14c38ae804094461e510d0b4e874325335def03c
[cascardo/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
105 }
106
107 #endif
108
109 #ifdef CONFIG_DEBUG_PAGEALLOC
110 # define debug_pagealloc 1
111 #else
112 # define debug_pagealloc 0
113 #endif
114
115 static inline int
116 within(unsigned long addr, unsigned long start, unsigned long end)
117 {
118         return addr >= start && addr < end;
119 }
120
121 /*
122  * Flushing functions
123  */
124
125 /**
126  * clflush_cache_range - flush a cache range with clflush
127  * @vaddr:      virtual start address
128  * @size:       number of bytes to flush
129  *
130  * clflushopt is an unordered instruction which needs fencing with mfence or
131  * sfence to avoid ordering issues.
132  */
133 void clflush_cache_range(void *vaddr, unsigned int size)
134 {
135         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
136         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
137         void *vend = vaddr + size;
138
139         if (p >= vend)
140                 return;
141
142         mb();
143
144         for (; p < vend; p += clflush_size)
145                 clflushopt(p);
146
147         mb();
148 }
149 EXPORT_SYMBOL_GPL(clflush_cache_range);
150
151 static void __cpa_flush_all(void *arg)
152 {
153         unsigned long cache = (unsigned long)arg;
154
155         /*
156          * Flush all to work around Errata in early athlons regarding
157          * large page flushing.
158          */
159         __flush_tlb_all();
160
161         if (cache && boot_cpu_data.x86 >= 4)
162                 wbinvd();
163 }
164
165 static void cpa_flush_all(unsigned long cache)
166 {
167         BUG_ON(irqs_disabled());
168
169         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
170 }
171
172 static void __cpa_flush_range(void *arg)
173 {
174         /*
175          * We could optimize that further and do individual per page
176          * tlb invalidates for a low number of pages. Caveat: we must
177          * flush the high aliases on 64bit as well.
178          */
179         __flush_tlb_all();
180 }
181
182 static void cpa_flush_range(unsigned long start, int numpages, int cache)
183 {
184         unsigned int i, level;
185         unsigned long addr;
186
187         BUG_ON(irqs_disabled());
188         WARN_ON(PAGE_ALIGN(start) != start);
189
190         on_each_cpu(__cpa_flush_range, NULL, 1);
191
192         if (!cache)
193                 return;
194
195         /*
196          * We only need to flush on one CPU,
197          * clflush is a MESI-coherent instruction that
198          * will cause all other CPUs to flush the same
199          * cachelines:
200          */
201         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
202                 pte_t *pte = lookup_address(addr, &level);
203
204                 /*
205                  * Only flush present addresses:
206                  */
207                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
208                         clflush_cache_range((void *) addr, PAGE_SIZE);
209         }
210 }
211
212 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
213                             int in_flags, struct page **pages)
214 {
215         unsigned int i, level;
216         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
217
218         BUG_ON(irqs_disabled());
219
220         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
221
222         if (!cache || do_wbinvd)
223                 return;
224
225         /*
226          * We only need to flush on one CPU,
227          * clflush is a MESI-coherent instruction that
228          * will cause all other CPUs to flush the same
229          * cachelines:
230          */
231         for (i = 0; i < numpages; i++) {
232                 unsigned long addr;
233                 pte_t *pte;
234
235                 if (in_flags & CPA_PAGES_ARRAY)
236                         addr = (unsigned long)page_address(pages[i]);
237                 else
238                         addr = start[i];
239
240                 pte = lookup_address(addr, &level);
241
242                 /*
243                  * Only flush present addresses:
244                  */
245                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
246                         clflush_cache_range((void *)addr, PAGE_SIZE);
247         }
248 }
249
250 /*
251  * Certain areas of memory on x86 require very specific protection flags,
252  * for example the BIOS area or kernel text. Callers don't always get this
253  * right (again, ioremap() on BIOS memory is not uncommon) so this function
254  * checks and fixes these known static required protection bits.
255  */
256 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
257                                    unsigned long pfn)
258 {
259         pgprot_t forbidden = __pgprot(0);
260
261         /*
262          * The BIOS area between 640k and 1Mb needs to be executable for
263          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
264          */
265 #ifdef CONFIG_PCI_BIOS
266         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
267                 pgprot_val(forbidden) |= _PAGE_NX;
268 #endif
269
270         /*
271          * The kernel text needs to be executable for obvious reasons
272          * Does not cover __inittext since that is gone later on. On
273          * 64bit we do not enforce !NX on the low mapping
274          */
275         if (within(address, (unsigned long)_text, (unsigned long)_etext))
276                 pgprot_val(forbidden) |= _PAGE_NX;
277
278         /*
279          * The .rodata section needs to be read-only. Using the pfn
280          * catches all aliases.
281          */
282         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
283                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
284                 pgprot_val(forbidden) |= _PAGE_RW;
285
286 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
287         /*
288          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
289          * kernel text mappings for the large page aligned text, rodata sections
290          * will be always read-only. For the kernel identity mappings covering
291          * the holes caused by this alignment can be anything that user asks.
292          *
293          * This will preserve the large page mappings for kernel text/data
294          * at no extra cost.
295          */
296         if (kernel_set_to_readonly &&
297             within(address, (unsigned long)_text,
298                    (unsigned long)__end_rodata_hpage_align)) {
299                 unsigned int level;
300
301                 /*
302                  * Don't enforce the !RW mapping for the kernel text mapping,
303                  * if the current mapping is already using small page mapping.
304                  * No need to work hard to preserve large page mappings in this
305                  * case.
306                  *
307                  * This also fixes the Linux Xen paravirt guest boot failure
308                  * (because of unexpected read-only mappings for kernel identity
309                  * mappings). In this paravirt guest case, the kernel text
310                  * mapping and the kernel identity mapping share the same
311                  * page-table pages. Thus we can't really use different
312                  * protections for the kernel text and identity mappings. Also,
313                  * these shared mappings are made of small page mappings.
314                  * Thus this don't enforce !RW mapping for small page kernel
315                  * text mapping logic will help Linux Xen parvirt guest boot
316                  * as well.
317                  */
318                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
319                         pgprot_val(forbidden) |= _PAGE_RW;
320         }
321 #endif
322
323         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
324
325         return prot;
326 }
327
328 /*
329  * Lookup the page table entry for a virtual address in a specific pgd.
330  * Return a pointer to the entry and the level of the mapping.
