Merge tag 'trace-seq-buf-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[cascardo/linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56
57 #include "mm_internal.h"
58
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60                            unsigned long addr, unsigned long end)
61 {
62         addr &= PMD_MASK;
63         for (; addr < end; addr += PMD_SIZE) {
64                 pmd_t *pmd = pmd_page + pmd_index(addr);
65
66                 if (!pmd_present(*pmd))
67                         set_pmd(pmd, __pmd(addr | pmd_flag));
68         }
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71                           unsigned long addr, unsigned long end)
72 {
73         unsigned long next;
74
75         for (; addr < end; addr = next) {
76                 pud_t *pud = pud_page + pud_index(addr);
77                 pmd_t *pmd;
78
79                 next = (addr & PUD_MASK) + PUD_SIZE;
80                 if (next > end)
81                         next = end;
82
83                 if (pud_present(*pud)) {
84                         pmd = pmd_offset(pud, 0);
85                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
86                         continue;
87                 }
88                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89                 if (!pmd)
90                         return -ENOMEM;
91                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
92                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93         }
94
95         return 0;
96 }
97
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99                               unsigned long addr, unsigned long end)
100 {
101         unsigned long next;
102         int result;
103         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104
105         for (; addr < end; addr = next) {
106                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107                 pud_t *pud;
108
109                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110                 if (next > end)
111                         next = end;
112
113                 if (pgd_present(*pgd)) {
114                         pud = pud_offset(pgd, 0);
115                         result = ident_pud_init(info, pud, addr, next);
116                         if (result)
117                                 return result;
118                         continue;
119                 }
120
121                 pud = (pud_t *)info->alloc_pgt_page(info->context);
122                 if (!pud)
123                         return -ENOMEM;
124                 result = ident_pud_init(info, pud, addr, next);
125                 if (result)
126                         return result;
127                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128         }
129
130         return 0;
131 }
132
133 static int __init parse_direct_gbpages_off(char *arg)
134 {
135         direct_gbpages = 0;
136         return 0;
137 }
138 early_param("nogbpages", parse_direct_gbpages_off);
139
140 static int __init parse_direct_gbpages_on(char *arg)
141 {
142         direct_gbpages = 1;
143         return 0;
144 }
145 early_param("gbpages", parse_direct_gbpages_on);
146
147 /*
148  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
149  * physical space so we can cache the place of the first one and move
150  * around without checking the pgd every time.
151  */
152
153 pteval_t __supported_pte_mask __read_mostly = ~0;
154 EXPORT_SYMBOL_GPL(__supported_pte_mask);
155
156 int force_personality32;
157
158 /*
159  * noexec32=on|off
160  * Control non executable heap for 32bit processes.
161  * To control the stack too use noexec=off
162  *
163  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
164  * off  PROT_READ implies PROT_EXEC
165  */
166 static int __init nonx32_setup(char *str)
167 {
168         if (!strcmp(str, "on"))
169                 force_personality32 &= ~READ_IMPLIES_EXEC;
170         else if (!strcmp(str, "off"))
171                 force_personality32 |= READ_IMPLIES_EXEC;
172         return 1;
173 }
174 __setup("noexec32=", nonx32_setup);
175
176 /*
177  * When memory was added/removed make sure all the processes MM have
178  * suitable PGD entries in the local PGD level page.
179  */
180 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
181 {
182         unsigned long address;
183
184         for (address = start; address <= end; address += PGDIR_SIZE) {
185                 const pgd_t *pgd_ref = pgd_offset_k(address);
186                 struct page *page;
187
188                 /*
189                  * When it is called after memory hot remove, pgd_none()
190                  * returns true. In this case (removed == 1), we must clear
191                  * the PGD entries in the local PGD level page.
