
1406         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1407         if (!direct)
1408                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1409                                                   PAGE_SIZE);
1410         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1411         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1412         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1413         sp->parent_ptes = 0;
1414         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1415         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1416         return sp;
1417 }
1418
1419 static void mark_unsync(u64 *spte);
1420 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1421 {
1422         pte_list_walk(&sp->parent_ptes, mark_unsync);
1423 }
1424
1425 static void mark_unsync(u64 *spte)
1426 {
1427         struct kvm_mmu_page *sp;
1428         unsigned int index;
1429
1430         sp = page_header(__pa(spte));
1431         index = spte - sp->spt;
1432         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1433                 return;
1434         if (sp->unsync_children++)
1435                 return;
1436         kvm_mmu_mark_parents_unsync(sp);
1437 }
1438
1439 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1440                                struct kvm_mmu_page *sp)
1441 {
1442         return 1;
1443 }
1444
1445 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1446 {
1447 }
1448
1449 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1450                                  struct kvm_mmu_page *sp, u64 *spte,
1451                                  const void *pte)
1452 {
1453         WARN_ON(1);
1454 }
1455
1456 #define KVM_PAGE_ARRAY_NR 16
1457
1458 struct kvm_mmu_pages {
1459         struct mmu_page_and_offset {
1460                 struct kvm_mmu_page *sp;
1461                 unsigned int idx;
1462         } page[KVM_PAGE_ARRAY_NR];
1463         unsigned int nr;
1464 };
1465
1466 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1467                          int idx)
1468 {
1469         int i;
1470
1471         if (sp->unsync)
1472                 for (i=0; i < pvec->nr; i++)
1473                         if (pvec->page[i].sp == sp)
1474                                 return 0;
1475
1476         pvec->page[pvec->nr].sp = sp;
1477         pvec->page[pvec->nr].idx = idx;
1478         pvec->nr++;
1479         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1480 }
1481
1482 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1483                            struct kvm_mmu_pages *pvec)
1484 {
1485         int i, ret, nr_unsync_leaf = 0;
1486
1487         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1488                 struct kvm_mmu_page *child;
1489                 u64 ent = sp->spt[i];
1490
1491                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1492                         goto clear_child_bitmap;
1493
1494                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1495
1496                 if (child->unsync_children) {
1497                         if (mmu_pages_add(pvec, child, i))
1498                                 return -ENOSPC;
1499
1500                         ret = __mmu_unsync_walk(child, pvec);
1501                         if (!ret)
1502                                 goto clear_child_bitmap;
1503                         else if (ret > 0)
1504                                 nr_unsync_leaf += ret;
1505                         else
1506                                 return ret;
1507                 } else if (child->unsync) {
1508                         nr_unsync_leaf++;
1509                         if (mmu_pages_add(pvec, child, i))
1510                                 return -ENOSPC;
1511                 } else
1512                          goto clear_child_bitmap;
1513
1514                 continue;
1515
1516 clear_child_bitmap:
1517                 __clear_bit(i, sp->unsync_child_bitmap);
1518                 sp->unsync_children--;
1519                 WARN_ON((int)sp->unsync_children < 0);
1520         }
1521
1522
1523         return nr_unsync_leaf;
1524 }
1525
1526 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1527                            struct kvm_mmu_pages *pvec)
1528 {
1529         if (!sp->unsync_children)
1530                 return 0;
1531
1532         mmu_pages_add(pvec, sp, 0);
1533         return __mmu_unsync_walk(sp, pvec);
1534 }
1535
1536 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1537 {
1538         WARN_ON(!sp->unsync);
1539         trace_kvm_mmu_sync_page(sp);
1540         sp->unsync = 0;
1541         --kvm->stat.mmu_unsync;
1542 }
1543
1544 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1545                                     struct list_head *invalid_list);
1546 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1547                                     struct list_head *invalid_list);
1548
1549 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1550   hlist_for_each_entry(sp, pos,                                         \
1551    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1552         if ((sp)->gfn != (gfn)) {} else
1553
1554 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1555   hlist_for_each_entry(sp, pos,                                         \
1556    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1557                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1558                         (sp)->role.invalid) {} else
1559
1560 /* @sp->gfn should be write-protected at the call site */
1561 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1562                            struct list_head *invalid_list, bool clear_unsync)
1563 {
1564         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1565                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1566                 return 1;
1567         }
1568
1569         if (clear_unsync)
1570                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1571
1572         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1573                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1574                 return 1;
1575         }
1576
1577         kvm_mmu_flush_tlb(vcpu);
1578         return 0;
1579 }
1580
1581 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1582                                    struct kvm_mmu_page *sp)
1583 {
1584         LIST_HEAD(invalid_list);
1585         int ret;
1586
1587         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1588         if (ret)
1589                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1590
1591         return ret;
1592 }
1593
1594 #ifdef CONFIG_KVM_MMU_AUDIT
1595 #include "mmu_audit.c"
1596 #else
1597 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1598 static void mmu_audit_disable(void) { }
1599 #endif
1600
1601 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1602                          struct list_head *invalid_list)
1603 {
1604         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1605 }
1606
1607 /* @gfn should be write-protected at the call site */
1608 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1609 {
1610         struct kvm_mmu_page *s;
1611         struct hlist_node *node;
1612         LIST_HEAD(invalid_list);
1613         bool flush = false;
1614
1615         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1616                 if (!s->unsync)
1617                         continue;
1618
1619                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1620                 kvm_unlink_unsync_page(vcpu->kvm, s);
1621                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1622                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1623                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1624                         continue;
1625                 }
1626                 flush = true;
1627         }
1628
1629         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1630         if (flush)
1631                 kvm_mmu_flush_tlb(vcpu);
1632 }
1633
1634 struct mmu_page_path {
1635         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1636         unsigned int idx[PT64_ROOT_LEVEL-1];
1637 };
1638
1639 #define for_each_sp(pvec, sp, parents, i)                       \
1640                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1641                         sp = pvec.page[i].sp;                   \
1642                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1643                         i = mmu_pages_next(&pvec, &parents, i))
1644
1645 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1646                           struct mmu_page_path *parents,
1647                           int i)
1648 {
1649         int n;
1650
1651         for (n = i+1; n < pvec->nr; n++) {
1652                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1653
1654                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1655                         parents->idx[0] = pvec->page[n].idx;
1656                         return n;
1657                 }
1658
1659                 parents->parent[sp->role.level-2] = sp;
1660                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1661         }
1662
1663         return n;
1664 }
1665
1666 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1667 {
1668         struct kvm_mmu_page *sp;
1669         unsigned int level = 0;
1670
1671         do {
1672                 unsigned int idx = parents->idx[level];
1673
1674                 sp = parents->parent[level];
1675                 if (!sp)
1676                         return;
1677
1678                 --sp->unsync_children;
1679                 WARN_ON((int)sp->unsync_children < 0);
1680                 __clear_bit(idx, sp->unsync_child_bitmap);
1681                 level++;
1682         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1683 }
1684
1685 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1686                                struct mmu_page_path *parents,
1687                                struct kvm_mmu_pages *pvec)
1688 {
1689         parents->parent[parent->role.level-1] = NULL;
1690         pvec->nr = 0;
1691 }
1692
1693 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1694                               struct kvm_mmu_page *parent)
1695 {
1696         int i;
1697         struct kvm_mmu_page *sp;
1698         struct mmu_page_path parents;
1699         struct kvm_mmu_pages pages;
1700         LIST_HEAD(invalid_list);
1701
1702         kvm_mmu_pages_init(parent, &parents, &pages);
1703         while (mmu_unsync_walk(parent, &pages)) {
1704                 int protected = 0;
1705
1706                 for_each_sp(pages, sp, parents, i)
1707                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1708
1709                 if (protected)
1710                         kvm_flush_remote_tlbs(vcpu->kvm);
1711
1712                 for_each_sp(pages, sp, parents, i) {
1713                         kvm_sync_page(vcpu, sp, &invalid_list);
1714                         mmu_pages_clear_parents(&parents);
1715                 }