331  */
332 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
333                              unsigned int *level)
334 {
335         pud_t *pud;
336         pmd_t *pmd;
337
338         *level = PG_LEVEL_NONE;
339
340         if (pgd_none(*pgd))
341                 return NULL;
342
343         pud = pud_offset(pgd, address);
344         if (pud_none(*pud))
345                 return NULL;
346
347         *level = PG_LEVEL_1G;
348         if (pud_large(*pud) || !pud_present(*pud))
349                 return (pte_t *)pud;
350
351         pmd = pmd_offset(pud, address);
352         if (pmd_none(*pmd))
353                 return NULL;
354
355         *level = PG_LEVEL_2M;
356         if (pmd_large(*pmd) || !pmd_present(*pmd))
357                 return (pte_t *)pmd;
358
359         *level = PG_LEVEL_4K;
360
361         return pte_offset_kernel(pmd, address);
362 }
363
364 /*
365  * Lookup the page table entry for a virtual address. Return a pointer
366  * to the entry and the level of the mapping.
367  *
368  * Note: We return pud and pmd either when the entry is marked large
369  * or when the present bit is not set. Otherwise we would return a
370  * pointer to a nonexisting mapping.
371  */
372 pte_t *lookup_address(unsigned long address, unsigned int *level)
373 {
374         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
375 }
376 EXPORT_SYMBOL_GPL(lookup_address);
377
378 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
379                                   unsigned int *level)
380 {
381         if (cpa->pgd)
382                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
383                                                address, level);
384
385         return lookup_address(address, level);
386 }
387
388 /*
389  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
390  * or NULL if not present.
391  */
392 pmd_t *lookup_pmd_address(unsigned long address)
393 {
394         pgd_t *pgd;
395         pud_t *pud;
396
397         pgd = pgd_offset_k(address);
398         if (pgd_none(*pgd))
399                 return NULL;
400
401         pud = pud_offset(pgd, address);
402         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
403                 return NULL;
404
405         return pmd_offset(pud, address);
406 }
407
408 /*
409  * This is necessary because __pa() does not work on some
410  * kinds of memory, like vmalloc() or the alloc_remap()
411  * areas on 32-bit NUMA systems.  The percpu areas can
412  * end up in this kind of memory, for instance.
413  *
414  * This could be optimized, but it is only intended to be
415  * used at inititalization time, and keeping it
416  * unoptimized should increase the testing coverage for
417  * the more obscure platforms.
418  */
419 phys_addr_t slow_virt_to_phys(void *__virt_addr)
420 {
421         unsigned long virt_addr = (unsigned long)__virt_addr;
422         unsigned long phys_addr, offset;
423         enum pg_level level;
424         pte_t *pte;
425
426         pte = lookup_address(virt_addr, &level);
427         BUG_ON(!pte);
428
429         switch (level) {
430         case PG_LEVEL_1G:
431                 phys_addr = pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
432                 offset = virt_addr & ~PUD_PAGE_MASK;
433                 break;
434         case PG_LEVEL_2M:
435                 phys_addr = pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
436                 offset = virt_addr & ~PMD_PAGE_MASK;
437                 break;
438         default:
439                 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
440                 offset = virt_addr & ~PAGE_MASK;
441         }
442
443         return (phys_addr_t)(phys_addr | offset);
444 }
445 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
446
447 /*
448  * Set the new pmd in all the pgds we know about:
449  */
450 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
451 {
452         /* change init_mm */
453         set_pte_atomic(kpte, pte);
454 #ifdef CONFIG_X86_32
455         if (!SHARED_KERNEL_PMD) {
456                 struct page *page;
457
458                 list_for_each_entry(page, &pgd_list, lru) {
459                         pgd_t *pgd;
460                         pud_t *pud;
461                         pmd_t *pmd;
462
463                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
464                         pud = pud_offset(pgd, address);
465                         pmd = pmd_offset(pud, address);
466                         set_pte_atomic((pte_t *)pmd, pte);
467                 }
468         }
469 #endif
470 }
471
472 static int
473 try_preserve_large_page(pte_t *kpte, unsigned long address,
474                         struct cpa_data *cpa)
475 {
476         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
477         pte_t new_pte, old_pte, *tmp;
478         pgprot_t old_prot, new_prot, req_prot;
479         int i, do_split = 1;
480         enum pg_level level;
481
482         if (cpa->force_split)
483                 return 1;
484
485         spin_lock(&pgd_lock);
486         /*
487          * Check for races, another CPU might have split this page
488          * up already:
489          */
490         tmp = _lookup_address_cpa(cpa, address, &level);
491         if (tmp != kpte)
492                 goto out_unlock;
493
494         switch (level) {
495         case PG_LEVEL_2M:
496                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
497                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
498                 break;
499         case PG_LEVEL_1G:
500                 old_prot = pud_pgprot(*(pud_t *)kpte);
501                 old_pfn = pud_pfn(*(pud_t *)kpte);
502                 break;
503         default:
504                 do_split = -EINVAL;
505                 goto out_unlock;
506         }
507
508         psize = page_level_size(level);
509         pmask = page_level_mask(level);
510
511         /*
512          * Calculate the number of pages, which fit into this large
513          * page starting at address:
514          */
515         nextpage_addr = (address + psize) & pmask;
516         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
517         if (numpages < cpa->numpages)
518                 cpa->numpages = numpages;
519
520         /*
521          * We are safe now. Check whether the new pgprot is the same:
522          * Convert protection attributes to 4k-format, as cpa->mask* are set
523          * up accordingly.
524          */
525         old_pte = *kpte;
526         req_prot = pgprot_large_2_4k(old_prot);
527
528         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
529         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
530
531         /*
532          * req_prot is in format of 4k pages. It must be converted to large
533          * page format: the caching mode includes the PAT bit located at
534          * different bit positions in the two formats.
535          */
536         req_prot = pgprot_4k_2_large(req_prot);
537
538         /*
539          * Set the PSE and GLOBAL flags only if the PRESENT flag is
540          * set otherwise pmd_present/pmd_huge will return true even on
541          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
542          * for the ancient hardware that doesn't support it.
543          */
544         if (pgprot_val(req_prot) & _PAGE_PRESENT)
545                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
546         else
547                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
548
549         req_prot = canon_pgprot(req_prot);
550
551         /*
552          * old_pfn points to the large page base pfn. So we need
553          * to add the offset of the virtual address:
554          */
555         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
556         cpa->pfn = pfn;
557
558         new_prot = static_protections(req_prot, address, pfn);
559
560         /*
561          * We need to check the full range, whether
562          * static_protection() requires a different pgprot for one of
563          * the pages in the range we try to preserve:
564          */
565         addr = address & pmask;
566         pfn = old_pfn;
567         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
568                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
569
570                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
571                         goto out_unlock;
572         }
573
574         /*
575          * If there are no changes, return. maxpages has been updated
576          * above:
577          */
578         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
579                 do_split = 0;
580                 goto out_unlock;
581         }
582
583         /*
584          * We need to change the attributes. Check, whether we can
585          * change the large page in one go. We request a split, when
586          * the address is not aligned and the number of pages is
587          * smaller than the number of pages in the large page. Note
588          * that we limited the number of possible pages already to
589          * the number of pages in the large page.