192                  */
193                 if (pgd_none(*pgd_ref) && !removed)
194                         continue;
195
196                 spin_lock(&pgd_lock);
197                 list_for_each_entry(page, &pgd_list, lru) {
198                         pgd_t *pgd;
199                         spinlock_t *pgt_lock;
200
201                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
202                         /* the pgt_lock only for Xen */
203                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
204                         spin_lock(pgt_lock);
205
206                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
207                                 BUG_ON(pgd_page_vaddr(*pgd)
208                                        != pgd_page_vaddr(*pgd_ref));
209
210                         if (removed) {
211                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
212                                         pgd_clear(pgd);
213                         } else {
214                                 if (pgd_none(*pgd))
215                                         set_pgd(pgd, *pgd_ref);
216                         }
217
218                         spin_unlock(pgt_lock);
219                 }
220                 spin_unlock(&pgd_lock);
221         }
222 }
223
224 /*
225  * NOTE: This function is marked __ref because it calls __init function
226  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
227  */
228 static __ref void *spp_getpage(void)
229 {
230         void *ptr;
231
232         if (after_bootmem)
233                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
234         else
235                 ptr = alloc_bootmem_pages(PAGE_SIZE);
236
237         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
238                 panic("set_pte_phys: cannot allocate page data %s\n",
239                         after_bootmem ? "after bootmem" : "");
240         }
241
242         pr_debug("spp_getpage %p\n", ptr);
243
244         return ptr;
245 }
246
247 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
248 {
249         if (pgd_none(*pgd)) {
250                 pud_t *pud = (pud_t *)spp_getpage();
251                 pgd_populate(&init_mm, pgd, pud);
252                 if (pud != pud_offset(pgd, 0))
253                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
254                                pud, pud_offset(pgd, 0));
255         }
256         return pud_offset(pgd, vaddr);
257 }
258
259 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
260 {
261         if (pud_none(*pud)) {
262                 pmd_t *pmd = (pmd_t *) spp_getpage();
263                 pud_populate(&init_mm, pud, pmd);
264                 if (pmd != pmd_offset(pud, 0))
265                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
266                                pmd, pmd_offset(pud, 0));
267         }
268         return pmd_offset(pud, vaddr);
269 }
270
271 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
272 {
273         if (pmd_none(*pmd)) {
274                 pte_t *pte = (pte_t *) spp_getpage();
275                 pmd_populate_kernel(&init_mm, pmd, pte);
276                 if (pte != pte_offset_kernel(pmd, 0))
277                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
278         }
279         return pte_offset_kernel(pmd, vaddr);
280 }
281
282 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
283 {
284         pud_t *pud;
285         pmd_t *pmd;
286         pte_t *pte;
287
288         pud = pud_page + pud_index(vaddr);
289         pmd = fill_pmd(pud, vaddr);
290         pte = fill_pte(pmd, vaddr);
291
292         set_pte(pte, new_pte);
293
294         /*
295          * It's enough to flush this one mapping.
296          * (PGE mappings get flushed as well)
297          */
298         __flush_tlb_one(vaddr);
299 }
300
301 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
302 {
303         pgd_t *pgd;
304         pud_t *pud_page;
305
306         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
307
308         pgd = pgd_offset_k(vaddr);
309         if (pgd_none(*pgd)) {
310                 printk(KERN_ERR
311                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
312                 return;
313         }
314         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
315         set_pte_vaddr_pud(pud_page, vaddr, pteval);
316 }
317
318 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
319 {
320         pgd_t *pgd;
321         pud_t *pud;
322
323         pgd = pgd_offset_k(vaddr);
324         pud = fill_pud(pgd, vaddr);
325         return fill_pmd(pud, vaddr);
326 }
327
328 pte_t * __init populate_extra_pte(unsigned long vaddr)
329 {
330         pmd_t *pmd;
331
332         pmd = populate_extra_pmd(vaddr);
333         return fill_pte(pmd, vaddr);
334 }
335
336 /*
337  * Create large page table mappings for a range of physical addresses.
338  */
339 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
340                                         enum page_cache_mode cache)
341 {
342         pgd_t *pgd;
343         pud_t *pud;
344         pmd_t *pmd;
345         pgprot_t prot;
346
347         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
348                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
349         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
350         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
351                 pgd = pgd_offset_k((unsigned long)__va(phys));
352                 if (pgd_none(*pgd)) {
353                         pud = (pud_t *) spp_getpage();
354                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
355                                                 _PAGE_USER));
356                 }
357                 pud = pud_offset(pgd, (unsigned long)__va(phys));
358                 if (pud_none(*pud)) {
359                         pmd = (pmd_t *) spp_getpage();
360                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
361                                                 _PAGE_USER));
362                 }
363                 pmd = pmd_offset(pud, phys);
364                 BUG_ON(!pmd_none(*pmd));
365                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
366         }
367 }
368
369 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
370 {
371         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
372 }
373
374 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
375 {
376         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
377 }
378
379 /*
380  * The head.S code sets up the kernel high mapping:
381  *
382  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
383  *
384  * phys_base holds the negative offset to the kernel, which is added
385  * to the compile time generated pmds. This results in invalid pmds up
386  * to the point where we hit the physaddr 0 mapping.
387  *
388  * We limit the mappings to the region from _text to _brk_end.  _brk_end
389  * is rounded up to the 2MB boundary. This catches the invalid pmds as
390  * well, as they are located before _text:
391  */
392 void __init cleanup_highmap(void)
393 {
394         unsigned long vaddr = __START_KERNEL_map;
395         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
396         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
397         pmd_t *pmd = level2_kernel_pgt;
398
399         /*
400          * Native path, max_pfn_mapped is not set yet.
401          * Xen has valid max_pfn_mapped set in
402          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
403          */
404         if (max_pfn_mapped)
405                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
406
407         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
408                 if (pmd_none(*pmd))
409                         continue;
410                 if (vaddr < (unsigned long) _text || vaddr > end)
411                         set_pmd(pmd, __pmd(0));
412         }
413 }
414
415 static unsigned long __meminit
416 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
417               pgprot_t prot)
418 {
419         unsigned long pages = 0, next;
420         unsigned long last_map_addr = end;
421         int i;
422
423         pte_t *pte = pte_page + pte_index(addr);
424
425         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
426                 next = (addr & PAGE_MASK) + PAGE_SIZE;
427                 if (addr >= end) {
428                         if (!after_bootmem &&
429                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
430                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
431                                 set_pte(pte, __pte(0));
432                         continue;
433                 }
434
435                 /*
436                  * We will re-use the existing mapping.
