Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6
[cascardo/linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18                         = { &init_mm, 0, };
19
20 /*
21  *      Smarter SMP flushing macros.
22  *              c/o Linus Torvalds.
23  *
24  *      These mean you can really definitely utterly forget about
25  *      writing to user space from interrupts. (Its not allowed anyway).
26  *
27  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
28  *
29  *      More scalable flush, from Andi Kleen
30  *
31  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32  */
33
34 struct flush_tlb_info {
35         struct mm_struct *flush_mm;
36         unsigned long flush_start;
37         unsigned long flush_end;
38 };
39
40 /*
41  * We cannot call mmdrop() because we are in interrupt context,
42  * instead update mm->cpu_vm_mask.
43  */
44 void leave_mm(int cpu)
45 {
46         struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
47         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
48                 BUG();
49         if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
50                 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
51                 load_cr3(swapper_pg_dir);
52                 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
53         }
54 }
55 EXPORT_SYMBOL_GPL(leave_mm);
56
57 /*
58  * The flush IPI assumes that a thread switch happens in this order:
59  * [cpu0: the cpu that switches]
60  * 1) switch_mm() either 1a) or 1b)
61  * 1a) thread switch to a different mm
62  * 1a1) set cpu_tlbstate to TLBSTATE_OK
63  *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
64  *      if cpu0 was in lazy tlb mode.
65  * 1a2) update cpu active_mm
66  *      Now cpu0 accepts tlb flushes for the new mm.
67  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
68  *      Now the other cpus will send tlb flush ipis.
69  * 1a4) change cr3.
70  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
71  *      Stop ipi delivery for the old mm. This is not synchronized with
72  *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
73  *      mm, and in the worst case we perform a superfluous tlb flush.
74  * 1b) thread switch without mm change
75  *      cpu active_mm is correct, cpu0 already handles flush ipis.
76  * 1b1) set cpu_tlbstate to TLBSTATE_OK
77  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
78  *      Atomically set the bit [other cpus will start sending flush ipis],
79  *      and test the bit.
80  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
81  * 2) switch %%esp, ie current
82  *
83  * The interrupt must handle 2 special cases:
84  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
85  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
86  *   runs in kernel space, the cpu could load tlb entries for user space
87  *   pages.
88  *
89  * The good news is that cpu_tlbstate is local to each cpu, no
90  * write/read ordering problems.
91  */
92
93 /*
94  * TLB flush funcation:
95  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
96  * 2) Leave the mm if we are in the lazy tlb mode.
97  */
98 static void flush_tlb_func(void *info)
99 {
100         struct flush_tlb_info *f = info;
101
102         inc_irq_stat(irq_tlb_count);
103
104         if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
105                 return;
106         if (!f->flush_end)
107                 f->flush_end = f->flush_start + PAGE_SIZE;
108
109         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
110         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
111                 if (f->flush_end == TLB_FLUSH_ALL) {
112                         local_flush_tlb();
113                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
114                 } else {
115                         unsigned long addr;
116                         unsigned long nr_pages =
117                                 f->flush_end - f->flush_start / PAGE_SIZE;
118                         addr = f->flush_start;
119                         while (addr < f->flush_end) {
120                                 __flush_tlb_single(addr);
121                                 addr += PAGE_SIZE;
122                         }
123                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
124                 }
125         } else
126                 leave_mm(smp_processor_id());
127
128 }
129
130 void native_flush_tlb_others(const struct cpumask *cpumask,
131                                  struct mm_struct *mm, unsigned long start,
132                                  unsigned long end)
133 {
134         struct flush_tlb_info info;
135         info.flush_mm = mm;
136         info.flush_start = start;
137         info.flush_end = end;
138
139         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
140         if (is_uv_system()) {
141                 unsigned int cpu;
142
143                 cpu = smp_processor_id();
144                 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
145                 if (cpumask)
146                         smp_call_function_many(cpumask, flush_tlb_func,
147                                                                 &info, 1);
148                 return;
149         }
150         smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
151 }
152
153 void flush_tlb_current_task(void)
154 {
155         struct mm_struct *mm = current->mm;
156
157         preempt_disable();
158
159         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
160         local_flush_tlb();
161         trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
162         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
163                 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
164         preempt_enable();
165 }
166
167 /*
168  * See Documentation/x86/tlb.txt for details.  We choose 33
169  * because it is large enough to cover the vast majority (at
170  * least 95%) of allocations, and is small enough that we are
171  * confident it will not cause too much overhead.  Each single
172  * flush is about 100 ns, so this caps the maximum overhead at
173  * _about_ 3,000 ns.