590          */
591         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
592                 /*
593                  * The address is aligned and the number of pages
594                  * covers the full page.
595                  */
596                 new_pte = pfn_pte(old_pfn, new_prot);
597                 __set_pmd_pte(kpte, address, new_pte);
598                 cpa->flags |= CPA_FLUSHTLB;
599                 do_split = 0;
600         }
601
602 out_unlock:
603         spin_unlock(&pgd_lock);
604
605         return do_split;
606 }
607
608 static int
609 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
610                    struct page *base)
611 {
612         pte_t *pbase = (pte_t *)page_address(base);
613         unsigned long ref_pfn, pfn, pfninc = 1;
614         unsigned int i, level;
615         pte_t *tmp;
616         pgprot_t ref_prot;
617
618         spin_lock(&pgd_lock);
619         /*
620          * Check for races, another CPU might have split this page
621          * up for us already:
622          */
623         tmp = _lookup_address_cpa(cpa, address, &level);
624         if (tmp != kpte) {
625                 spin_unlock(&pgd_lock);
626                 return 1;
627         }
628
629         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
630
631         switch (level) {
632         case PG_LEVEL_2M:
633                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
634                 /* clear PSE and promote PAT bit to correct position */
635                 ref_prot = pgprot_large_2_4k(ref_prot);
636                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
637                 break;
638
639         case PG_LEVEL_1G:
640                 ref_prot = pud_pgprot(*(pud_t *)kpte);
641                 ref_pfn = pud_pfn(*(pud_t *)kpte);
642                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
643
644                 /*
645                  * Clear the PSE flags if the PRESENT flag is not set
646                  * otherwise pmd_present/pmd_huge will return true
647                  * even on a non present pmd.
648                  */
649                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
650                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
651                 break;
652
653         default:
654                 spin_unlock(&pgd_lock);
655                 return 1;
656         }
657
658         /*
659          * Set the GLOBAL flags only if the PRESENT flag is set
660          * otherwise pmd/pte_present will return true even on a non
661          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
662          * for the ancient hardware that doesn't support it.
663          */
664         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
665                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
666         else
667                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
668
669         /*
670          * Get the target pfn from the original entry:
671          */
672         pfn = ref_pfn;
673         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
674                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
675
676         if (virt_addr_valid(address)) {
677                 unsigned long pfn = PFN_DOWN(__pa(address));
678
679                 if (pfn_range_is_mapped(pfn, pfn + 1))
680                         split_page_count(level);
681         }
682
683         /*
684          * Install the new, split up pagetable.
685          *
686          * We use the standard kernel pagetable protections for the new
687          * pagetable protections, the actual ptes set above control the
688          * primary protection behavior:
689          */
690         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
691
692         /*
693          * Intel Atom errata AAH41 workaround.
694          *
695          * The real fix should be in hw or in a microcode update, but
696          * we also probabilistically try to reduce the window of having
697          * a large TLB mixed with 4K TLBs while instruction fetches are
698          * going on.
699          */
700         __flush_tlb_all();
701         spin_unlock(&pgd_lock);
702
703         return 0;
704 }
705
706 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
707                             unsigned long address)
708 {
709         struct page *base;
710
711         if (!debug_pagealloc)
712                 spin_unlock(&cpa_lock);
713         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
714         if (!debug_pagealloc)
715                 spin_lock(&cpa_lock);
716         if (!base)
717                 return -ENOMEM;
718
719         if (__split_large_page(cpa, kpte, address, base))
720                 __free_page(base);
721
722         return 0;
723 }
724
725 static bool try_to_free_pte_page(pte_t *pte)
726 {
727         int i;
728
729         for (i = 0; i < PTRS_PER_PTE; i++)
730                 if (!pte_none(pte[i]))
731                         return false;
732
733         free_page((unsigned long)pte);
734         return true;
735 }
736
737 static bool try_to_free_pmd_page(pmd_t *pmd)
738 {
739         int i;
740
741         for (i = 0; i < PTRS_PER_PMD; i++)
742                 if (!pmd_none(pmd[i]))
743                         return false;
744
745         free_page((unsigned long)pmd);
746         return true;
747 }
748
749 static bool try_to_free_pud_page(pud_t *pud)
750 {
751         int i;
752
753         for (i = 0; i < PTRS_PER_PUD; i++)
754                 if (!pud_none(pud[i]))
755                         return false;
756
757         free_page((unsigned long)pud);
758         return true;
759 }
760
761 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
762 {
763         pte_t *pte = pte_offset_kernel(pmd, start);
764
765         while (start < end) {
766                 set_pte(pte, __pte(0));
767
768                 start += PAGE_SIZE;
769                 pte++;
770         }
771
772         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
773                 pmd_clear(pmd);
774                 return true;
775         }
776         return false;
777 }
778
779 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
780                               unsigned long start, unsigned long end)
781 {
782         if (unmap_pte_range(pmd, start, end))
783                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
784                         pud_clear(pud);
785 }
786
787 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
788 {
789         pmd_t *pmd = pmd_offset(pud, start);
790
791         /*
792          * Not on a 2MB page boundary?
793          */
794         if (start & (PMD_SIZE - 1)) {
795                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
796                 unsigned long pre_end = min_t(unsigned long, end, next_page);
797
798                 __unmap_pmd_range(pud, pmd, start, pre_end);
799
800                 start = pre_end;
801                 pmd++;
802         }
803
804         /*
805          * Try to unmap in 2M chunks.
806          */
807         while (end - start >= PMD_SIZE) {
808                 if (pmd_large(*pmd))
809                         pmd_clear(pmd);
810                 else
811                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
812
813                 start += PMD_SIZE;
814                 pmd++;
815         }
816
817         /*
818          * 4K leftovers?
819          */
820         if (start < end)
821                 return __unmap_pmd_range(pud, pmd, start, end);
822
823         /*
824          * Try again to free the PMD page if haven't succeeded above.
825          */
826         if (!pud_none(*pud))
827                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
828                         pud_clear(pud);
829 }
830
831 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
832 {
833         pud_t *pud = pud_offset(pgd, start);
834
835         /*
836          * Not on a GB page boundary?