437                  * Xen for example has some special requirements, like mapping
438                  * pagetable pages as RO. So assume someone who pre-setup
439                  * these mappings are more intelligent.
440                  */
441                 if (pte_val(*pte)) {
442                         if (!after_bootmem)
443                                 pages++;
444                         continue;
445                 }
446
447                 if (0)
448                         printk("   pte=%p addr=%lx pte=%016lx\n",
449                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
450                 pages++;
451                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
452                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
453         }
454
455         update_page_count(PG_LEVEL_4K, pages);
456
457         return last_map_addr;
458 }
459
460 static unsigned long __meminit
461 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
462               unsigned long page_size_mask, pgprot_t prot)
463 {
464         unsigned long pages = 0, next;
465         unsigned long last_map_addr = end;
466
467         int i = pmd_index(address);
468
469         for (; i < PTRS_PER_PMD; i++, address = next) {
470                 pmd_t *pmd = pmd_page + pmd_index(address);
471                 pte_t *pte;
472                 pgprot_t new_prot = prot;
473
474                 next = (address & PMD_MASK) + PMD_SIZE;
475                 if (address >= end) {
476                         if (!after_bootmem &&
477                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
478                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
479                                 set_pmd(pmd, __pmd(0));
480                         continue;
481                 }
482
483                 if (pmd_val(*pmd)) {
484                         if (!pmd_large(*pmd)) {
485                                 spin_lock(&init_mm.page_table_lock);
486                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
487                                 last_map_addr = phys_pte_init(pte, address,
488                                                                 end, prot);
489                                 spin_unlock(&init_mm.page_table_lock);
490                                 continue;
491                         }
492                         /*
493                          * If we are ok with PG_LEVEL_2M mapping, then we will
494                          * use the existing mapping,
495                          *
496                          * Otherwise, we will split the large page mapping but
497                          * use the same existing protection bits except for
498                          * large page, so that we don't violate Intel's TLB
499                          * Application note (317080) which says, while changing
500                          * the page sizes, new and old translations should
501                          * not differ with respect to page frame and
502                          * attributes.
503                          */
504                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
505                                 if (!after_bootmem)
506                                         pages++;
507                                 last_map_addr = next;
508                                 continue;
509                         }
510                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
511                 }
512
513                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
514                         pages++;
515                         spin_lock(&init_mm.page_table_lock);
516                         set_pte((pte_t *)pmd,
517                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
518                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
519                         spin_unlock(&init_mm.page_table_lock);
520                         last_map_addr = next;
521                         continue;
522                 }
523
524                 pte = alloc_low_page();
525                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
526
527                 spin_lock(&init_mm.page_table_lock);
528                 pmd_populate_kernel(&init_mm, pmd, pte);
529                 spin_unlock(&init_mm.page_table_lock);
530         }
531         update_page_count(PG_LEVEL_2M, pages);
532         return last_map_addr;
533 }
534
535 static unsigned long __meminit
536 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
537                          unsigned long page_size_mask)
538 {
539         unsigned long pages = 0, next;
540         unsigned long last_map_addr = end;
541         int i = pud_index(addr);
542
543         for (; i < PTRS_PER_PUD; i++, addr = next) {
544                 pud_t *pud = pud_page + pud_index(addr);
545                 pmd_t *pmd;
546                 pgprot_t prot = PAGE_KERNEL;
547
548                 next = (addr & PUD_MASK) + PUD_SIZE;
549                 if (addr >= end) {
550                         if (!after_bootmem &&
551                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
552                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
553                                 set_pud(pud, __pud(0));
554                         continue;
555                 }
556
557                 if (pud_val(*pud)) {
558                         if (!pud_large(*pud)) {
559                                 pmd = pmd_offset(pud, 0);
560                                 last_map_addr = phys_pmd_init(pmd, addr, end,
561                                                          page_size_mask, prot);
562                                 __flush_tlb_all();
563                                 continue;
564                         }
565                         /*
566                          * If we are ok with PG_LEVEL_1G mapping, then we will
567                          * use the existing mapping.
568                          *
569                          * Otherwise, we will split the gbpage mapping but use
570                          * the same existing protection  bits except for large
571                          * page, so that we don't violate Intel's TLB
572                          * Application note (317080) which says, while changing
573                          * the page sizes, new and old translations should
574                          * not differ with respect to page frame and
575                          * attributes.