1716                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1717                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1718                 kvm_mmu_pages_init(parent, &parents, &pages);
1719         }
1720 }
1721
1722 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1723 {
1724         int i;
1725
1726         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1727                 sp->spt[i] = 0ull;
1728 }
1729
1730 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1731 {
1732         sp->write_flooding_count = 0;
1733 }
1734
1735 static void clear_sp_write_flooding_count(u64 *spte)
1736 {
1737         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1738
1739         __clear_sp_write_flooding_count(sp);
1740 }
1741
1742 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1743                                              gfn_t gfn,
1744                                              gva_t gaddr,
1745                                              unsigned level,
1746                                              int direct,
1747                                              unsigned access,
1748                                              u64 *parent_pte)
1749 {
1750         union kvm_mmu_page_role role;
1751         unsigned quadrant;
1752         struct kvm_mmu_page *sp;
1753         struct hlist_node *node;
1754         bool need_sync = false;
1755
1756         role = vcpu->arch.mmu.base_role;
1757         role.level = level;
1758         role.direct = direct;
1759         if (role.direct)
1760                 role.cr4_pae = 0;
1761         role.access = access;
1762         if (!vcpu->arch.mmu.direct_map
1763             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1764                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1765                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1766                 role.quadrant = quadrant;
1767         }
1768         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1769                 if (!need_sync && sp->unsync)
1770                         need_sync = true;
1771
1772                 if (sp->role.word != role.word)
1773                         continue;
1774
1775                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1776                         break;
1777
1778                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1779                 if (sp->unsync_children) {
1780                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1781                         kvm_mmu_mark_parents_unsync(sp);
1782                 } else if (sp->unsync)
1783                         kvm_mmu_mark_parents_unsync(sp);
1784
1785                 __clear_sp_write_flooding_count(sp);
1786                 trace_kvm_mmu_get_page(sp, false);
1787                 return sp;
1788         }
1789         ++vcpu->kvm->stat.mmu_cache_miss;
1790         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1791         if (!sp)
1792                 return sp;
1793         sp->gfn = gfn;
1794         sp->role = role;
1795         hlist_add_head(&sp->hash_link,
1796                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1797         if (!direct) {
1798                 if (rmap_write_protect(vcpu->kvm, gfn))
1799                         kvm_flush_remote_tlbs(vcpu->kvm);
1800                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1801                         kvm_sync_pages(vcpu, gfn);
1802
1803                 account_shadowed(vcpu->kvm, gfn);
1804         }
1805         init_shadow_page_table(sp);
1806         trace_kvm_mmu_get_page(sp, true);
1807         return sp;
1808 }
1809
1810 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1811                              struct kvm_vcpu *vcpu, u64 addr)
1812 {
1813         iterator->addr = addr;
1814         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1815         iterator->level = vcpu->arch.mmu.shadow_root_level;
1816
1817         if (iterator->level == PT64_ROOT_LEVEL &&
1818             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1819             !vcpu->arch.mmu.direct_map)
1820                 --iterator->level;
1821
1822         if (iterator->level == PT32E_ROOT_LEVEL) {
1823                 iterator->shadow_addr
1824                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1825                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1826                 --iterator->level;
1827                 if (!iterator->shadow_addr)
1828                         iterator->level = 0;
1829         }
1830 }
1831
1832 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1833 {
1834         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1835                 return false;
1836
1837         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1838         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1839         return true;
1840 }
1841
1842 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1843                                u64 spte)
1844 {
1845         if (is_last_spte(spte, iterator->level)) {
1846                 iterator->level = 0;
1847                 return;
1848         }
1849
1850         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1851         --iterator->level;
1852 }
1853
1854 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1855 {
1856         return __shadow_walk_next(iterator, *iterator->sptep);
1857 }
1858
1859 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1860 {
1861         u64 spte;
1862
1863         spte = __pa(sp->spt)
1864                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1865                 | PT_WRITABLE_MASK | PT_USER_MASK;
1866         mmu_spte_set(sptep, spte);
1867 }
1868
1869 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1870 {
1871         if (is_large_pte(*sptep)) {
1872                 drop_spte(vcpu->kvm, sptep);
1873                 --vcpu->kvm->stat.lpages;
1874                 kvm_flush_remote_tlbs(vcpu->kvm);
1875         }
1876 }
1877
1878 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1879                                    unsigned direct_access)
1880 {
1881         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1882                 struct kvm_mmu_page *child;
1883
1884                 /*
1885                  * For the direct sp, if the guest pte's dirty bit
1886                  * changed form clean to dirty, it will corrupt the
1887                  * sp's access: allow writable in the read-only sp,
1888                  * so we should update the spte at this point to get
1889                  * a new sp with the correct access.
1890                  */
1891                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1892                 if (child->role.access == direct_access)
1893                         return;
1894
1895                 drop_parent_pte(child, sptep);
1896                 kvm_flush_remote_tlbs(vcpu->kvm);
1897         }
1898 }
1899
1900 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1901                              u64 *spte)
1902 {
1903         u64 pte;
1904         struct kvm_mmu_page *child;
1905
1906         pte = *spte;
1907         if (is_shadow_present_pte(pte)) {
1908                 if (is_last_spte(pte, sp->role.level)) {
1909                         drop_spte(kvm, spte);
1910                         if (is_large_pte(pte))
1911                                 --kvm->stat.lpages;
1912                 } else {
1913                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1914                         drop_parent_pte(child, spte);
1915                 }
1916                 return true;
1917         }
1918
1919         if (is_mmio_spte(pte))
1920                 mmu_spte_clear_no_track(spte);
1921
1922         return false;
1923 }
1924
1925 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1926                                          struct kvm_mmu_page *sp)
1927 {
1928         unsigned i;
1929
1930         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1931                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1932 }
1933
1934 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1935 {
1936         mmu_page_remove_parent_pte(sp, parent_pte);
1937 }
1938
1939 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1940 {
1941         u64 *sptep;
1942         struct rmap_iterator iter;
1943
1944         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1945                 drop_parent_pte(sp, sptep);
1946 }
1947
1948 static int mmu_zap_unsync_children(struct kvm *kvm,
1949                                    struct kvm_mmu_page *parent,
1950                                    struct list_head *invalid_list)
1951 {
1952         int i, zapped = 0;
1953         struct mmu_page_path parents;
1954         struct kvm_mmu_pages pages;
1955
1956         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1957                 return 0;
1958
1959         kvm_mmu_pages_init(parent, &parents, &pages);
1960         while (mmu_unsync_walk(parent, &pages)) {
1961                 struct kvm_mmu_page *sp;
1962
1963                 for_each_sp(pages, sp, parents, i) {
1964                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1965                         mmu_pages_clear_parents(&parents);
1966                         zapped++;
1967                 }
1968                 kvm_mmu_pages_init(parent, &parents, &pages);
1969         }
1970
1971         return zapped;
1972 }
1973
1974 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975                                     struct list_head *invalid_list)
1976 {
1977         int ret;
1978
1979         trace_kvm_mmu_prepare_zap_page(sp);
1980         ++kvm->stat.mmu_shadow_zapped;
1981         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1982         kvm_mmu_page_unlink_children(kvm, sp);
1983         kvm_mmu_unlink_parents(kvm, sp);
1984         if (!sp->role.invalid && !sp->role.direct)
1985                 unaccount_shadowed(kvm, sp->gfn);
1986         if (sp->unsync)
1987                 kvm_unlink_unsync_page(kvm, sp);
1988         if (!sp->root_count) {
1989                 /* Count self */
1990                 ret++;
1991                 list_move(&sp->link, invalid_list);
1992                 kvm_mod_used_mmu_pages(kvm, -1);
1993         } else {
1994                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1995                 kvm_reload_remote_mmus(kvm);
1996         }
1997
1998         sp->role.invalid = 1;
1999         return ret;
2000 }
2001
2002 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2003                                     struct list_head *invalid_list)
2004 {
2005         struct kvm_mmu_page *sp;
2006
2007         if (list_empty(invalid_list))
2008                 return;
2009
2010         /*
2011          * wmb: make sure everyone sees our modifications to the page tables
2012          * rmb: make sure we see changes to vcpu->mode
2013          */
2014         smp_mb();
2015
2016         /*
2017          * Wait for all vcpus to exit guest mode and/or lockless shadow
2018          * page table walks.