837          */
838         if (start & (PUD_SIZE - 1)) {
839                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
840                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
841
842                 unmap_pmd_range(pud, start, pre_end);
843
844                 start = pre_end;
845                 pud++;
846         }
847
848         /*
849          * Try to unmap in 1G chunks?
850          */
851         while (end - start >= PUD_SIZE) {
852
853                 if (pud_large(*pud))
854                         pud_clear(pud);
855                 else
856                         unmap_pmd_range(pud, start, start + PUD_SIZE);
857
858                 start += PUD_SIZE;
859                 pud++;
860         }
861
862         /*
863          * 2M leftovers?
864          */
865         if (start < end)
866                 unmap_pmd_range(pud, start, end);
867
868         /*
869          * No need to try to free the PUD page because we'll free it in
870          * populate_pgd's error path
871          */
872 }
873
874 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
875 {
876         pgd_t *pgd_entry = root + pgd_index(addr);
877
878         unmap_pud_range(pgd_entry, addr, end);
879
880         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
881                 pgd_clear(pgd_entry);
882 }
883
884 static int alloc_pte_page(pmd_t *pmd)
885 {
886         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
887         if (!pte)
888                 return -1;
889
890         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
891         return 0;
892 }
893
894 static int alloc_pmd_page(pud_t *pud)
895 {
896         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
897         if (!pmd)
898                 return -1;
899
900         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
901         return 0;
902 }
903
904 static void populate_pte(struct cpa_data *cpa,
905                          unsigned long start, unsigned long end,
906                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
907 {
908         pte_t *pte;
909
910         pte = pte_offset_kernel(pmd, start);
911
912         /*
913          * Set the GLOBAL flags only if the PRESENT flag is
914          * set otherwise pte_present will return true even on
915          * a non present pte. The canon_pgprot will clear
916          * _PAGE_GLOBAL for the ancient hardware that doesn't
917          * support it.
918          */
919         if (pgprot_val(pgprot) & _PAGE_PRESENT)
920                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
921         else
922                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
923
924         pgprot = canon_pgprot(pgprot);
925
926         while (num_pages-- && start < end) {
927                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
928
929                 start    += PAGE_SIZE;
930                 cpa->pfn++;
931                 pte++;
932         }
933 }
934
935 static int populate_pmd(struct cpa_data *cpa,
936                         unsigned long start, unsigned long end,
937                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
938 {
939         unsigned int cur_pages = 0;
940         pmd_t *pmd;
941         pgprot_t pmd_pgprot;
942
943         /*
944          * Not on a 2M boundary?
945          */
946         if (start & (PMD_SIZE - 1)) {
947                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
948                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
949
950                 pre_end   = min_t(unsigned long, pre_end, next_page);
951                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
952                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
953
954                 /*
955                  * Need a PTE page?
956                  */
957                 pmd = pmd_offset(pud, start);
958                 if (pmd_none(*pmd))
959                         if (alloc_pte_page(pmd))
960                                 return -1;
961
962                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
963
964                 start = pre_end;
965         }
966
967         /*
968          * We mapped them all?
969          */
970         if (num_pages == cur_pages)
971                 return cur_pages;
972
973         pmd_pgprot = pgprot_4k_2_large(pgprot);
974
975         while (end - start >= PMD_SIZE) {
976
977                 /*
978                  * We cannot use a 1G page so allocate a PMD page if needed.
979                  */
980                 if (pud_none(*pud))
981                         if (alloc_pmd_page(pud))
982                                 return -1;
983
984                 pmd = pmd_offset(pud, start);
985
986                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
987                                    massage_pgprot(pmd_pgprot)));
988
989                 start     += PMD_SIZE;
990                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
991                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
992         }
993
994         /*
995          * Map trailing 4K pages.
996          */
997         if (start < end) {
998                 pmd = pmd_offset(pud, start);
999                 if (pmd_none(*pmd))
1000                         if (alloc_pte_page(pmd))
1001                                 return -1;
1002
1003                 populate_pte(cpa, start, end, num_pages - cur_pages,
1004                              pmd, pgprot);
1005         }
1006         return num_pages;
1007 }
1008
1009 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1010                         pgprot_t pgprot)
1011 {
1012         pud_t *pud;
1013         unsigned long end;
1014         int cur_pages = 0;
1015         pgprot_t pud_pgprot;
1016
1017         end = start + (cpa->numpages << PAGE_SHIFT);
1018
1019         /*
1020          * Not on a Gb page boundary? => map everything up to it with
1021          * smaller pages.
1022          */
1023         if (start & (PUD_SIZE - 1)) {
1024                 unsigned long pre_end;
1025                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1026
1027                 pre_end   = min_t(unsigned long, end, next_page);
1028                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1029                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1030
1031                 pud = pud_offset(pgd, start);
1032
1033                 /*
1034                  * Need a PMD page?
1035                  */
1036                 if (pud_none(*pud))
1037                         if (alloc_pmd_page(pud))
1038                                 return -1;
1039
1040                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1041                                          pud, pgprot);
1042                 if (cur_pages < 0)
1043                         return cur_pages;
1044
1045                 start = pre_end;
1046         }
1047
1048         /* We mapped them all? */
1049         if (cpa->numpages == cur_pages)
1050                 return cur_pages;
1051
1052         pud = pud_offset(pgd, start);
1053         pud_pgprot = pgprot_4k_2_large(pgprot);
1054
1055         /*
1056          * Map everything starting from the Gb boundary, possibly with 1G pages
1057          */
1058         while (end - start >= PUD_SIZE) {
1059                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1060                                    massage_pgprot(pud_pgprot)));
1061
1062                 start     += PUD_SIZE;
1063                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1064                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1065                 pud++;
1066         }
1067
1068         /* Map trailing leftover */
1069         if (start < end) {
1070                 int tmp;
1071
1072                 pud = pud_offset(pgd, start);
1073                 if (pud_none(*pud))
1074                         if (alloc_pmd_page(pud))
1075                                 return -1;
1076
1077                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1078                                    pud, pgprot);
1079                 if (tmp < 0)
1080                         return cur_pages;
1081
1082                 cur_pages += tmp;
1083         }
1084         return cur_pages;
1085 }
1086
1087 /*
1088  * Restrictions for kernel page table do not necessarily apply when mapping in
1089  * an alternate PGD.
1090  */
1091 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1092 {
1093         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1094         pud_t *pud = NULL;      /* shut up gcc */
1095         pgd_t *pgd_entry;
1096         int ret;
1097
1098         pgd_entry = cpa->pgd + pgd_index(addr);
1099
1100         /*
1101          * Allocate a PUD page and hand it down for mapping.