576                          */
577                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
578                                 if (!after_bootmem)
579                                         pages++;
580                                 last_map_addr = next;
581                                 continue;
582                         }
583                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
584                 }
585
586                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
587                         pages++;
588                         spin_lock(&init_mm.page_table_lock);
589                         set_pte((pte_t *)pud,
590                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
591                                         PAGE_KERNEL_LARGE));
592                         spin_unlock(&init_mm.page_table_lock);
593                         last_map_addr = next;
594                         continue;
595                 }
596
597                 pmd = alloc_low_page();
598                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
599                                               prot);
600
601                 spin_lock(&init_mm.page_table_lock);
602                 pud_populate(&init_mm, pud, pmd);
603                 spin_unlock(&init_mm.page_table_lock);
604         }
605         __flush_tlb_all();
606
607         update_page_count(PG_LEVEL_1G, pages);
608
609         return last_map_addr;
610 }
611
612 unsigned long __meminit
613 kernel_physical_mapping_init(unsigned long start,
614                              unsigned long end,
615                              unsigned long page_size_mask)
616 {
617         bool pgd_changed = false;
618         unsigned long next, last_map_addr = end;
619         unsigned long addr;
620
621         start = (unsigned long)__va(start);
622         end = (unsigned long)__va(end);
623         addr = start;
624
625         for (; start < end; start = next) {
626                 pgd_t *pgd = pgd_offset_k(start);
627                 pud_t *pud;
628
629                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
630
631                 if (pgd_val(*pgd)) {
632                         pud = (pud_t *)pgd_page_vaddr(*pgd);
633                         last_map_addr = phys_pud_init(pud, __pa(start),
634                                                  __pa(end), page_size_mask);
635                         continue;
636                 }
637
638                 pud = alloc_low_page();
639                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
640                                                  page_size_mask);
641
642                 spin_lock(&init_mm.page_table_lock);
643                 pgd_populate(&init_mm, pgd, pud);
644                 spin_unlock(&init_mm.page_table_lock);
645                 pgd_changed = true;
646         }
647
648         if (pgd_changed)
649                 sync_global_pgds(addr, end - 1, 0);
650
651         __flush_tlb_all();
652
653         return last_map_addr;
654 }
655
656 #ifndef CONFIG_NUMA
657 void __init initmem_init(void)
658 {
659         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
660 }
661 #endif
662
663 void __init paging_init(void)
664 {
665         sparse_memory_present_with_active_regions(MAX_NUMNODES);
666         sparse_init();
667
668         /*
669          * clear the default setting with node 0
670          * note: don't use nodes_clear here, that is really clearing when
671          *       numa support is not compiled in, and later node_set_state
672          *       will not set it back.
673          */
674         node_clear_state(0, N_MEMORY);
675         if (N_MEMORY != N_NORMAL_MEMORY)
676                 node_clear_state(0, N_NORMAL_MEMORY);
677
678         zone_sizes_init();
679 }
680
681 /*
682  * Memory hotplug specific functions
683  */
684 #ifdef CONFIG_MEMORY_HOTPLUG
685 /*
686  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
687  * updating.
688  */
689 static void  update_end_of_memory_vars(u64 start, u64 size)
690 {
691         unsigned long end_pfn = PFN_UP(start + size);
692
693         if (end_pfn > max_pfn) {
694                 max_pfn = end_pfn;
695                 max_low_pfn = end_pfn;
696                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
697         }
698 }
699
700 /*
701  * Memory is added always to NORMAL zone. This means you will never get
702  * additional DMA/DMA32 memory.
703  */
704 int arch_add_memory(int nid, u64 start, u64 size)
705 {
706         struct pglist_data *pgdat = NODE_DATA(nid);
707         struct zone *zone = pgdat->node_zones +
708                 zone_for_memory(nid, start, size, ZONE_NORMAL);
709         unsigned long start_pfn = start >> PAGE_SHIFT;
710         unsigned long nr_pages = size >> PAGE_SHIFT;
711         int ret;
712
713         init_memory_mapping(start, start + size);
714
715         ret = __add_pages(nid, zone, start_pfn, nr_pages);
716         WARN_ON_ONCE(ret);
717
718         /* update max_pfn, max_low_pfn and high_memory */
719         update_end_of_memory_vars(start, size);
720
721         return ret;
722 }
723 EXPORT_SYMBOL_GPL(arch_add_memory);
724
725 #define PAGE_INUSE 0xFD
726
727 static void __meminit free_pagetable(struct page *page, int order)
728 {
729         unsigned long magic;
730         unsigned int nr_pages = 1 << order;
731
732         /* bootmem page has reserved flag */
733         if (PageReserved(page)) {
734                 __ClearPageReserved(page);
735
736                 magic = (unsigned long)page->lru.next;
737                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
738                         while (nr_pages--)
739                                 put_page_bootmem(page++);
740                 } else
741                         while (nr_pages--)
742                                 free_reserved_page(page++);
743         } else
744                 free_pages((unsigned long)page_address(page), order);
745 }
746