2019          */
2020         kvm_flush_remote_tlbs(kvm);
2021
2022         do {
2023                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2024                 WARN_ON(!sp->role.invalid || sp->root_count);
2025                 kvm_mmu_isolate_page(sp);
2026                 kvm_mmu_free_page(sp);
2027         } while (!list_empty(invalid_list));
2028 }
2029
2030 /*
2031  * Changing the number of mmu pages allocated to the vm
2032  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2033  */
2034 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2035 {
2036         LIST_HEAD(invalid_list);
2037         /*
2038          * If we set the number of mmu pages to be smaller be than the
2039          * number of actived pages , we must to free some mmu pages before we
2040          * change the value
2041          */
2042
2043         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2044                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2045                         !list_empty(&kvm->arch.active_mmu_pages)) {
2046                         struct kvm_mmu_page *page;
2047
2048                         page = container_of(kvm->arch.active_mmu_pages.prev,
2049                                             struct kvm_mmu_page, link);
2050                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2051                 }
2052                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2053                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2054         }
2055
2056         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2057 }
2058
2059 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2060 {
2061         struct kvm_mmu_page *sp;
2062         struct hlist_node *node;
2063         LIST_HEAD(invalid_list);
2064         int r;
2065
2066         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2067         r = 0;
2068         spin_lock(&kvm->mmu_lock);
2069         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2070                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2071                          sp->role.word);
2072                 r = 1;
2073                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2074         }
2075         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2076         spin_unlock(&kvm->mmu_lock);
2077
2078         return r;
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2081
2082 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2083 {
2084         int slot = memslot_id(kvm, gfn);
2085         struct kvm_mmu_page *sp = page_header(__pa(pte));
2086
2087         __set_bit(slot, sp->slot_bitmap);
2088 }
2089
2090 /*
2091  * The function is based on mtrr_type_lookup() in
2092  * arch/x86/kernel/cpu/mtrr/generic.c
2093  */
2094 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2095                          u64 start, u64 end)
2096 {
2097         int i;
2098         u64 base, mask;
2099         u8 prev_match, curr_match;
2100         int num_var_ranges = KVM_NR_VAR_MTRR;
2101
2102         if (!mtrr_state->enabled)
2103                 return 0xFF;
2104
2105         /* Make end inclusive end, instead of exclusive */
2106         end--;
2107
2108         /* Look in fixed ranges. Just return the type as per start */
2109         if (mtrr_state->have_fixed && (start < 0x100000)) {
2110                 int idx;
2111
2112                 if (start < 0x80000) {
2113                         idx = 0;
2114                         idx += (start >> 16);
2115                         return mtrr_state->fixed_ranges[idx];
2116                 } else if (start < 0xC0000) {
2117                         idx = 1 * 8;
2118                         idx += ((start - 0x80000) >> 14);
2119                         return mtrr_state->fixed_ranges[idx];
2120                 } else if (start < 0x1000000) {
2121                         idx = 3 * 8;
2122                         idx += ((start - 0xC0000) >> 12);
2123                         return mtrr_state->fixed_ranges[idx];
2124                 }
2125         }
2126
2127         /*
2128          * Look in variable ranges
2129          * Look of multiple ranges matching this address and pick type
2130          * as per MTRR precedence
2131          */
2132         if (!(mtrr_state->enabled & 2))
2133                 return mtrr_state->def_type;
2134
2135         prev_match = 0xFF;
2136         for (i = 0; i < num_var_ranges; ++i) {
2137                 unsigned short start_state, end_state;
2138
2139                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2140                         continue;
2141
2142                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2143                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2144                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2145                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2146
2147                 start_state = ((start & mask) == (base & mask));
2148                 end_state = ((end & mask) == (base & mask));
2149                 if (start_state != end_state)
2150                         return 0xFE;
2151
2152                 if ((start & mask) != (base & mask))
2153                         continue;
2154
2155                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2156                 if (prev_match == 0xFF) {
2157                         prev_match = curr_match;
2158                         continue;
2159                 }
2160
2161                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2162                     curr_match == MTRR_TYPE_UNCACHABLE)
2163                         return MTRR_TYPE_UNCACHABLE;
2164
2165                 if ((prev_match == MTRR_TYPE_WRBACK &&
2166                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2167                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2168                      curr_match == MTRR_TYPE_WRBACK)) {
2169                         prev_match = MTRR_TYPE_WRTHROUGH;
2170                         curr_match = MTRR_TYPE_WRTHROUGH;
2171                 }
2172
2173                 if (prev_match != curr_match)
2174                         return MTRR_TYPE_UNCACHABLE;
2175         }
2176
2177         if (prev_match != 0xFF)
2178                 return prev_match;
2179
2180         return mtrr_state->def_type;
2181 }
2182
2183 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2184 {
2185         u8 mtrr;
2186
2187         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2188                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2189         if (mtrr == 0xfe || mtrr == 0xff)
2190                 mtrr = MTRR_TYPE_WRBACK;
2191         return mtrr;
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2194
2195 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2196 {
2197         trace_kvm_mmu_unsync_page(sp);
2198         ++vcpu->kvm->stat.mmu_unsync;
2199         sp->unsync = 1;
2200
2201         kvm_mmu_mark_parents_unsync(sp);
2202 }
2203
2204 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2205 {
2206         struct kvm_mmu_page *s;
2207         struct hlist_node *node;
2208
2209         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2210                 if (s->unsync)
2211                         continue;
2212                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2213                 __kvm_unsync_page(vcpu, s);
2214         }
2215 }
2216
2217 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2218                                   bool can_unsync)
2219 {
2220         struct kvm_mmu_page *s;
2221         struct hlist_node *node;
2222         bool need_unsync = false;
2223
2224         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2225                 if (!can_unsync)
2226                         return 1;
2227
2228                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2229                         return 1;
2230
2231                 if (!need_unsync && !s->unsync) {
2232                         need_unsync = true;
2233                 }
2234         }
2235         if (need_unsync)
2236                 kvm_unsync_pages(vcpu, gfn);
2237         return 0;
2238 }
2239
2240 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2241                     unsigned pte_access, int user_fault,
2242                     int write_fault, int level,
2243                     gfn_t gfn, pfn_t pfn, bool speculative,
2244                     bool can_unsync, bool host_writable)
2245 {
2246         u64 spte, entry = *sptep;
2247         int ret = 0;
2248
2249         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2250                 return 0;
2251
2252         spte = PT_PRESENT_MASK;
2253         if (!speculative)
2254                 spte |= shadow_accessed_mask;
2255
2256         if (pte_access & ACC_EXEC_MASK)
2257                 spte |= shadow_x_mask;
2258         else
2259                 spte |= shadow_nx_mask;
2260         if (pte_access & ACC_USER_MASK)
2261                 spte |= shadow_user_mask;
2262         if (level > PT_PAGE_TABLE_LEVEL)
2263                 spte |= PT_PAGE_SIZE_MASK;
2264         if (tdp_enabled)
2265                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2266                         kvm_is_mmio_pfn(pfn));
2267
2268         if (host_writable)
2269                 spte |= SPTE_HOST_WRITEABLE;
2270         else
2271                 pte_access &= ~ACC_WRITE_MASK;
2272
2273         spte |= (u64)pfn << PAGE_SHIFT;
2274
2275         if ((pte_access & ACC_WRITE_MASK)
2276             || (!vcpu->arch.mmu.direct_map && write_fault
2277                 && !is_write_protection(vcpu) && !user_fault)) {
2278
2279                 if (level > PT_PAGE_TABLE_LEVEL &&
2280                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2281                         ret = 1;
2282                         drop_spte(vcpu->kvm, sptep);
2283                         goto done;
2284                 }
2285
2286                 spte |= PT_WRITABLE_MASK;
2287
2288                 if (!vcpu->arch.mmu.direct_map
2289                     && !(pte_access & ACC_WRITE_MASK)) {
2290                         spte &= ~PT_USER_MASK;
2291                         /*
2292                          * If we converted a user page to a kernel page,
2293                          * so that the kernel can write to it when cr0.wp=0,
2294                          * then we should prevent the kernel from executing it
2295                          * if SMEP is enabled.
2296                          */
2297                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2298                                 spte |= PT64_NX_MASK;
2299                 }
2300
2301                 /*
2302                  * Optimization: for pte sync, if spte was writable the hash
2303                  * lookup is unnecessary (and expensive). Write protection
2304                  * is responsibility of mmu_get_page / kvm_sync_page.
2305                  * Same reasoning can be applied to dirty page accounting.
2306                  */
2307                 if (!can_unsync && is_writable_pte(*sptep))
2308                         goto set_pte;
2309
2310                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2311                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2312                                  __func__, gfn);
2313                         ret = 1;
2314                         pte_access &= ~ACC_WRITE_MASK;
2315                         if (is_writable_pte(spte))
2316                                 spte &= ~PT_WRITABLE_MASK;
2317                 }
2318         }
2319
2320         if (pte_access & ACC_WRITE_MASK)
2321                 mark_page_dirty(vcpu->kvm, gfn);
2322
2323 set_pte:
2324         mmu_spte_update(sptep, spte);
2325         /*
2326          * If we overwrite a writable spte with a read-only one we
2327          * should flush remote TLBs. Otherwise rmap_write_protect
2328          * will find a read-only spte, even though the writable spte
2329          * might be cached on a CPU's TLB.
2330          */
2331         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2332                 kvm_flush_remote_tlbs(vcpu->kvm);
2333 done:
2334         return ret;
2335 }
2336
2337 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2338                          unsigned pt_access, unsigned pte_access,
2339                          int user_fault, int write_fault,
2340                          int *emulate, int level, gfn_t gfn,
2341                          pfn_t pfn, bool speculative,
2342                          bool host_writable)
2343 {
2344         int was_rmapped = 0;
2345         int rmap_count;
2346
2347         pgprintk("%s: spte %llx access %x write_fault %d"
2348                  " user_fault %d gfn %llx\n",
2349                  __func__, *sptep, pt_access,
2350                  write_fault, user_fault, gfn);
2351
2352         if (is_rmap_spte(*sptep)) {
2353                 /*
2354                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2355                  * the parent of the now unreachable PTE.