1102          */
1103         if (pgd_none(*pgd_entry)) {
1104                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1105                 if (!pud)
1106                         return -1;
1107
1108                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1109         }
1110
1111         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1112         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1113
1114         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1115         if (ret < 0) {
1116                 unmap_pgd_range(cpa->pgd, addr,
1117                                 addr + (cpa->numpages << PAGE_SHIFT));
1118                 return ret;
1119         }
1120
1121         cpa->numpages = ret;
1122         return 0;
1123 }
1124
1125 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1126                                int primary)
1127 {
1128         if (cpa->pgd)
1129                 return populate_pgd(cpa, vaddr);
1130
1131         /*
1132          * Ignore all non primary paths.
1133          */
1134         if (!primary)
1135                 return 0;
1136
1137         /*
1138          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1139          * to have holes.
1140          * Also set numpages to '1' indicating that we processed cpa req for
1141          * one virtual address page and its pfn. TBD: numpages can be set based
1142          * on the initial value and the level returned by lookup_address().
1143          */
1144         if (within(vaddr, PAGE_OFFSET,
1145                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1146                 cpa->numpages = 1;
1147                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1148                 return 0;
1149         } else {
1150                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1151                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1152                         *cpa->vaddr);
1153
1154                 return -EFAULT;
1155         }
1156 }
1157
1158 static int __change_page_attr(struct cpa_data *cpa, int primary)
1159 {
1160         unsigned long address;
1161         int do_split, err;
1162         unsigned int level;
1163         pte_t *kpte, old_pte;
1164
1165         if (cpa->flags & CPA_PAGES_ARRAY) {
1166                 struct page *page = cpa->pages[cpa->curpage];
1167                 if (unlikely(PageHighMem(page)))
1168                         return 0;
1169                 address = (unsigned long)page_address(page);
1170         } else if (cpa->flags & CPA_ARRAY)
1171                 address = cpa->vaddr[cpa->curpage];
1172         else
1173                 address = *cpa->vaddr;
1174 repeat:
1175         kpte = _lookup_address_cpa(cpa, address, &level);
1176         if (!kpte)
1177                 return __cpa_process_fault(cpa, address, primary);
1178
1179         old_pte = *kpte;
1180         if (!pte_val(old_pte))
1181                 return __cpa_process_fault(cpa, address, primary);
1182
1183         if (level == PG_LEVEL_4K) {
1184                 pte_t new_pte;
1185                 pgprot_t new_prot = pte_pgprot(old_pte);
1186                 unsigned long pfn = pte_pfn(old_pte);
1187
1188                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1189                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1190
1191                 new_prot = static_protections(new_prot, address, pfn);
1192
1193                 /*
1194                  * Set the GLOBAL flags only if the PRESENT flag is
1195                  * set otherwise pte_present will return true even on
1196                  * a non present pte. The canon_pgprot will clear
1197                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1198                  * support it.
1199                  */
1200                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1201                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1202                 else
1203                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1204
1205                 /*
1206                  * We need to keep the pfn from the existing PTE,
1207                  * after all we're only going to change it's attributes
1208                  * not the memory it points to
1209                  */
1210                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1211                 cpa->pfn = pfn;
1212                 /*
1213                  * Do we really change anything ?
1214                  */
1215                 if (pte_val(old_pte) != pte_val(new_pte)) {
1216                         set_pte_atomic(kpte, new_pte);
1217                         cpa->flags |= CPA_FLUSHTLB;
1218                 }
1219                 cpa->numpages = 1;
1220                 return 0;
1221         }
1222
1223         /*
1224          * Check, whether we can keep the large page intact
1225          * and just change the pte:
1226          */
1227         do_split = try_preserve_large_page(kpte, address, cpa);
1228         /*
1229          * When the range fits into the existing large page,
1230          * return. cp->numpages and cpa->tlbflush have been updated in
1231          * try_large_page:
1232          */
1233         if (do_split <= 0)
1234                 return do_split;
1235
1236         /*
1237          * We have to split the large page:
1238          */
1239         err = split_large_page(cpa, kpte, address);
1240         if (!err) {
1241                 /*
1242                  * Do a global flush tlb after splitting the large page
1243                  * and before we do the actual change page attribute in the PTE.
1244                  *
1245                  * With out this, we violate the TLB application note, that says
1246                  * "The TLBs may contain both ordinary and large-page
1247                  *  translations for a 4-KByte range of linear addresses. This
1248                  *  may occur if software modifies the paging structures so that
1249                  *  the page size used for the address range changes. If the two
1250                  *  translations differ with respect to page frame or attributes
1251                  *  (e.g., permissions), processor behavior is undefined and may
1252                  *  be implementation-specific."
1253                  *
1254                  * We do this global tlb flush inside the cpa_lock, so that we
1255                  * don't allow any other cpu, with stale tlb entries change the
1256                  * page attribute in parallel, that also falls into the
1257                  * just split large page entry.
1258                  */
1259                 flush_tlb_all();
1260                 goto repeat;
1261         }
1262
1263         return err;
1264 }
1265
1266 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1267
1268 static int cpa_process_alias(struct cpa_data *cpa)
1269 {
1270         struct cpa_data alias_cpa;
1271         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1272         unsigned long vaddr;
1273         int ret;
1274
1275         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1276                 return 0;
1277
1278         /*
1279          * No need to redo, when the primary call touched the direct
1280          * mapping already:
1281          */
1282         if (cpa->flags & CPA_PAGES_ARRAY) {
1283                 struct page *page = cpa->pages[cpa->curpage];
1284                 if (unlikely(PageHighMem(page)))
1285                         return 0;
1286                 vaddr = (unsigned long)page_address(page);
1287         } else if (cpa->flags & CPA_ARRAY)
1288                 vaddr = cpa->vaddr[cpa->curpage];
1289         else
1290                 vaddr = *cpa->vaddr;
1291
1292         if (!(within(vaddr, PAGE_OFFSET,
1293                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1294
1295                 alias_cpa = *cpa;
1296                 alias_cpa.vaddr = &laddr;
1297                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1298
1299                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1300                 if (ret)
1301                         return ret;
1302         }
1303
1304 #ifdef CONFIG_X86_64
1305         /*
1306          * If the primary call didn't touch the high mapping already
1307          * and the physical address is inside the kernel map, we need
1308          * to touch the high mapped kernel as well:
1309          */
1310         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1311             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1312                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1313                                                __START_KERNEL_map - phys_base;
1314                 alias_cpa = *cpa;
1315                 alias_cpa.vaddr = &temp_cpa_vaddr;
1316                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1317
1318                 /*
1319                  * The high mapping range is imprecise, so ignore the
1320                  * return value.