747 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
748 {
749         pte_t *pte;
750         int i;
751
752         for (i = 0; i < PTRS_PER_PTE; i++) {
753                 pte = pte_start + i;
754                 if (pte_val(*pte))
755                         return;
756         }
757
758         /* free a pte talbe */
759         free_pagetable(pmd_page(*pmd), 0);
760         spin_lock(&init_mm.page_table_lock);
761         pmd_clear(pmd);
762         spin_unlock(&init_mm.page_table_lock);
763 }
764
765 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
766 {
767         pmd_t *pmd;
768         int i;
769
770         for (i = 0; i < PTRS_PER_PMD; i++) {
771                 pmd = pmd_start + i;
772                 if (pmd_val(*pmd))
773                         return;
774         }
775
776         /* free a pmd talbe */
777         free_pagetable(pud_page(*pud), 0);
778         spin_lock(&init_mm.page_table_lock);
779         pud_clear(pud);
780         spin_unlock(&init_mm.page_table_lock);
781 }
782
783 /* Return true if pgd is changed, otherwise return false. */
784 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
785 {
786         pud_t *pud;
787         int i;
788
789         for (i = 0; i < PTRS_PER_PUD; i++) {
790                 pud = pud_start + i;
791                 if (pud_val(*pud))
792                         return false;
793         }
794
795         /* free a pud table */
796         free_pagetable(pgd_page(*pgd), 0);
797         spin_lock(&init_mm.page_table_lock);
798         pgd_clear(pgd);
799         spin_unlock(&init_mm.page_table_lock);
800
801         return true;
802 }
803
804 static void __meminit
805 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
806                  bool direct)
807 {
808         unsigned long next, pages = 0;
809         pte_t *pte;
810         void *page_addr;
811         phys_addr_t phys_addr;
812
813         pte = pte_start + pte_index(addr);
814         for (; addr < end; addr = next, pte++) {
815                 next = (addr + PAGE_SIZE) & PAGE_MASK;
816                 if (next > end)
817                         next = end;
818
819                 if (!pte_present(*pte))
820                         continue;
821
822                 /*
823                  * We mapped [0,1G) memory as identity mapping when
824                  * initializing, in arch/x86/kernel/head_64.S. These
825                  * pagetables cannot be removed.
826                  */
827                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
828                 if (phys_addr < (phys_addr_t)0x40000000)
829                         return;
830
831                 if (IS_ALIGNED(addr, PAGE_SIZE) &&
832                     IS_ALIGNED(next, PAGE_SIZE)) {
833                         /*
834                          * Do not free direct mapping pages since they were
835                          * freed when offlining, or simplely not in use.
836                          */
837                         if (!direct)
838                                 free_pagetable(pte_page(*pte), 0);
839
840                         spin_lock(&init_mm.page_table_lock);
841                         pte_clear(&init_mm, addr, pte);
842                         spin_unlock(&init_mm.page_table_lock);
843
844                         /* For non-direct mapping, pages means nothing. */
845                         pages++;
846                 } else {
847                         /*
848                          * If we are here, we are freeing vmemmap pages since
849                          * direct mapped memory ranges to be freed are aligned.
850                          *
851                          * If we are not removing the whole page, it means
852                          * other page structs in this page are being used and
853                          * we canot remove them. So fill the unused page_structs
854                          * with 0xFD, and remove the page when it is wholly
855                          * filled with 0xFD.
856                          */
857                         memset((void *)addr, PAGE_INUSE, next - addr);
858
859                         page_addr = page_address(pte_page(*pte));
860                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
861                                 free_pagetable(pte_page(*pte), 0);
862
863                                 spin_lock(&init_mm.page_table_lock);
864                                 pte_clear(&init_mm, addr, pte);
865                                 spin_unlock(&init_mm.page_table_lock);
866                         }
867                 }
868         }
869
870         /* Call free_pte_table() in remove_pmd_table(). */
871         flush_tlb_all();
872         if (direct)
873                 update_page_count(PG_LEVEL_4K, -pages);
874 }
875
876 static void __meminit
877 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
878                  bool direct)
879 {
880         unsigned long next, pages = 0;
881         pte_t *pte_base;
882         pmd_t *pmd;
883         void *page_addr;
884
885         pmd = pmd_start + pmd_index(addr);
886         for (; addr < end; addr = next, pmd++) {
887                 next = pmd_addr_end(addr, end);
888
889                 if (!pmd_present(*pmd))
890                         continue;
891
892                 if (pmd_large(*pmd)) {
893                         if (IS_ALIGNED(addr, PMD_SIZE) &&
894                             IS_ALIGNED(next, PMD_SIZE)) {
895                                 if (!direct)
896                                         free_pagetable(pmd_page(*pmd),
897                                                        get_order(PMD_SIZE));
898
899                                 spin_lock(&init_mm.page_table_lock);
900                                 pmd_clear(pmd);
901                                 spin_unlock(&init_mm.page_table_lock);
902                                 pages++;
903                         } else {