2356                  */
2357                 if (level > PT_PAGE_TABLE_LEVEL &&
2358                     !is_large_pte(*sptep)) {
2359                         struct kvm_mmu_page *child;
2360                         u64 pte = *sptep;
2361
2362                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2363                         drop_parent_pte(child, sptep);
2364                         kvm_flush_remote_tlbs(vcpu->kvm);
2365                 } else if (pfn != spte_to_pfn(*sptep)) {
2366                         pgprintk("hfn old %llx new %llx\n",
2367                                  spte_to_pfn(*sptep), pfn);
2368                         drop_spte(vcpu->kvm, sptep);
2369                         kvm_flush_remote_tlbs(vcpu->kvm);
2370                 } else
2371                         was_rmapped = 1;
2372         }
2373
2374         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2375                       level, gfn, pfn, speculative, true,
2376                       host_writable)) {
2377                 if (write_fault)
2378                         *emulate = 1;
2379                 kvm_mmu_flush_tlb(vcpu);
2380         }
2381
2382         if (unlikely(is_mmio_spte(*sptep) && emulate))
2383                 *emulate = 1;
2384
2385         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2386         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2387                  is_large_pte(*sptep)? "2MB" : "4kB",
2388                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2389                  *sptep, sptep);
2390         if (!was_rmapped && is_large_pte(*sptep))
2391                 ++vcpu->kvm->stat.lpages;
2392
2393         if (is_shadow_present_pte(*sptep)) {
2394                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2395                 if (!was_rmapped) {
2396                         rmap_count = rmap_add(vcpu, sptep, gfn);
2397                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2398                                 rmap_recycle(vcpu, sptep, gfn);
2399                 }
2400         }
2401         kvm_release_pfn_clean(pfn);
2402 }
2403
2404 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2405 {
2406 }
2407
2408 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2409                                      bool no_dirty_log)
2410 {
2411         struct kvm_memory_slot *slot;
2412         unsigned long hva;
2413
2414         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2415         if (!slot) {
2416                 get_page(fault_page);
2417                 return page_to_pfn(fault_page);
2418         }
2419
2420         hva = gfn_to_hva_memslot(slot, gfn);
2421
2422         return hva_to_pfn_atomic(vcpu->kvm, hva);
2423 }
2424
2425 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2426                                     struct kvm_mmu_page *sp,
2427                                     u64 *start, u64 *end)
2428 {
2429         struct page *pages[PTE_PREFETCH_NUM];
2430         unsigned access = sp->role.access;
2431         int i, ret;
2432         gfn_t gfn;
2433
2434         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2435         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2436                 return -1;
2437
2438         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2439         if (ret <= 0)
2440                 return -1;
2441
2442         for (i = 0; i < ret; i++, gfn++, start++)
2443                 mmu_set_spte(vcpu, start, ACC_ALL,
2444                              access, 0, 0, NULL,
2445                              sp->role.level, gfn,
2446                              page_to_pfn(pages[i]), true, true);
2447
2448         return 0;
2449 }
2450
2451 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2452                                   struct kvm_mmu_page *sp, u64 *sptep)
2453 {
2454         u64 *spte, *start = NULL;
2455         int i;
2456
2457         WARN_ON(!sp->role.direct);
2458
2459         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2460         spte = sp->spt + i;
2461
2462         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2463                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2464                         if (!start)
2465                                 continue;
2466                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2467                                 break;
2468                         start = NULL;
2469                 } else if (!start)
2470                         start = spte;
2471         }
2472 }
2473
2474 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2475 {
2476         struct kvm_mmu_page *sp;
2477
2478         /*
2479          * Since it's no accessed bit on EPT, it's no way to
2480          * distinguish between actually accessed translations
2481          * and prefetched, so disable pte prefetch if EPT is
2482          * enabled.
2483          */
2484         if (!shadow_accessed_mask)
2485                 return;
2486
2487         sp = page_header(__pa(sptep));
2488         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2489                 return;
2490
2491         __direct_pte_prefetch(vcpu, sp, sptep);
2492 }
2493
2494 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2495                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2496                         bool prefault)
2497 {
2498         struct kvm_shadow_walk_iterator iterator;
2499         struct kvm_mmu_page *sp;
2500         int emulate = 0;
2501         gfn_t pseudo_gfn;
2502
2503         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2504                 if (iterator.level == level) {
2505                         unsigned pte_access = ACC_ALL;
2506
2507                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2508                                      0, write, &emulate,
2509                                      level, gfn, pfn, prefault, map_writable);
2510                         direct_pte_prefetch(vcpu, iterator.sptep);
2511                         ++vcpu->stat.pf_fixed;
2512                         break;
2513                 }
2514
2515                 if (!is_shadow_present_pte(*iterator.sptep)) {
2516                         u64 base_addr = iterator.addr;
2517
2518                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2519                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2520                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2521                                               iterator.level - 1,
2522                                               1, ACC_ALL, iterator.sptep);
2523                         if (!sp) {
2524                                 pgprintk("nonpaging_map: ENOMEM\n");
2525                                 kvm_release_pfn_clean(pfn);
2526                                 return -ENOMEM;
2527                         }
2528
2529                         mmu_spte_set(iterator.sptep,
2530                                      __pa(sp->spt)
2531                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2532                                      | shadow_user_mask | shadow_x_mask
2533                                      | shadow_accessed_mask);
2534                 }
2535         }
2536         return emulate;
2537 }
2538
2539 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2540 {
2541         siginfo_t info;
2542
2543         info.si_signo   = SIGBUS;
2544         info.si_errno   = 0;
2545         info.si_code    = BUS_MCEERR_AR;
2546         info.si_addr    = (void __user *)address;
2547         info.si_addr_lsb = PAGE_SHIFT;
2548
2549         send_sig_info(SIGBUS, &info, tsk);
2550 }
2551
2552 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2553 {
2554         kvm_release_pfn_clean(pfn);
2555         if (is_hwpoison_pfn(pfn)) {
2556                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2557                 return 0;
2558         }
2559
2560         return -EFAULT;
2561 }
2562
2563 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2564                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2565 {
2566         pfn_t pfn = *pfnp;
2567         gfn_t gfn = *gfnp;
2568         int level = *levelp;
2569
2570         /*
2571          * Check if it's a transparent hugepage. If this would be an
2572          * hugetlbfs page, level wouldn't be set to
2573          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2574          * here.
2575          */
2576         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2577             level == PT_PAGE_TABLE_LEVEL &&
2578             PageTransCompound(pfn_to_page(pfn)) &&
2579             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2580                 unsigned long mask;
2581                 /*
2582                  * mmu_notifier_retry was successful and we hold the
2583                  * mmu_lock here, so the pmd can't become splitting
2584                  * from under us, and in turn
2585                  * __split_huge_page_refcount() can't run from under
2586                  * us and we can safely transfer the refcount from
2587                  * PG_tail to PG_head as we switch the pfn to tail to
2588                  * head.
2589                  */
2590                 *levelp = level = PT_DIRECTORY_LEVEL;
2591                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2592                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2593                 if (pfn & mask) {
2594                         gfn &= ~mask;
2595                         *gfnp = gfn;
2596                         kvm_release_pfn_clean(pfn);
2597                         pfn &= ~mask;
2598                         kvm_get_pfn(pfn);
2599                         *pfnp = pfn;
2600                 }
2601         }
2602 }
2603
2604 static bool mmu_invalid_pfn(pfn_t pfn)
2605 {
2606         return unlikely(is_invalid_pfn(pfn));
2607 }
2608
2609 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2610                                 pfn_t pfn, unsigned access, int *ret_val)
2611 {
2612         bool ret = true;
2613
2614         /* The pfn is invalid, report the error! */
2615         if (unlikely(is_invalid_pfn(pfn))) {
2616                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2617                 goto exit;
2618         }
2619
2620         if (unlikely(is_noslot_pfn(pfn)))
2621                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2622
2623         ret = false;
2624 exit:
2625         return ret;
2626 }
2627
2628 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2629                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2630
2631 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2632                          bool prefault)
2633 {
2634         int r;
2635         int level;
2636         int force_pt_level;
2637         pfn_t pfn;
2638         unsigned long mmu_seq;
2639         bool map_writable;
2640
2641         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2642         if (likely(!force_pt_level)) {
2643                 level = mapping_level(vcpu, gfn);
2644                 /*
2645                  * This path builds a PAE pagetable - so we can map
2646                  * 2mb pages at maximum. Therefore check if the level
2647                  * is larger than that.
2648                  */
2649                 if (level > PT_DIRECTORY_LEVEL)
2650                         level = PT_DIRECTORY_LEVEL;
2651
2652                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2653         } else
2654                 level = PT_PAGE_TABLE_LEVEL;
2655
2656         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2657         smp_rmb();
2658
2659         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2660                 return 0;
2661
2662         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2663                 return r;
2664
2665         spin_lock(&vcpu->kvm->mmu_lock);
2666         if (mmu_notifier_retry(vcpu, mmu_seq))
2667                 goto out_unlock;
2668         kvm_mmu_free_some_pages(vcpu);
2669         if (likely(!force_pt_level))
2670                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2671         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2672                          prefault);
2673         spin_unlock(&vcpu->kvm->mmu_lock);
2674
2675
2676         return r;
2677
2678 out_unlock:
2679         spin_unlock(&vcpu->kvm->mmu_lock);
2680         kvm_release_pfn_clean(pfn);
2681         return 0;
2682 }
2683
2684
2685 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2686 {
2687         int i;
2688         struct kvm_mmu_page *sp;
2689         LIST_HEAD(invalid_list);
2690
2691         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2692                 return;
2693         spin_lock(&vcpu->kvm->mmu_lock);
2694         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2695             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2696              vcpu->arch.mmu.direct_map)) {
2697                 hpa_t root = vcpu->arch.mmu.root_hpa;
2698
2699                 sp = page_header(root);
2700                 --sp->root_count;
2701                 if (!sp->root_count && sp->role.invalid) {
2702                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2703                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2704                 }
2705                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2706                 spin_unlock(&vcpu->kvm->mmu_lock);
2707                 return;
2708         }
2709         for (i = 0; i < 4; ++i) {
2710                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2711
2712                 if (root) {
2713                         root &= PT64_BASE_ADDR_MASK;
2714                         sp = page_header(root);
2715                         --sp->root_count;
2716                         if (!sp->root_count && sp->role.invalid)
2717                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2718                                                          &invalid_list);
2719                 }
2720                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2721         }
2722         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2723         spin_unlock(&vcpu->kvm->mmu_lock);
2724         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2725 }
2726
2727 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2728 {
2729         int ret = 0;
2730
2731         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2732                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2733                 ret = 1;
2734         }
2735
2736         return ret;
2737 }
2738
2739 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2740 {
2741         struct kvm_mmu_page *sp;
2742         unsigned i;
2743
2744         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2745                 spin_lock(&vcpu->kvm->mmu_lock);
2746                 kvm_mmu_free_some_pages(vcpu);
2747                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2748                                       1, ACC_ALL, NULL);
2749                 ++sp->root_count;
2750                 spin_unlock(&vcpu->kvm->mmu_lock);
2751                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2752         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2753                 for (i = 0; i < 4; ++i) {
2754                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2755
2756                         ASSERT(!VALID_PAGE(root));
2757                         spin_lock(&vcpu->kvm->mmu_lock);
2758                         kvm_mmu_free_some_pages(vcpu);
2759                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2760                                               i << 30,
2761                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2762                                               NULL);
2763                         root = __pa(sp->spt);
2764                         ++sp->root_count;
2765                         spin_unlock(&vcpu->kvm->mmu_lock);
2766                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2767                 }
2768                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2769         } else
2770                 BUG();
2771
2772         return 0;
2773 }
2774
2775 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2776 {
2777         struct kvm_mmu_page *sp;
2778         u64 pdptr, pm_mask;
2779         gfn_t root_gfn;
2780         int i;
2781
2782         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2783
2784         if (mmu_check_root(vcpu, root_gfn))
2785                 return 1;
2786
2787         /*
2788          * Do we shadow a long mode page table? If so we need to
2789          * write-protect the guests page table root.