1321                  */
1322                 __change_page_attr_set_clr(&alias_cpa, 0);
1323         }
1324 #endif
1325
1326         return 0;
1327 }
1328
1329 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1330 {
1331         int ret, numpages = cpa->numpages;
1332
1333         while (numpages) {
1334                 /*
1335                  * Store the remaining nr of pages for the large page
1336                  * preservation check.
1337                  */
1338                 cpa->numpages = numpages;
1339                 /* for array changes, we can't use large page */
1340                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1341                         cpa->numpages = 1;
1342
1343                 if (!debug_pagealloc)
1344                         spin_lock(&cpa_lock);
1345                 ret = __change_page_attr(cpa, checkalias);
1346                 if (!debug_pagealloc)
1347                         spin_unlock(&cpa_lock);
1348                 if (ret)
1349                         return ret;
1350
1351                 if (checkalias) {
1352                         ret = cpa_process_alias(cpa);
1353                         if (ret)
1354                                 return ret;
1355                 }
1356
1357                 /*
1358                  * Adjust the number of pages with the result of the
1359                  * CPA operation. Either a large page has been
1360                  * preserved or a single page update happened.
1361                  */
1362                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1363                 numpages -= cpa->numpages;
1364                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1365                         cpa->curpage++;
1366                 else
1367                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1368
1369         }
1370         return 0;
1371 }
1372
1373 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1374                                     pgprot_t mask_set, pgprot_t mask_clr,
1375                                     int force_split, int in_flag,
1376                                     struct page **pages)
1377 {
1378         struct cpa_data cpa;
1379         int ret, cache, checkalias;
1380         unsigned long baddr = 0;
1381
1382         memset(&cpa, 0, sizeof(cpa));
1383
1384         /*
1385          * Check, if we are requested to change a not supported
1386          * feature:
1387          */
1388         mask_set = canon_pgprot(mask_set);
1389         mask_clr = canon_pgprot(mask_clr);
1390         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1391                 return 0;
1392
1393         /* Ensure we are PAGE_SIZE aligned */
1394         if (in_flag & CPA_ARRAY) {
1395                 int i;
1396                 for (i = 0; i < numpages; i++) {
1397                         if (addr[i] & ~PAGE_MASK) {
1398                                 addr[i] &= PAGE_MASK;
1399                                 WARN_ON_ONCE(1);
1400                         }
1401                 }
1402         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1403                 /*
1404                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1405                  * No need to cehck in that case
1406                  */
1407                 if (*addr & ~PAGE_MASK) {
1408                         *addr &= PAGE_MASK;
1409                         /*
1410                          * People should not be passing in unaligned addresses:
1411                          */
1412                         WARN_ON_ONCE(1);
1413                 }
1414                 /*
1415                  * Save address for cache flush. *addr is modified in the call
1416                  * to __change_page_attr_set_clr() below.
1417                  */
1418                 baddr = *addr;
1419         }
1420
1421         /* Must avoid aliasing mappings in the highmem code */
1422         kmap_flush_unused();
1423
1424         vm_unmap_aliases();
1425
1426         cpa.vaddr = addr;
1427         cpa.pages = pages;
1428         cpa.numpages = numpages;
1429         cpa.mask_set = mask_set;
1430         cpa.mask_clr = mask_clr;
1431         cpa.flags = 0;
1432         cpa.curpage = 0;
1433         cpa.force_split = force_split;
1434
1435         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1436                 cpa.flags |= in_flag;
1437
1438         /* No alias checking for _NX bit modifications */
1439         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1440
1441         ret = __change_page_attr_set_clr(&cpa, checkalias);
1442
1443         /*
1444          * Check whether we really changed something:
1445          */
1446         if (!(cpa.flags & CPA_FLUSHTLB))
1447                 goto out;
1448
1449         /*
1450          * No need to flush, when we did not set any of the caching
1451          * attributes:
1452          */
1453         cache = !!pgprot2cachemode(mask_set);
1454
1455         /*
1456          * On success we use CLFLUSH, when the CPU supports it to
1457          * avoid the WBINVD. If the CPU does not support it and in the
1458          * error case we fall back to cpa_flush_all (which uses
1459          * WBINVD):
1460          */
1461         if (!ret && cpu_has_clflush) {
1462                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1463                         cpa_flush_array(addr, numpages, cache,
1464                                         cpa.flags, pages);
1465                 } else
1466                         cpa_flush_range(baddr, numpages, cache);
1467         } else
1468                 cpa_flush_all(cache);
1469
1470 out:
1471         return ret;
1472 }
1473
1474 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1475                                        pgprot_t mask, int array)
1476 {
1477         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1478                 (array ? CPA_ARRAY : 0), NULL);
1479 }
1480
1481 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1482                                          pgprot_t mask, int array)
1483 {
1484         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1485                 (array ? CPA_ARRAY : 0), NULL);
1486 }
1487
1488 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1489                                        pgprot_t mask)
1490 {
1491         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1492                 CPA_PAGES_ARRAY, pages);
1493 }
1494
1495 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1496                                          pgprot_t mask)
1497 {
1498         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1499                 CPA_PAGES_ARRAY, pages);
1500 }
1501
1502 int _set_memory_uc(unsigned long addr, int numpages)
1503 {
1504         /*
1505          * for now UC MINUS. see comments in ioremap_nocache()
1506          * If you really need strong UC use ioremap_uc(), but note
1507          * that you cannot override IO areas with set_memory_*() as
1508          * these helpers cannot work with IO memory.