904                                 /* If here, we are freeing vmemmap pages. */
905                                 memset((void *)addr, PAGE_INUSE, next - addr);
906
907                                 page_addr = page_address(pmd_page(*pmd));
908                                 if (!memchr_inv(page_addr, PAGE_INUSE,
909                                                 PMD_SIZE)) {
910                                         free_pagetable(pmd_page(*pmd),
911                                                        get_order(PMD_SIZE));
912
913                                         spin_lock(&init_mm.page_table_lock);
914                                         pmd_clear(pmd);
915                                         spin_unlock(&init_mm.page_table_lock);
916                                 }
917                         }
918
919                         continue;
920                 }
921
922                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
923                 remove_pte_table(pte_base, addr, next, direct);
924                 free_pte_table(pte_base, pmd);
925         }
926
927         /* Call free_pmd_table() in remove_pud_table(). */
928         if (direct)
929                 update_page_count(PG_LEVEL_2M, -pages);
930 }
931
932 static void __meminit
933 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
934                  bool direct)
935 {
936         unsigned long next, pages = 0;
937         pmd_t *pmd_base;
938         pud_t *pud;
939         void *page_addr;
940
941         pud = pud_start + pud_index(addr);
942         for (; addr < end; addr = next, pud++) {
943                 next = pud_addr_end(addr, end);
944
945                 if (!pud_present(*pud))
946                         continue;
947
948                 if (pud_large(*pud)) {
949                         if (IS_ALIGNED(addr, PUD_SIZE) &&
950                             IS_ALIGNED(next, PUD_SIZE)) {
951                                 if (!direct)
952                                         free_pagetable(pud_page(*pud),
953                                                        get_order(PUD_SIZE));
954
955                                 spin_lock(&init_mm.page_table_lock);
956                                 pud_clear(pud);
957                                 spin_unlock(&init_mm.page_table_lock);
958                                 pages++;
959                         } else {
960                                 /* If here, we are freeing vmemmap pages. */
961                                 memset((void *)addr, PAGE_INUSE, next - addr);
962
963                                 page_addr = page_address(pud_page(*pud));
964                                 if (!memchr_inv(page_addr, PAGE_INUSE,
965                                                 PUD_SIZE)) {
966                                         free_pagetable(pud_page(*pud),
967                                                        get_order(PUD_SIZE));
968
969                                         spin_lock(&init_mm.page_table_lock);
970                                         pud_clear(pud);
971                                         spin_unlock(&init_mm.page_table_lock);
972                                 }
973                         }
974
975                         continue;
976                 }
977
978                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
979                 remove_pmd_table(pmd_base, addr, next, direct);
980                 free_pmd_table(pmd_base, pud);
981         }
982
983         if (direct)
984                 update_page_count(PG_LEVEL_1G, -pages);
985 }
986
987 /* start and end are both virtual address. */
988 static void __meminit
989 remove_pagetable(unsigned long start, unsigned long end, bool direct)
990 {
991         unsigned long next;
992         unsigned long addr;
993         pgd_t *pgd;
994         pud_t *pud;
995         bool pgd_changed = false;
996
997         for (addr = start; addr < end; addr = next) {
998                 next = pgd_addr_end(addr, end);
999
1000                 pgd = pgd_offset_k(addr);
1001                 if (!pgd_present(*pgd))
1002                         continue;
1003
1004                 pud = (pud_t *)pgd_page_vaddr(*pgd);
1005                 remove_pud_table(pud, addr, next, direct);
1006                 if (free_pud_table(pud, pgd))
1007                         pgd_changed = true;
1008         }
1009
1010         if (pgd_changed)
1011                 sync_global_pgds(start, end - 1, 1);
1012
1013         flush_tlb_all();
1014 }
1015
1016 void __ref vmemmap_free(unsigned long start, unsigned long end)
1017 {
1018         remove_pagetable(start, end, false);
1019 }
1020
1021 #ifdef CONFIG_MEMORY_HOTREMOVE
1022 static void __meminit
1023 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1024 {
1025         start = (unsigned long)__va(start);
1026         end = (unsigned long)__va(end);
1027
1028         remove_pagetable(start, end, true);
1029 }
1030
1031 int __ref arch_remove_memory(u64 start, u64 size)
1032 {
1033         unsigned long start_pfn = start >> PAGE_SHIFT;
1034         unsigned long nr_pages = size >> PAGE_SHIFT;
1035         struct zone *zone;
1036         int ret;
1037
1038         zone = page_zone(pfn_to_page(start_pfn));
1039         kernel_physical_mapping_remove(start, start + size);
1040         ret = __remove_pages(zone, start_pfn, nr_pages);
1041         WARN_ON_ONCE(ret);
1042
1043         return ret;
1044 }
1045 #endif
1046 #endif /* CONFIG_MEMORY_HOTPLUG */
1047
1048 static struct kcore_list kcore_vsyscall;
1049
1050 static void __init register_page_bootmem_info(void)
1051 {
1052 #ifdef CONFIG_NUMA
1053         int i;
1054
1055         for_each_online_node(i)
1056                 register_page_bootmem_info_node(NODE_DATA(i));
1057 #endif
1058 }
1059
1060 void __init mem_init(void)
1061 {
1062         pci_iommu_alloc();
1063
1064         /* clear_bss() already clear the empty_zero_page */
1065
1066         register_page_bootmem_info();
1067