2790          */
2791         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2792                 hpa_t root = vcpu->arch.mmu.root_hpa;
2793
2794                 ASSERT(!VALID_PAGE(root));
2795
2796                 spin_lock(&vcpu->kvm->mmu_lock);
2797                 kvm_mmu_free_some_pages(vcpu);
2798                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2799                                       0, ACC_ALL, NULL);
2800                 root = __pa(sp->spt);
2801                 ++sp->root_count;
2802                 spin_unlock(&vcpu->kvm->mmu_lock);
2803                 vcpu->arch.mmu.root_hpa = root;
2804                 return 0;
2805         }
2806
2807         /*
2808          * We shadow a 32 bit page table. This may be a legacy 2-level
2809          * or a PAE 3-level page table. In either case we need to be aware that
2810          * the shadow page table may be a PAE or a long mode page table.
2811          */
2812         pm_mask = PT_PRESENT_MASK;
2813         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2814                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2815
2816         for (i = 0; i < 4; ++i) {
2817                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2818
2819                 ASSERT(!VALID_PAGE(root));
2820                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2821                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2822                         if (!is_present_gpte(pdptr)) {
2823                                 vcpu->arch.mmu.pae_root[i] = 0;
2824                                 continue;
2825                         }
2826                         root_gfn = pdptr >> PAGE_SHIFT;
2827                         if (mmu_check_root(vcpu, root_gfn))
2828                                 return 1;
2829                 }
2830                 spin_lock(&vcpu->kvm->mmu_lock);
2831                 kvm_mmu_free_some_pages(vcpu);
2832                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2833                                       PT32_ROOT_LEVEL, 0,
2834                                       ACC_ALL, NULL);
2835                 root = __pa(sp->spt);
2836                 ++sp->root_count;
2837                 spin_unlock(&vcpu->kvm->mmu_lock);
2838
2839                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2840         }
2841         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2842
2843         /*
2844          * If we shadow a 32 bit page table with a long mode page
2845          * table we enter this path.
2846          */
2847         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2848                 if (vcpu->arch.mmu.lm_root == NULL) {
2849                         /*
2850                          * The additional page necessary for this is only
2851                          * allocated on demand.
2852                          */
2853
2854                         u64 *lm_root;
2855
2856                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2857                         if (lm_root == NULL)
2858                                 return 1;
2859
2860                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2861
2862                         vcpu->arch.mmu.lm_root = lm_root;
2863                 }
2864
2865                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2866         }
2867
2868         return 0;
2869 }
2870
2871 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2872 {
2873         if (vcpu->arch.mmu.direct_map)
2874                 return mmu_alloc_direct_roots(vcpu);
2875         else
2876                 return mmu_alloc_shadow_roots(vcpu);
2877 }
2878
2879 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2880 {
2881         int i;
2882         struct kvm_mmu_page *sp;
2883
2884         if (vcpu->arch.mmu.direct_map)
2885                 return;
2886
2887         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888                 return;
2889
2890         vcpu_clear_mmio_info(vcpu, ~0ul);
2891         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2892         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2893                 hpa_t root = vcpu->arch.mmu.root_hpa;
2894                 sp = page_header(root);
2895                 mmu_sync_children(vcpu, sp);
2896                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2897                 return;
2898         }
2899         for (i = 0; i < 4; ++i) {
2900                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2901
2902                 if (root && VALID_PAGE(root)) {
2903                         root &= PT64_BASE_ADDR_MASK;
2904                         sp = page_header(root);
2905                         mmu_sync_children(vcpu, sp);
2906                 }
2907         }
2908         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2909 }
2910
2911 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2912 {
2913         spin_lock(&vcpu->kvm->mmu_lock);
2914         mmu_sync_roots(vcpu);
2915         spin_unlock(&vcpu->kvm->mmu_lock);
2916 }
2917
2918 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2919                                   u32 access, struct x86_exception *exception)
2920 {
2921         if (exception)
2922                 exception->error_code = 0;
2923         return vaddr;
2924 }
2925
2926 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2927                                          u32 access,
2928                                          struct x86_exception *exception)
2929 {
2930         if (exception)
2931                 exception->error_code = 0;
2932         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2933 }
2934
2935 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2936 {
2937         if (direct)
2938                 return vcpu_match_mmio_gpa(vcpu, addr);
2939
2940         return vcpu_match_mmio_gva(vcpu, addr);
2941 }
2942
2943
2944 /*
2945  * On direct hosts, the last spte is only allows two states
2946  * for mmio page fault:
2947  *   - It is the mmio spte
2948  *   - It is zapped or it is being zapped.
2949  *
2950  * This function completely checks the spte when the last spte
2951  * is not the mmio spte.
2952  */
2953 static bool check_direct_spte_mmio_pf(u64 spte)
2954 {
2955         return __check_direct_spte_mmio_pf(spte);
2956 }
2957
2958 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2959 {
2960         struct kvm_shadow_walk_iterator iterator;
2961         u64 spte = 0ull;
2962
2963         walk_shadow_page_lockless_begin(vcpu);
2964         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2965                 if (!is_shadow_present_pte(spte))
2966                         break;
2967         walk_shadow_page_lockless_end(vcpu);
2968
2969         return spte;
2970 }
2971
2972 /*
2973  * If it is a real mmio page fault, return 1 and emulat the instruction
2974  * directly, return 0 to let CPU fault again on the address, -1 is
2975  * returned if bug is detected.
2976  */
2977 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2978 {
2979         u64 spte;
2980
2981         if (quickly_check_mmio_pf(vcpu, addr, direct))
2982                 return 1;
2983
2984         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2985
2986         if (is_mmio_spte(spte)) {
2987                 gfn_t gfn = get_mmio_spte_gfn(spte);
2988                 unsigned access = get_mmio_spte_access(spte);
2989
2990                 if (direct)
2991                         addr = 0;
2992
2993                 trace_handle_mmio_page_fault(addr, gfn, access);
2994                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2995                 return 1;
2996         }
2997
2998         /*
2999          * It's ok if the gva is remapped by other cpus on shadow guest,
3000          * it's a BUG if the gfn is not a mmio page.
3001          */
3002         if (direct && !check_direct_spte_mmio_pf(spte))
3003                 return -1;
3004
3005         /*
3006          * If the page table is zapped by other cpus, let CPU fault again on
3007          * the address.