1509          */
1510         return change_page_attr_set(&addr, numpages,
1511                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1512                                     0);
1513 }
1514
1515 int set_memory_uc(unsigned long addr, int numpages)
1516 {
1517         int ret;
1518
1519         /*
1520          * for now UC MINUS. see comments in ioremap_nocache()
1521          */
1522         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1523                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1524         if (ret)
1525                 goto out_err;
1526
1527         ret = _set_memory_uc(addr, numpages);
1528         if (ret)
1529                 goto out_free;
1530
1531         return 0;
1532
1533 out_free:
1534         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1535 out_err:
1536         return ret;
1537 }
1538 EXPORT_SYMBOL(set_memory_uc);
1539
1540 static int _set_memory_array(unsigned long *addr, int addrinarray,
1541                 enum page_cache_mode new_type)
1542 {
1543         enum page_cache_mode set_type;
1544         int i, j;
1545         int ret;
1546
1547         for (i = 0; i < addrinarray; i++) {
1548                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1549                                         new_type, NULL);
1550                 if (ret)
1551                         goto out_free;
1552         }
1553
1554         /* If WC, set to UC- first and then WC */
1555         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1556                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1557
1558         ret = change_page_attr_set(addr, addrinarray,
1559                                    cachemode2pgprot(set_type), 1);
1560
1561         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1562                 ret = change_page_attr_set_clr(addr, addrinarray,
1563                                                cachemode2pgprot(
1564                                                 _PAGE_CACHE_MODE_WC),
1565                                                __pgprot(_PAGE_CACHE_MASK),
1566                                                0, CPA_ARRAY, NULL);
1567         if (ret)
1568                 goto out_free;
1569
1570         return 0;
1571
1572 out_free:
1573         for (j = 0; j < i; j++)
1574                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1575
1576         return ret;
1577 }
1578
1579 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1580 {
1581         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1582 }
1583 EXPORT_SYMBOL(set_memory_array_uc);
1584
1585 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1586 {
1587         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1588 }
1589 EXPORT_SYMBOL(set_memory_array_wc);
1590
1591 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1592 {
1593         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1594 }
1595 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1596
1597 int _set_memory_wc(unsigned long addr, int numpages)
1598 {
1599         int ret;
1600         unsigned long addr_copy = addr;
1601
1602         ret = change_page_attr_set(&addr, numpages,
1603                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1604                                    0);
1605         if (!ret) {
1606                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1607                                                cachemode2pgprot(
1608                                                 _PAGE_CACHE_MODE_WC),
1609                                                __pgprot(_PAGE_CACHE_MASK),
1610                                                0, 0, NULL);
1611         }
1612         return ret;
1613 }
1614
1615 int set_memory_wc(unsigned long addr, int numpages)
1616 {
1617         int ret;
1618
1619         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1620                 _PAGE_CACHE_MODE_WC, NULL);
1621         if (ret)
1622                 return ret;
1623
1624         ret = _set_memory_wc(addr, numpages);
1625         if (ret)
1626                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1627
1628         return ret;
1629 }
1630 EXPORT_SYMBOL(set_memory_wc);
1631
1632 int _set_memory_wt(unsigned long addr, int numpages)
1633 {
1634         return change_page_attr_set(&addr, numpages,
1635                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1636 }
1637
1638 int set_memory_wt(unsigned long addr, int numpages)
1639 {
1640         int ret;
1641
1642         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1643                               _PAGE_CACHE_MODE_WT, NULL);
1644         if (ret)
1645                 return ret;
1646
1647         ret = _set_memory_wt(addr, numpages);
1648         if (ret)
1649                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1650
1651         return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(set_memory_wt);
1654
1655 int _set_memory_wb(unsigned long addr, int numpages)
1656 {
1657         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1658         return change_page_attr_clear(&addr, numpages,
1659                                       __pgprot(_PAGE_CACHE_MASK), 0);
1660 }
1661
1662 int set_memory_wb(unsigned long addr, int numpages)
1663 {
1664         int ret;
1665
1666         ret = _set_memory_wb(addr, numpages);
1667         if (ret)
1668                 return ret;
1669
1670         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1671         return 0;
1672 }
1673 EXPORT_SYMBOL(set_memory_wb);
1674
1675 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1676 {
1677         int i;
1678         int ret;
1679
1680         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1681         ret = change_page_attr_clear(addr, addrinarray,
1682                                       __pgprot(_PAGE_CACHE_MASK), 1);
1683         if (ret)
1684                 return ret;
1685
1686         for (i = 0; i < addrinarray; i++)
1687                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1688
1689         return 0;
1690 }
1691 EXPORT_SYMBOL(set_memory_array_wb);
1692
1693 int set_memory_x(unsigned long addr, int numpages)
1694 {
1695         if (!(__supported_pte_mask & _PAGE_NX))
1696                 return 0;
1697
1698         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1699 }
1700 EXPORT_SYMBOL(set_memory_x);
1701
1702 int set_memory_nx(unsigned long addr, int numpages)
1703 {
1704         if (!(__supported_pte_mask & _PAGE_NX))
1705                 return 0;
1706
1707         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1708 }
1709 EXPORT_SYMBOL(set_memory_nx);
1710
1711 int set_memory_ro(unsigned long addr, int numpages)
1712 {
1713         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1714 }
1715
1716 int set_memory_rw(unsigned long addr, int numpages)
1717 {
1718         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1719 }
1720
1721 int set_memory_np(unsigned long addr, int numpages)
1722 {
1723         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1724 }
1725
1726 int set_memory_4k(unsigned long addr, int numpages)
1727 {
1728         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1729                                         __pgprot(0), 1, 0, NULL);
1730 }
1731
1732 int set_pages_uc(struct page *page, int numpages)
1733 {
1734         unsigned long addr = (unsigned long)page_address(page);
1735
1736         return set_memory_uc(addr, numpages);
1737 }
1738 EXPORT_SYMBOL(set_pages_uc);
1739
1740 static int _set_pages_array(struct page **pages, int addrinarray,
1741                 enum page_cache_mode new_type)
1742 {
1743         unsigned long start;
1744         unsigned long end;
1745         enum page_cache_mode set_type;
1746         int i;
1747         int free_idx;
1748         int ret;
1749
1750         for (i = 0; i < addrinarray; i++) {
1751                 if (PageHighMem(pages[i]))
1752                         continue;
1753                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1754                 end = start + PAGE_SIZE;
1755                 if (reserve_memtype(start, end, new_type, NULL))
1756                         goto err_out;
1757         }
1758
1759         /* If WC, set to UC- first and then WC */
1760         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1761                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1762