1068         /* this will put all memory onto the freelists */
1069         free_all_bootmem();
1070         after_bootmem = 1;
1071
1072         /* Register memory areas for /proc/kcore */
1073         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1074                          PAGE_SIZE, KCORE_OTHER);
1075
1076         mem_init_print_info(NULL);
1077 }
1078
1079 #ifdef CONFIG_DEBUG_RODATA
1080 const int rodata_test_data = 0xC3;
1081 EXPORT_SYMBOL_GPL(rodata_test_data);
1082
1083 int kernel_set_to_readonly;
1084
1085 void set_kernel_text_rw(void)
1086 {
1087         unsigned long start = PFN_ALIGN(_text);
1088         unsigned long end = PFN_ALIGN(__stop___ex_table);
1089
1090         if (!kernel_set_to_readonly)
1091                 return;
1092
1093         pr_debug("Set kernel text: %lx - %lx for read write\n",
1094                  start, end);
1095
1096         /*
1097          * Make the kernel identity mapping for text RW. Kernel text
1098          * mapping will always be RO. Refer to the comment in
1099          * static_protections() in pageattr.c
1100          */
1101         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1102 }
1103
1104 void set_kernel_text_ro(void)
1105 {
1106         unsigned long start = PFN_ALIGN(_text);
1107         unsigned long end = PFN_ALIGN(__stop___ex_table);
1108
1109         if (!kernel_set_to_readonly)
1110                 return;
1111
1112         pr_debug("Set kernel text: %lx - %lx for read only\n",
1113                  start, end);
1114
1115         /*
1116          * Set the kernel identity mapping for text RO.
1117          */
1118         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119 }
1120
1121 void mark_rodata_ro(void)
1122 {
1123         unsigned long start = PFN_ALIGN(_text);
1124         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1125         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1126         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1127         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1128         unsigned long all_end;
1129
1130         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1131                (end - start) >> 10);
1132         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1133
1134         kernel_set_to_readonly = 1;
1135
1136         /*
1137          * The rodata/data/bss/brk section (but not the kernel text!)
1138          * should also be not-executable.
1139          *
1140          * We align all_end to PMD_SIZE because the existing mapping
1141          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1142          * split the PMD and the reminder between _brk_end and the end
1143          * of the PMD will remain mapped executable.
1144          *
1145          * Any PMD which was setup after the one which covers _brk_end
1146          * has been zapped already via cleanup_highmem().
1147          */
1148         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1149         set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1150
1151         rodata_test();
1152
1153 #ifdef CONFIG_CPA_DEBUG
1154         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1155         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1156
1157         printk(KERN_INFO "Testing CPA: again\n");
1158         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1159 #endif
1160
1161         free_init_pages("unused kernel",
1162                         (unsigned long) __va(__pa_symbol(text_end)),
1163                         (unsigned long) __va(__pa_symbol(rodata_start)));
1164         free_init_pages("unused kernel",
1165                         (unsigned long) __va(__pa_symbol(rodata_end)),
1166                         (unsigned long) __va(__pa_symbol(_sdata)));
1167 }
1168
1169 #endif
1170
1171 int kern_addr_valid(unsigned long addr)
1172 {
1173         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1174         pgd_t *pgd;
1175         pud_t *pud;
1176         pmd_t *pmd;
1177         pte_t *pte;
1178
1179         if (above != 0 && above != -1UL)
1180                 return 0;
1181
1182         pgd = pgd_offset_k(addr);
1183         if (pgd_none(*pgd))
1184                 return 0;
1185
1186         pud = pud_offset(pgd, addr);
1187         if (pud_none(*pud))
1188                 return 0;
1189
1190         if (pud_large(*pud))
1191                 return pfn_valid(pud_pfn(*pud));
1192
1193         pmd = pmd_offset(pud, addr);
1194         if (pmd_none(*pmd))
1195                 return 0;
1196
1197         if (pmd_large(*pmd))
1198                 return pfn_valid(pmd_pfn(*pmd));
1199
1200         pte = pte_offset_kernel(pmd, addr);
1201         if (pte_none(*pte))
1202                 return 0;
1203
1204         return pfn_valid(pte_pfn(*pte));
1205 }
1206
1207 static unsigned long probe_memory_block_size(void)
1208 {
1209         /* start from 2g */
1210         unsigned long bz = 1UL<<31;
1211
1212         if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1213                 pr_info("Using 2GB memory block size for large-memory system\n");
1214                 return 2UL * 1024 * 1024 * 1024;
1215         }
1216
1217         /* less than 64g installed */
1218         if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1219                 return MIN_MEMORY_BLOCK_SIZE;
1220
1221         /* get the tail size */
1222         while (bz > MIN_MEMORY_BLOCK_SIZE) {
1223                 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1224                         break;
1225                 bz >>= 1;
1226         }
1227
1228         printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1229
1230         return bz;
1231 }
1232
1233 static unsigned long memory_block_size_probed;
1234 unsigned long memory_block_size_bytes(void)
1235 {
1236         if (!memory_block_size_probed)
1237                 memory_block_size_probed = probe_memory_block_size();
1238
1239         return memory_block_size_probed;
1240 }
1241
1242 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1243 /*