3008          */
3009         return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3012
3013 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3014                                   u32 error_code, bool direct)
3015 {
3016         int ret;
3017
3018         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3019         WARN_ON(ret < 0);
3020         return ret;
3021 }
3022
3023 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3024                                 u32 error_code, bool prefault)
3025 {
3026         gfn_t gfn;
3027         int r;
3028
3029         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3030
3031         if (unlikely(error_code & PFERR_RSVD_MASK))
3032                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3033
3034         r = mmu_topup_memory_caches(vcpu);
3035         if (r)
3036                 return r;
3037
3038         ASSERT(vcpu);
3039         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3040
3041         gfn = gva >> PAGE_SHIFT;
3042
3043         return nonpaging_map(vcpu, gva & PAGE_MASK,
3044                              error_code & PFERR_WRITE_MASK, gfn, prefault);
3045 }
3046
3047 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3048 {
3049         struct kvm_arch_async_pf arch;
3050
3051         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3052         arch.gfn = gfn;
3053         arch.direct_map = vcpu->arch.mmu.direct_map;
3054         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3055
3056         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3057 }
3058
3059 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3060 {
3061         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3062                      kvm_event_needs_reinjection(vcpu)))
3063                 return false;
3064
3065         return kvm_x86_ops->interrupt_allowed(vcpu);
3066 }
3067
3068 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3069                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3070 {
3071         bool async;
3072
3073         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3074
3075         if (!async)
3076                 return false; /* *pfn has correct page already */
3077
3078         put_page(pfn_to_page(*pfn));
3079
3080         if (!prefault && can_do_async_pf(vcpu)) {
3081                 trace_kvm_try_async_get_page(gva, gfn);
3082                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3083                         trace_kvm_async_pf_doublefault(gva, gfn);
3084                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3085                         return true;
3086                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3087                         return true;
3088         }
3089
3090         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3091
3092         return false;
3093 }
3094
3095 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3096                           bool prefault)
3097 {
3098         pfn_t pfn;
3099         int r;
3100         int level;
3101         int force_pt_level;
3102         gfn_t gfn = gpa >> PAGE_SHIFT;
3103         unsigned long mmu_seq;
3104         int write = error_code & PFERR_WRITE_MASK;
3105         bool map_writable;
3106
3107         ASSERT(vcpu);
3108         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3109
3110         if (unlikely(error_code & PFERR_RSVD_MASK))
3111                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3112
3113         r = mmu_topup_memory_caches(vcpu);
3114         if (r)
3115                 return r;
3116
3117         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3118         if (likely(!force_pt_level)) {
3119                 level = mapping_level(vcpu, gfn);
3120                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3121         } else
3122                 level = PT_PAGE_TABLE_LEVEL;
3123
3124         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3125         smp_rmb();
3126
3127         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3128                 return 0;
3129
3130         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3131                 return r;
3132
3133         spin_lock(&vcpu->kvm->mmu_lock);
3134         if (mmu_notifier_retry(vcpu, mmu_seq))
3135                 goto out_unlock;
3136         kvm_mmu_free_some_pages(vcpu);
3137         if (likely(!force_pt_level))
3138                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3139         r = __direct_map(vcpu, gpa, write, map_writable,
3140                          level, gfn, pfn, prefault);
3141         spin_unlock(&vcpu->kvm->mmu_lock);
3142
3143         return r;
3144
3145 out_unlock:
3146         spin_unlock(&vcpu->kvm->mmu_lock);
3147         kvm_release_pfn_clean(pfn);
3148         return 0;
3149 }
3150
3151 static void nonpaging_free(struct kvm_vcpu *vcpu)
3152 {
3153         mmu_free_roots(vcpu);
3154 }
3155
3156 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3157                                   struct kvm_mmu *context)
3158 {
3159         context->new_cr3 = nonpaging_new_cr3;
3160         context->page_fault = nonpaging_page_fault;
3161         context->gva_to_gpa = nonpaging_gva_to_gpa;
3162         context->free = nonpaging_free;
3163         context->sync_page = nonpaging_sync_page;
3164         context->invlpg = nonpaging_invlpg;
3165         context->update_pte = nonpaging_update_pte;
3166         context->root_level = 0;
3167         context->shadow_root_level = PT32E_ROOT_LEVEL;
3168         context->root_hpa = INVALID_PAGE;
3169         context->direct_map = true;
3170         context->nx = false;
3171         return 0;
3172 }
3173
3174 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3175 {
3176         ++vcpu->stat.tlb_flush;
3177         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3178 }
3179
3180 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3181 {
3182         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3183         mmu_free_roots(vcpu);
3184 }
3185
3186 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3187 {
3188         return kvm_read_cr3(vcpu);
3189 }
3190
3191 static void inject_page_fault(struct kvm_vcpu *vcpu,
3192                               struct x86_exception *fault)
3193 {
3194         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3195 }
3196
3197 static void paging_free(struct kvm_vcpu *vcpu)
3198 {
3199         nonpaging_free(vcpu);
3200 }
3201
3202 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3203 {
3204         int bit7;
3205
3206         bit7 = (gpte >> 7) & 1;
3207         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3208 }
3209
3210 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3211                            int *nr_present)
3212 {
3213         if (unlikely(is_mmio_spte(*sptep))) {
3214                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3215                         mmu_spte_clear_no_track(sptep);
3216                         return true;
3217                 }
3218
3219                 (*nr_present)++;
3220                 mark_mmio_spte(sptep, gfn, access);
3221                 return true;
3222         }
3223
3224         return false;
3225 }
3226
3227 #define PTTYPE 64
3228 #include "paging_tmpl.h"
3229 #undef PTTYPE
3230
3231 #define PTTYPE 32
3232 #include "paging_tmpl.h"
3233 #undef PTTYPE
3234
3235 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3236                                   struct kvm_mmu *context)
3237 {
3238         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3239         u64 exb_bit_rsvd = 0;
3240
3241         if (!context->nx)
3242                 exb_bit_rsvd = rsvd_bits(63, 63);
3243         switch (context->root_level) {
3244         case PT32_ROOT_LEVEL:
3245                 /* no rsvd bits for 2 level 4K page table entries */
3246                 context->rsvd_bits_mask[0][1] = 0;
3247                 context->rsvd_bits_mask[0][0] = 0;
3248                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3249
3250                 if (!is_pse(vcpu)) {
3251                         context->rsvd_bits_mask[1][1] = 0;
3252                         break;
3253                 }
3254
3255                 if (is_cpuid_PSE36())
3256                         /* 36bits PSE 4MB page */
3257                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3258                 else
3259                         /* 32 bits PSE 4MB page */
3260                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3261                 break;
3262         case PT32E_ROOT_LEVEL:
3263                 context->rsvd_bits_mask[0][2] =
3264                         rsvd_bits(maxphyaddr, 63) |
3265                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3266                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3267                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3268                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3269                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3270                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3271                         rsvd_bits(maxphyaddr, 62) |
3272                         rsvd_bits(13, 20);              /* large page */
3273                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3274                 break;
3275         case PT64_ROOT_LEVEL:
3276                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3277                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3278                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3279                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3280                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3281                         rsvd_bits(maxphyaddr, 51);
3282                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3283                         rsvd_bits(maxphyaddr, 51);
3284                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3285                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3286                         rsvd_bits(maxphyaddr, 51) |
3287                         rsvd_bits(13, 29);
3288                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3289                         rsvd_bits(maxphyaddr, 51) |
3290                         rsvd_bits(13, 20);              /* large page */
3291                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3292                 break;
3293         }
3294 }
3295
3296 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3297                                         struct kvm_mmu *context,
3298                                         int level)
3299 {
3300         context->nx = is_nx(vcpu);
3301         context->root_level = level;
3302
3303         reset_rsvds_bits_mask(vcpu, context);
3304
3305         ASSERT(is_pae(vcpu));
3306         context->new_cr3 = paging_new_cr3;
3307         context->page_fault = paging64_page_fault;
3308         context->gva_to_gpa = paging64_gva_to_gpa;
3309         context->sync_page = paging64_sync_page;
3310         context->invlpg = paging64_invlpg;
3311         context->update_pte = paging64_update_pte;
3312         context->free = paging_free;
3313         context->shadow_root_level = level;
3314         context->root_hpa = INVALID_PAGE;
3315         context->direct_map = false;
3316         return 0;
3317 }
3318
3319 static int paging64_init_context(struct kvm_vcpu *vcpu,
3320                                  struct kvm_mmu *context)
3321 {
3322         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3323 }
3324
3325 static int paging32_init_context(struct kvm_vcpu *vcpu,
3326                                  struct kvm_mmu *context)
3327 {
3328         context->nx = false;
3329         context->root_level = PT32_ROOT_LEVEL;
3330
3331         reset_rsvds_bits_mask(vcpu, context);
3332
3333         context->new_cr3 = paging_new_cr3;
3334         context->page_fault = paging32_page_fault;
3335         context->gva_to_gpa = paging32_gva_to_gpa;
3336         context->free = paging_free;
3337         context->sync_page = paging32_sync_page;
3338         context->invlpg = paging32_invlpg;
3339         context->update_pte = paging32_update_pte;
3340         context->shadow_root_level = PT32E_ROOT_LEVEL;
3341         context->root_hpa = INVALID_PAGE;
3342         context->direct_map = false;
3343         return 0;
3344 }
3345
3346 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3347                                   struct kvm_mmu *context)
3348 {
3349         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3350 }
3351
3352 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3353 {
3354         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3355
3356         context->base_role.word = 0;
3357         context->new_cr3 = nonpaging_new_cr3;
3358         context->page_fault = tdp_page_fault;
3359         context->free = nonpaging_free;
3360         context->sync_page = nonpaging_sync_page;
3361         context->invlpg = nonpaging_invlpg;
3362         context->update_pte = nonpaging_update_pte;
3363         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3364         context->root_hpa = INVALID_PAGE;
3365         context->direct_map = true;
3366         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3367         context->get_cr3 = get_cr3;
3368         context->get_pdptr = kvm_pdptr_read;
3369         context->inject_page_fault = kvm_inject_page_fault;
3370
3371         if (!is_paging(vcpu)) {
3372                 context->nx = false;
3373                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3374                 context->root_level = 0;
3375         } else if (is_long_mode(vcpu)) {
3376                 context->nx = is_nx(vcpu);
3377                 context->root_level = PT64_ROOT_LEVEL;
3378                 reset_rsvds_bits_mask(vcpu, context);
3379                 context->gva_to_gpa = paging64_gva_to_gpa;
3380         } else if (is_pae(vcpu)) {
3381                 context->nx = is_nx(vcpu);
3382                 context->root_level = PT32E_ROOT_LEVEL;
3383                 reset_rsvds_bits_mask(vcpu, context);
3384                 context->gva_to_gpa = paging64_gva_to_gpa;
3385         } else {
3386                 context->nx = false;
3387                 context->root_level = PT32_ROOT_LEVEL;
3388                 reset_rsvds_bits_mask(vcpu, context);
3389                 context->gva_to_gpa = paging32_gva_to_gpa;
3390         }
3391
3392         return 0;
3393 }
3394
3395 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3396 {
3397         int r;
3398         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3399         ASSERT(vcpu);
3400         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3401
3402         if (!is_paging(vcpu))
3403                 r = nonpaging_init_context(vcpu, context);
3404         else if (is_long_mode(vcpu))
3405                 r = paging64_init_context(vcpu, context);
3406         else if (is_pae(vcpu))
3407                 r = paging32E_init_context(vcpu, context);
3408         else
3409                 r = paging32_init_context(vcpu, context);
3410
3411         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3412         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3413         vcpu->arch.mmu.base_role.smep_andnot_wp
3414                 = smep && !is_write_protection(vcpu);
3415
3416         return r;
3417 }
3418 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3419
3420 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3421 {
3422         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3423
3424         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3425         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3426         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3427         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3428
3429         return r;
3430 }
3431
3432 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3433 {
3434         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3435
3436         g_context->get_cr3           = get_cr3;
3437         g_context->get_pdptr         = kvm_pdptr_read;
3438         g_context->inject_page_fault = kvm_inject_page_fault;
3439
3440         /*
3441          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3442          * translation of l2_gpa to l1_gpa addresses is done using the
3443          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3444          * functions between mmu and nested_mmu are swapped.