174  *
175  * This is in units of pages.
176  */
177 unsigned long tlb_single_page_flush_ceiling = 33;
178
179 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
180                                 unsigned long end, unsigned long vmflag)
181 {
182         unsigned long addr;
183         /* do a global flush by default */
184         unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
185
186         preempt_disable();
187         if (current->active_mm != mm)
188                 goto out;
189
190         if (!current->mm) {
191                 leave_mm(smp_processor_id());
192                 goto out;
193         }
194
195         if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
196                 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
197
198         if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
199                 base_pages_to_flush = TLB_FLUSH_ALL;
200                 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
201                 local_flush_tlb();
202         } else {
203                 /* flush range by one by one 'invlpg' */
204                 for (addr = start; addr < end;  addr += PAGE_SIZE) {
205                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
206                         __flush_tlb_single(addr);
207                 }
208         }
209         trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
210 out:
211         if (base_pages_to_flush == TLB_FLUSH_ALL) {
212                 start = 0UL;
213                 end = TLB_FLUSH_ALL;
214         }
215         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
216                 flush_tlb_others(mm_cpumask(mm), mm, start, end);
217         preempt_enable();
218 }
219
220 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
221 {
222         struct mm_struct *mm = vma->vm_mm;
223
224         preempt_disable();
225
226         if (current->active_mm == mm) {
227                 if (current->mm)
228                         __flush_tlb_one(start);
229                 else
230                         leave_mm(smp_processor_id());
231         }
232
233         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
234                 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
235
236         preempt_enable();
237 }
238
239 static void do_flush_tlb_all(void *info)
240 {
241         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
242         __flush_tlb_all();
243         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
244                 leave_mm(smp_processor_id());
245 }
246
247 void flush_tlb_all(void)
248 {
249         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
250         on_each_cpu(do_flush_tlb_all, NULL, 1);
251 }
252
253 static void do_kernel_range_flush(void *info)
254 {
255         struct flush_tlb_info *f = info;
256         unsigned long addr;
257
258         /* flush range by one by one 'invlpg' */
259         for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
260                 __flush_tlb_single(addr);
261 }
262
263 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
264 {
265
266         /* Balance as user space task's flush, a bit conservative */
267         if (end == TLB_FLUSH_ALL ||
268             (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
269                 on_each_cpu(do_flush_tlb_all, NULL, 1);
270         } else {
271                 struct flush_tlb_info info;
272                 info.flush_start = start;
273                 info.flush_end = end;
274                 on_each_cpu(do_kernel_range_flush, &info, 1);
275         }
276 }
277
278 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
279                              size_t count, loff_t *ppos)
280 {
281         char buf[32];
282         unsigned int len;
283
284         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
285         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
286 }
287
288 static ssize_t tlbflush_write_file(struct file *file,
289                  const char __user *user_buf, size_t count, loff_t *ppos)
290 {
291         char buf[32];
292         ssize_t len;
293         int ceiling;
294
295         len = min(count, sizeof(buf) - 1);
296         if (copy_from_user(buf, user_buf, len))
297                 return -EFAULT;
298
299         buf[len] = '\0';
300         if (kstrtoint(buf, 0, &ceiling))
301                 return -EINVAL;
302
303         if (ceiling < 0)
304                 return -EINVAL;
305
306         tlb_single_page_flush_ceiling = ceiling;
307         return count;
308 }
309
310 static const struct file_operations fops_tlbflush = {
311         .read = tlbflush_read_file,
312         .write = tlbflush_write_file,
313         .llseek = default_llseek,
314 };
315
316 static int __init create_tlb_single_page_flush_ceiling(void)
317 {
318         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
319                             arch_debugfs_dir, NULL, &fops_tlbflush);
320         return 0;
321 }
322 late_initcall(create_tlb_single_page_flush_ceiling);