1244  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1245  */
1246 static long __meminitdata addr_start, addr_end;
1247 static void __meminitdata *p_start, *p_end;
1248 static int __meminitdata node_start;
1249
1250 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1251                                                 unsigned long end, int node)
1252 {
1253         unsigned long addr;
1254         unsigned long next;
1255         pgd_t *pgd;
1256         pud_t *pud;
1257         pmd_t *pmd;
1258
1259         for (addr = start; addr < end; addr = next) {
1260                 next = pmd_addr_end(addr, end);
1261
1262                 pgd = vmemmap_pgd_populate(addr, node);
1263                 if (!pgd)
1264                         return -ENOMEM;
1265
1266                 pud = vmemmap_pud_populate(pgd, addr, node);
1267                 if (!pud)
1268                         return -ENOMEM;
1269
1270                 pmd = pmd_offset(pud, addr);
1271                 if (pmd_none(*pmd)) {
1272                         void *p;
1273
1274                         p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1275                         if (p) {
1276                                 pte_t entry;
1277
1278                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1279                                                 PAGE_KERNEL_LARGE);
1280                                 set_pmd(pmd, __pmd(pte_val(entry)));
1281
1282                                 /* check to see if we have contiguous blocks */
1283                                 if (p_end != p || node_start != node) {
1284                                         if (p_start)
1285                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1286                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1287                                         addr_start = addr;
1288                                         node_start = node;
1289                                         p_start = p;
1290                                 }
1291
1292                                 addr_end = addr + PMD_SIZE;
1293                                 p_end = p + PMD_SIZE;
1294                                 continue;
1295                         }
1296                 } else if (pmd_large(*pmd)) {
1297                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1298                         continue;
1299                 }
1300                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1301                 if (vmemmap_populate_basepages(addr, next, node))
1302                         return -ENOMEM;
1303         }
1304         return 0;
1305 }
1306
1307 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1308 {
1309         int err;
1310
1311         if (cpu_has_pse)
1312                 err = vmemmap_populate_hugepages(start, end, node);
1313         else
1314                 err = vmemmap_populate_basepages(start, end, node);
1315         if (!err)
1316                 sync_global_pgds(start, end - 1, 0);
1317         return err;
1318 }
1319
1320 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1321 void register_page_bootmem_memmap(unsigned long section_nr,
1322                                   struct page *start_page, unsigned long size)
1323 {
1324         unsigned long addr = (unsigned long)start_page;
1325         unsigned long end = (unsigned long)(start_page + size);
1326         unsigned long next;
1327         pgd_t *pgd;
1328         pud_t *pud;
1329         pmd_t *pmd;
1330         unsigned int nr_pages;
1331         struct page *page;
1332
1333         for (; addr < end; addr = next) {
1334                 pte_t *pte = NULL;
1335
1336                 pgd = pgd_offset_k(addr);
1337                 if (pgd_none(*pgd)) {
1338                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1339                         continue;
1340                 }
1341                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1342
1343                 pud = pud_offset(pgd, addr);
1344                 if (pud_none(*pud)) {
1345                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1346                         continue;
1347                 }
1348                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1349
1350                 if (!cpu_has_pse) {
1351                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1352                         pmd = pmd_offset(pud, addr);
1353                         if (pmd_none(*pmd))
1354                                 continue;
1355                         get_page_bootmem(section_nr, pmd_page(*pmd),
1356                                          MIX_SECTION_INFO);
1357
1358                         pte = pte_offset_kernel(pmd, addr);
1359                         if (pte_none(*pte))
1360                                 continue;
1361                         get_page_bootmem(section_nr, pte_page(*pte),
1362                                          SECTION_INFO);
1363                 } else {
1364                         next = pmd_addr_end(addr, end);
1365
1366                         pmd = pmd_offset(pud, addr);
1367                         if (pmd_none(*pmd))
1368                                 continue;
1369
1370                         nr_pages = 1 << (get_order(PMD_SIZE));
1371                         page = pmd_page(*pmd);
1372                         while (nr_pages--)
1373                                 get_page_bootmem(section_nr, page++,
1374                                                  SECTION_INFO);
1375                 }
1376         }
1377 }
1378 #endif
1379
1380 void __meminit vmemmap_populate_print_last(void)
1381 {
1382         if (p_start) {
1383                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1384                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1385                 p_start = NULL;
1386                 p_end = NULL;
1387                 node_start = 0;
1388         }
1389 }
1390 #endif