3445          */
3446         if (!is_paging(vcpu)) {
3447                 g_context->nx = false;
3448                 g_context->root_level = 0;
3449                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3450         } else if (is_long_mode(vcpu)) {
3451                 g_context->nx = is_nx(vcpu);
3452                 g_context->root_level = PT64_ROOT_LEVEL;
3453                 reset_rsvds_bits_mask(vcpu, g_context);
3454                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3455         } else if (is_pae(vcpu)) {
3456                 g_context->nx = is_nx(vcpu);
3457                 g_context->root_level = PT32E_ROOT_LEVEL;
3458                 reset_rsvds_bits_mask(vcpu, g_context);
3459                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3460         } else {
3461                 g_context->nx = false;
3462                 g_context->root_level = PT32_ROOT_LEVEL;
3463                 reset_rsvds_bits_mask(vcpu, g_context);
3464                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3465         }
3466
3467         return 0;
3468 }
3469
3470 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3471 {
3472         if (mmu_is_nested(vcpu))
3473                 return init_kvm_nested_mmu(vcpu);
3474         else if (tdp_enabled)
3475                 return init_kvm_tdp_mmu(vcpu);
3476         else
3477                 return init_kvm_softmmu(vcpu);
3478 }
3479
3480 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3481 {
3482         ASSERT(vcpu);
3483         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3484                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3485                 vcpu->arch.mmu.free(vcpu);
3486 }
3487
3488 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3489 {
3490         destroy_kvm_mmu(vcpu);
3491         return init_kvm_mmu(vcpu);
3492 }
3493 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3494
3495 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3496 {
3497         int r;
3498
3499         r = mmu_topup_memory_caches(vcpu);
3500         if (r)
3501                 goto out;
3502         r = mmu_alloc_roots(vcpu);
3503         spin_lock(&vcpu->kvm->mmu_lock);
3504         mmu_sync_roots(vcpu);
3505         spin_unlock(&vcpu->kvm->mmu_lock);
3506         if (r)
3507                 goto out;
3508         /* set_cr3() should ensure TLB has been flushed */
3509         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3510 out:
3511         return r;
3512 }
3513 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3514
3515 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3516 {
3517         mmu_free_roots(vcpu);
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3520
3521 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3522                                   struct kvm_mmu_page *sp, u64 *spte,
3523                                   const void *new)
3524 {
3525         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3526                 ++vcpu->kvm->stat.mmu_pde_zapped;
3527                 return;
3528         }
3529
3530         ++vcpu->kvm->stat.mmu_pte_updated;
3531         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3532 }
3533
3534 static bool need_remote_flush(u64 old, u64 new)
3535 {
3536         if (!is_shadow_present_pte(old))
3537                 return false;
3538         if (!is_shadow_present_pte(new))
3539                 return true;
3540         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3541                 return true;
3542         old ^= PT64_NX_MASK;
3543         new ^= PT64_NX_MASK;
3544         return (old & ~new & PT64_PERM_MASK) != 0;
3545 }
3546
3547 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3548                                     bool remote_flush, bool local_flush)
3549 {
3550         if (zap_page)
3551                 return;
3552
3553         if (remote_flush)
3554                 kvm_flush_remote_tlbs(vcpu->kvm);
3555         else if (local_flush)
3556                 kvm_mmu_flush_tlb(vcpu);
3557 }
3558
3559 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3560                                     const u8 *new, int *bytes)
3561 {
3562         u64 gentry;
3563         int r;
3564
3565         /*
3566          * Assume that the pte write on a page table of the same type
3567          * as the current vcpu paging mode since we update the sptes only
3568          * when they have the same mode.
3569          */
3570         if (is_pae(vcpu) && *bytes == 4) {
3571                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3572                 *gpa &= ~(gpa_t)7;
3573                 *bytes = 8;
3574                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3575                 if (r)
3576                         gentry = 0;
3577                 new = (const u8 *)&gentry;
3578         }
3579
3580         switch (*bytes) {
3581         case 4:
3582                 gentry = *(const u32 *)new;
3583                 break;
3584         case 8:
3585                 gentry = *(const u64 *)new;
3586                 break;
3587         default:
3588                 gentry = 0;
3589                 break;
3590         }
3591
3592         return gentry;
3593 }
3594
3595 /*
3596  * If we're seeing too many writes to a page, it may no longer be a page table,
3597  * or we may be forking, in which case it is better to unmap the page.
3598  */
3599 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3600 {
3601         /*
3602          * Skip write-flooding detected for the sp whose level is 1, because
3603          * it can become unsync, then the guest page is not write-protected.
3604          */
3605         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3606                 return false;
3607
3608         return ++sp->write_flooding_count >= 3;
3609 }
3610
3611 /*
3612  * Misaligned accesses are too much trouble to fix up; also, they usually
3613  * indicate a page is not used as a page table.
3614  */
3615 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3616                                     int bytes)
3617 {
3618         unsigned offset, pte_size, misaligned;
3619
3620         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3621                  gpa, bytes, sp->role.word);
3622
3623         offset = offset_in_page(gpa);
3624         pte_size = sp->role.cr4_pae ? 8 : 4;
3625
3626         /*
3627          * Sometimes, the OS only writes the last one bytes to update status
3628          * bits, for example, in linux, andb instruction is used in clear_bit().
3629          */
3630         if (!(offset & (pte_size - 1)) && bytes == 1)
3631                 return false;
3632
3633         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3634         misaligned |= bytes < 4;
3635
3636         return misaligned;
3637 }
3638
3639 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3640 {
3641         unsigned page_offset, quadrant;
3642         u64 *spte;
3643         int level;
3644
3645         page_offset = offset_in_page(gpa);
3646         level = sp->role.level;
3647         *nspte = 1;
3648         if (!sp->role.cr4_pae) {
3649                 page_offset <<= 1;      /* 32->64 */
3650                 /*
3651                  * A 32-bit pde maps 4MB while the shadow pdes map
3652                  * only 2MB.  So we need to double the offset again
3653                  * and zap two pdes instead of one.
3654                  */
3655                 if (level == PT32_ROOT_LEVEL) {
3656                         page_offset &= ~7; /* kill rounding error */
3657                         page_offset <<= 1;
3658                         *nspte = 2;
3659                 }
3660                 quadrant = page_offset >> PAGE_SHIFT;
3661                 page_offset &= ~PAGE_MASK;
3662                 if (quadrant != sp->role.quadrant)
3663                         return NULL;
3664         }
3665
3666         spte = &sp->spt[page_offset / sizeof(*spte)];
3667         return spte;
3668 }
3669
3670 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3671                        const u8 *new, int bytes)
3672 {
3673         gfn_t gfn = gpa >> PAGE_SHIFT;
3674         union kvm_mmu_page_role mask = { .word = 0 };
3675         struct kvm_mmu_page *sp;
3676         struct hlist_node *node;
3677         LIST_HEAD(invalid_list);
3678         u64 entry, gentry, *spte;
3679         int npte;
3680         bool remote_flush, local_flush, zap_page;
3681
3682         /*
3683          * If we don't have indirect shadow pages, it means no page is
3684          * write-protected, so we can exit simply.
3685          */
3686         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3687                 return;
3688
3689         zap_page = remote_flush = local_flush = false;
3690
3691         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3692
3693         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3694
3695         /*
3696          * No need to care whether allocation memory is successful
3697          * or not since pte prefetch is skiped if it does not have
3698          * enough objects in the cache.