1763         ret = cpa_set_pages_array(pages, addrinarray,
1764                                   cachemode2pgprot(set_type));
1765         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1766                 ret = change_page_attr_set_clr(NULL, addrinarray,
1767                                                cachemode2pgprot(
1768                                                 _PAGE_CACHE_MODE_WC),
1769                                                __pgprot(_PAGE_CACHE_MASK),
1770                                                0, CPA_PAGES_ARRAY, pages);
1771         if (ret)
1772                 goto err_out;
1773         return 0; /* Success */
1774 err_out:
1775         free_idx = i;
1776         for (i = 0; i < free_idx; i++) {
1777                 if (PageHighMem(pages[i]))
1778                         continue;
1779                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1780                 end = start + PAGE_SIZE;
1781                 free_memtype(start, end);
1782         }
1783         return -EINVAL;
1784 }
1785
1786 int set_pages_array_uc(struct page **pages, int addrinarray)
1787 {
1788         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1789 }
1790 EXPORT_SYMBOL(set_pages_array_uc);
1791
1792 int set_pages_array_wc(struct page **pages, int addrinarray)
1793 {
1794         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1795 }
1796 EXPORT_SYMBOL(set_pages_array_wc);
1797
1798 int set_pages_array_wt(struct page **pages, int addrinarray)
1799 {
1800         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1801 }
1802 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1803
1804 int set_pages_wb(struct page *page, int numpages)
1805 {
1806         unsigned long addr = (unsigned long)page_address(page);
1807
1808         return set_memory_wb(addr, numpages);
1809 }
1810 EXPORT_SYMBOL(set_pages_wb);
1811
1812 int set_pages_array_wb(struct page **pages, int addrinarray)
1813 {
1814         int retval;
1815         unsigned long start;
1816         unsigned long end;
1817         int i;
1818
1819         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1820         retval = cpa_clear_pages_array(pages, addrinarray,
1821                         __pgprot(_PAGE_CACHE_MASK));
1822         if (retval)
1823                 return retval;
1824
1825         for (i = 0; i < addrinarray; i++) {
1826                 if (PageHighMem(pages[i]))
1827                         continue;
1828                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1829                 end = start + PAGE_SIZE;
1830                 free_memtype(start, end);
1831         }
1832
1833         return 0;
1834 }
1835 EXPORT_SYMBOL(set_pages_array_wb);
1836
1837 int set_pages_x(struct page *page, int numpages)
1838 {
1839         unsigned long addr = (unsigned long)page_address(page);
1840
1841         return set_memory_x(addr, numpages);
1842 }
1843 EXPORT_SYMBOL(set_pages_x);
1844
1845 int set_pages_nx(struct page *page, int numpages)
1846 {
1847         unsigned long addr = (unsigned long)page_address(page);
1848
1849         return set_memory_nx(addr, numpages);
1850 }
1851 EXPORT_SYMBOL(set_pages_nx);
1852
1853 int set_pages_ro(struct page *page, int numpages)
1854 {
1855         unsigned long addr = (unsigned long)page_address(page);
1856
1857         return set_memory_ro(addr, numpages);
1858 }
1859
1860 int set_pages_rw(struct page *page, int numpages)
1861 {
1862         unsigned long addr = (unsigned long)page_address(page);
1863
1864         return set_memory_rw(addr, numpages);
1865 }
1866
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868
1869 static int __set_pages_p(struct page *page, int numpages)
1870 {
1871         unsigned long tempaddr = (unsigned long) page_address(page);
1872         struct cpa_data cpa = { .vaddr = &tempaddr,
1873                                 .pgd = NULL,
1874                                 .numpages = numpages,
1875                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1876                                 .mask_clr = __pgprot(0),
1877                                 .flags = 0};
1878
1879         /*
1880          * No alias checking needed for setting present flag. otherwise,
1881          * we may need to break large pages for 64-bit kernel text
1882          * mappings (this adds to complexity if we want to do this from
1883          * atomic context especially). Let's keep it simple!
1884          */
1885         return __change_page_attr_set_clr(&cpa, 0);
1886 }
1887
1888 static int __set_pages_np(struct page *page, int numpages)
1889 {
1890         unsigned long tempaddr = (unsigned long) page_address(page);
1891         struct cpa_data cpa = { .vaddr = &tempaddr,
1892                                 .pgd = NULL,
1893                                 .numpages = numpages,
1894                                 .mask_set = __pgprot(0),
1895                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1896                                 .flags = 0};
1897
1898         /*
1899          * No alias checking needed for setting not present flag. otherwise,
1900          * we may need to break large pages for 64-bit kernel text
1901          * mappings (this adds to complexity if we want to do this from
1902          * atomic context especially). Let's keep it simple!
1903          */
1904         return __change_page_attr_set_clr(&cpa, 0);
1905 }
1906
1907 void __kernel_map_pages(struct page *page, int numpages, int enable)
1908 {
1909         if (PageHighMem(page))
1910                 return;
1911         if (!enable) {
1912                 debug_check_no_locks_freed(page_address(page),
1913                                            numpages * PAGE_SIZE);
1914         }
1915
1916         /*
1917          * The return value is ignored as the calls cannot fail.
1918          * Large pages for identity mappings are not used at boot time
1919          * and hence no memory allocations during large page split.
1920          */
1921         if (enable)
1922                 __set_pages_p(page, numpages);
1923         else
1924                 __set_pages_np(page, numpages);
1925
1926         /*
1927          * We should perform an IPI and flush all tlbs,
1928          * but that can deadlock->flush only current cpu:
1929          */
1930         __flush_tlb_all();
1931
1932         arch_flush_lazy_mmu_mode();
1933 }
1934
1935 #ifdef CONFIG_HIBERNATION
1936
1937 bool kernel_page_present(struct page *page)
1938 {
1939         unsigned int level;
1940         pte_t *pte;
1941
1942         if (PageHighMem(page))
1943                 return false;
1944
1945         pte = lookup_address((unsigned long)page_address(page), &level);
1946         return (pte_val(*pte) & _PAGE_PRESENT);
1947 }
1948
1949 #endif /* CONFIG_HIBERNATION */
1950
1951 #endif /* CONFIG_DEBUG_PAGEALLOC */
1952
1953 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1954                             unsigned numpages, unsigned long page_flags)
1955 {
1956         int retval = -EINVAL;
1957
1958         struct cpa_data cpa = {
1959                 .vaddr = &address,
1960                 .pfn = pfn,
1961                 .pgd = pgd,
1962                 .numpages = numpages,
1963                 .mask_set = __pgprot(0),
1964                 .mask_clr = __pgprot(0),
1965                 .flags = 0,
1966         };
1967
1968         if (!(__supported_pte_mask & _PAGE_NX))
1969                 goto out;
1970
1971         if (!(page_flags & _PAGE_NX))
1972                 cpa.mask_clr = __pgprot(_PAGE_NX);
1973
1974         if (!(page_flags & _PAGE_RW))
1975                 cpa.mask_clr = __pgprot(_PAGE_RW);
1976
1977         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1978
1979         retval = __change_page_attr_set_clr(&cpa, 0);
1980         __flush_tlb_all();
1981
1982 out:
1983         return retval;
1984 }
1985
1986 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1987                                unsigned numpages)
1988 {
1989         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1990 }
1991
1992 /*
1993  * The testcases use internal knowledge of the implementation that shouldn't
1994  * be exposed to the rest of the kernel. Include these directly here.
1995  */
1996 #ifdef CONFIG_CPA_DEBUG
1997 #include "pageattr-test.c"
1998 #endif