3699          */
3700         mmu_topup_memory_caches(vcpu);
3701
3702         spin_lock(&vcpu->kvm->mmu_lock);
3703         ++vcpu->kvm->stat.mmu_pte_write;
3704         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3705
3706         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3707         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3708                 if (detect_write_misaligned(sp, gpa, bytes) ||
3709                       detect_write_flooding(sp)) {
3710                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3711                                                      &invalid_list);
3712                         ++vcpu->kvm->stat.mmu_flooded;
3713                         continue;
3714                 }
3715
3716                 spte = get_written_sptes(sp, gpa, &npte);
3717                 if (!spte)
3718                         continue;
3719
3720                 local_flush = true;
3721                 while (npte--) {
3722                         entry = *spte;
3723                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3724                         if (gentry &&
3725                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3726                               & mask.word) && rmap_can_add(vcpu))
3727                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3728                         if (!remote_flush && need_remote_flush(entry, *spte))
3729                                 remote_flush = true;
3730                         ++spte;
3731                 }
3732         }
3733         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3734         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3735         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3736         spin_unlock(&vcpu->kvm->mmu_lock);
3737 }
3738
3739 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3740 {
3741         gpa_t gpa;
3742         int r;
3743
3744         if (vcpu->arch.mmu.direct_map)
3745                 return 0;
3746
3747         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3748
3749         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3750
3751         return r;
3752 }
3753 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3754
3755 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3756 {
3757         LIST_HEAD(invalid_list);
3758
3759         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3760                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3761                 struct kvm_mmu_page *sp;
3762
3763                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3764                                   struct kvm_mmu_page, link);
3765                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3766                 ++vcpu->kvm->stat.mmu_recycled;
3767         }
3768         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3769 }
3770
3771 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3772 {
3773         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3774                 return vcpu_match_mmio_gpa(vcpu, addr);
3775
3776         return vcpu_match_mmio_gva(vcpu, addr);
3777 }
3778
3779 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3780                        void *insn, int insn_len)
3781 {
3782         int r, emulation_type = EMULTYPE_RETRY;
3783         enum emulation_result er;
3784
3785         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3786         if (r < 0)
3787                 goto out;
3788
3789         if (!r) {
3790                 r = 1;
3791                 goto out;
3792         }
3793
3794         if (is_mmio_page_fault(vcpu, cr2))
3795                 emulation_type = 0;
3796
3797         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3798
3799         switch (er) {
3800         case EMULATE_DONE:
3801                 return 1;
3802         case EMULATE_DO_MMIO:
3803                 ++vcpu->stat.mmio_exits;
3804                 /* fall through */
3805         case EMULATE_FAIL:
3806                 return 0;
3807         default:
3808                 BUG();
3809         }
3810 out:
3811         return r;
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3814
3815 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3816 {
3817         vcpu->arch.mmu.invlpg(vcpu, gva);
3818         kvm_mmu_flush_tlb(vcpu);
3819         ++vcpu->stat.invlpg;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3822
3823 void kvm_enable_tdp(void)
3824 {
3825         tdp_enabled = true;
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3828
3829 void kvm_disable_tdp(void)
3830 {
3831         tdp_enabled = false;
3832 }
3833 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3834
3835 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3836 {
3837         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3838         if (vcpu->arch.mmu.lm_root != NULL)
3839                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3840 }
3841
3842 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3843 {
3844         struct page *page;
3845         int i;
3846
3847         ASSERT(vcpu);
3848
3849         /*
3850          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3851          * Therefore we need to allocate shadow page tables in the first
3852          * 4GB of memory, which happens to fit the DMA32 zone.
3853          */
3854         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3855         if (!page)
3856                 return -ENOMEM;
3857
3858         vcpu->arch.mmu.pae_root = page_address(page);
3859         for (i = 0; i < 4; ++i)
3860                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3861
3862         return 0;
3863 }
3864
3865 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3866 {
3867         ASSERT(vcpu);
3868
3869         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3870         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3871         vcpu->arch.mmu.translate_gpa = translate_gpa;
3872         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3873
3874         return alloc_mmu_pages(vcpu);
3875 }
3876
3877 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3878 {
3879         ASSERT(vcpu);
3880         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3881
3882         return init_kvm_mmu(vcpu);
3883 }
3884
3885 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3886 {
3887         struct kvm_mmu_page *sp;
3888
3889         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3890                 int i;
3891                 u64 *pt;
3892
3893                 if (!test_bit(slot, sp->slot_bitmap))
3894                         continue;
3895
3896                 pt = sp->spt;
3897                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3898                         if (!is_shadow_present_pte(pt[i]) ||
3899                               !is_last_spte(pt[i], sp->role.level))
3900                                 continue;
3901
3902                         if (is_large_pte(pt[i])) {
3903                                 drop_spte(kvm, &pt[i]);
3904                                 --kvm->stat.lpages;
3905                                 continue;
3906                         }
3907
3908                         /* avoid RMW */
3909                         if (is_writable_pte(pt[i]))
3910                                 mmu_spte_update(&pt[i],
3911                                                 pt[i] & ~PT_WRITABLE_MASK);
3912                 }
3913         }
3914         kvm_flush_remote_tlbs(kvm);
3915 }
3916
3917 void kvm_mmu_zap_all(struct kvm *kvm)
3918 {
3919         struct kvm_mmu_page *sp, *node;
3920         LIST_HEAD(invalid_list);
3921
3922         spin_lock(&kvm->mmu_lock);
3923 restart:
3924         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3925                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3926                         goto restart;
3927
3928         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3929         spin_unlock(&kvm->mmu_lock);
3930 }
3931
3932 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3933                                                 struct list_head *invalid_list)
3934 {
3935         struct kvm_mmu_page *page;
3936
3937         if (list_empty(&kvm->arch.active_mmu_pages))
3938                 return;
3939
3940         page = container_of(kvm->arch.active_mmu_pages.prev,
3941                             struct kvm_mmu_page, link);
3942         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3943 }
3944
3945 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3946 {
3947         struct kvm *kvm;
3948         struct kvm *kvm_freed = NULL;
3949         int nr_to_scan = sc->nr_to_scan;
3950
3951         if (nr_to_scan == 0)
3952                 goto out;
3953
3954         raw_spin_lock(&kvm_lock);
3955
3956         list_for_each_entry(kvm, &vm_list, vm_list) {
3957                 int idx;
3958                 LIST_HEAD(invalid_list);
3959
3960                 idx = srcu_read_lock(&kvm->srcu);
3961                 spin_lock(&kvm->mmu_lock);
3962                 if (!kvm_freed && nr_to_scan > 0 &&
3963                     kvm->arch.n_used_mmu_pages > 0) {
3964                         kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3965                                                             &invalid_list);
3966                         kvm_freed = kvm;
3967                 }
3968                 nr_to_scan--;
3969
3970                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3971                 spin_unlock(&kvm->mmu_lock);
3972                 srcu_read_unlock(&kvm->srcu, idx);
3973         }
3974         if (kvm_freed)
3975                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3976
3977         raw_spin_unlock(&kvm_lock);
3978
3979 out:
3980         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3981 }
3982
3983 static struct shrinker mmu_shrinker = {
3984         .shrink = mmu_shrink,
3985         .seeks = DEFAULT_SEEKS * 10,
3986 };
3987
3988 static void mmu_destroy_caches(void)
3989 {
3990         if (pte_list_desc_cache)
3991                 kmem_cache_destroy(pte_list_desc_cache);
3992         if (mmu_page_header_cache)
3993                 kmem_cache_destroy(mmu_page_header_cache);
3994 }
3995
3996 int kvm_mmu_module_init(void)
3997 {
3998         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3999                                             sizeof(struct pte_list_desc),
4000                                             0, 0, NULL);
4001         if (!pte_list_desc_cache)
4002                 goto nomem;
4003
4004         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4005                                                   sizeof(struct kvm_mmu_page),
4006                                                   0, 0, NULL);
4007         if (!mmu_page_header_cache)
4008                 goto nomem;
4009
4010         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4011                 goto nomem;
4012
4013         register_shrinker(&mmu_shrinker);
4014
4015         return 0;
4016
4017 nomem:
4018         mmu_destroy_caches();
4019         return -ENOMEM;
4020 }
4021
4022 /*
4023  * Caculate mmu pages needed for kvm.
4024  */
4025 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4026 {
4027         unsigned int nr_mmu_pages;
4028         unsigned int  nr_pages = 0;
4029         struct kvm_memslots *slots;
4030         struct kvm_memory_slot *memslot;
4031
4032         slots = kvm_memslots(kvm);
4033
4034         kvm_for_each_memslot(memslot, slots)
4035                 nr_pages += memslot->npages;
4036
4037         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4038         nr_mmu_pages = max(nr_mmu_pages,
4039                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4040
4041         return nr_mmu_pages;
4042 }
4043
4044 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4045 {
4046         struct kvm_shadow_walk_iterator iterator;
4047         u64 spte;
4048         int nr_sptes = 0;
4049
4050         walk_shadow_page_lockless_begin(vcpu);
4051         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4052                 sptes[iterator.level-1] = spte;
4053                 nr_sptes++;
4054                 if (!is_shadow_present_pte(spte))
4055                         break;
4056         }
4057         walk_shadow_page_lockless_end(vcpu);
4058
4059         return nr_sptes;
4060 }
4061 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4062
4063 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4064 {
4065         ASSERT(vcpu);
4066
4067         destroy_kvm_mmu(vcpu);
4068         free_mmu_pages(vcpu);
4069         mmu_free_memory_caches(vcpu);
4070 }
4071
4072 void kvm_mmu_module_exit(void)
4073 {
4074         mmu_destroy_caches();
4075         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4076         unregister_shrinker(&mmu_shrinker);
4077         mmu_audit_disable();
4078 }