Merge branch 'drm-fixes-3.17' of git://people.freedesktop.org/~agd5f/linux into drm...
[cascardo/linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18                         = { &init_mm, 0, };
19
20 /*
21  *      Smarter SMP flushing macros.
22  *              c/o Linus Torvalds.
23  *
24  *      These mean you can really definitely utterly forget about
25  *      writing to user space from interrupts. (Its not allowed anyway).
26  *
27  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
28  *
29  *      More scalable flush, from Andi Kleen
30  *
31  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32  */
33
34 struct flush_tlb_info {
35         struct mm_struct *flush_mm;
36         unsigned long flush_start;
37         unsigned long flush_end;
38 };
39
40 /*
41  * We cannot call mmdrop() because we are in interrupt context,
42  * instead update mm->cpu_vm_mask.
43  */
44 void leave_mm(int cpu)
45 {
46         struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
47         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
48                 BUG();
49         if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
50                 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
51                 load_cr3(swapper_pg_dir);
52                 /*
53                  * This gets called in the idle path where RCU
54                  * functions differently.  Tracing normally
55                  * uses RCU, so we have to call the tracepoint
56                  * specially here.
57                  */
58                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
59         }
60 }
61 EXPORT_SYMBOL_GPL(leave_mm);
62
63 /*
64  * The flush IPI assumes that a thread switch happens in this order:
65  * [cpu0: the cpu that switches]
66  * 1) switch_mm() either 1a) or 1b)
67  * 1a) thread switch to a different mm
68  * 1a1) set cpu_tlbstate to TLBSTATE_OK
69  *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
70  *      if cpu0 was in lazy tlb mode.
71  * 1a2) update cpu active_mm
72  *      Now cpu0 accepts tlb flushes for the new mm.
73  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
74  *      Now the other cpus will send tlb flush ipis.
75  * 1a4) change cr3.
76  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
77  *      Stop ipi delivery for the old mm. This is not synchronized with
78  *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
79  *      mm, and in the worst case we perform a superfluous tlb flush.
80  * 1b) thread switch without mm change
81  *      cpu active_mm is correct, cpu0 already handles flush ipis.
82  * 1b1) set cpu_tlbstate to TLBSTATE_OK
83  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
84  *      Atomically set the bit [other cpus will start sending flush ipis],
85  *      and test the bit.
86  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
87  * 2) switch %%esp, ie current
88  *
89  * The interrupt must handle 2 special cases:
90  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
91  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
92  *   runs in kernel space, the cpu could load tlb entries for user space
93  *   pages.
94  *
95  * The good news is that cpu_tlbstate is local to each cpu, no
96  * write/read ordering problems.
97  */
98
99 /*
100  * TLB flush funcation:
101  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
102  * 2) Leave the mm if we are in the lazy tlb mode.
103  */
104 static void flush_tlb_func(void *info)
105 {
106         struct flush_tlb_info *f = info;
107
108         inc_irq_stat(irq_tlb_count);
109
110         if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
111                 return;
112         if (!f->flush_end)
113                 f->flush_end = f->flush_start + PAGE_SIZE;
114
115         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
116         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
117                 if (f->flush_end == TLB_FLUSH_ALL) {
118                         local_flush_tlb();
119                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
120                 } else {
121                         unsigned long addr;
122                         unsigned long nr_pages =
123                                 f->flush_end - f->flush_start / PAGE_SIZE;
124                         addr = f->flush_start;
125                         while (addr < f->flush_end) {
126                                 __flush_tlb_single(addr);
127                                 addr += PAGE_SIZE;
128                         }
129                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
130                 }
131         } else
132                 leave_mm(smp_processor_id());
133
134 }
135
136 void native_flush_tlb_others(const struct cpumask *cpumask,
137                                  struct mm_struct *mm, unsigned long start,
138                                  unsigned long end)
139 {
140         struct flush_tlb_info info;
141         info.flush_mm = mm;
142         info.flush_start = start;
143         info.flush_end = end;
144
145         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
146         if (is_uv_system()) {
147                 unsigned int cpu;
148
149                 cpu = smp_processor_id();
150                 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
151                 if (cpumask)
152                         smp_call_function_many(cpumask, flush_tlb_func,
153                                                                 &info, 1);
154                 return;
155         }
156         smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
157 }
158
159 void flush_tlb_current_task(void)
160 {
161         struct mm_struct *mm = current->mm;
162
163         preempt_disable();
164
165         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
166         local_flush_tlb();
167         trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
168         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
169                 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
170         preempt_enable();
171 }
172
173 /*
174  * See Documentation/x86/tlb.txt for details.  We choose 33
175  * because it is large enough to cover the vast majority (at
176  * least 95%) of allocations, and is small enough that we are
177  * confident it will not cause too much overhead.  Each single
178  * flush is about 100 ns, so this caps the maximum overhead at
179  * _about_ 3,000 ns.
180  *
181  * This is in units of pages.
182  */
183 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
184
185 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
186                                 unsigned long end, unsigned long vmflag)
187 {
188         unsigned long addr;
189         /* do a global flush by default */
190         unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
191
192         preempt_disable();
193         if (current->active_mm != mm)
194                 goto out;
195
196         if (!current->mm) {
197                 leave_mm(smp_processor_id());
198                 goto out;
199         }
200
201         if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
202                 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
203
204         if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
205                 base_pages_to_flush = TLB_FLUSH_ALL;
206                 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
207                 local_flush_tlb();
208         } else {
209                 /* flush range by one by one 'invlpg' */
210                 for (addr = start; addr < end;  addr += PAGE_SIZE) {
211                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
212                         __flush_tlb_single(addr);
213                 }
214         }
215         trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
216 out:
217         if (base_pages_to_flush == TLB_FLUSH_ALL) {
218                 start = 0UL;
219                 end = TLB_FLUSH_ALL;
220         }
221         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
222                 flush_tlb_others(mm_cpumask(mm), mm, start, end);
223         preempt_enable();
224 }
225
226 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
227 {
228         struct mm_struct *mm = vma->vm_mm;
229
230         preempt_disable();
231
232         if (current->active_mm == mm) {
233                 if (current->mm)
234                         __flush_tlb_one(start);
235                 else
236                         leave_mm(smp_processor_id());
237         }
238
239         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
240                 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
241
242         preempt_enable();
243 }
244
245 static void do_flush_tlb_all(void *info)
246 {
247         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
248         __flush_tlb_all();
249         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
250                 leave_mm(smp_processor_id());
251 }
252
253 void flush_tlb_all(void)
254 {
255         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
256         on_each_cpu(do_flush_tlb_all, NULL, 1);
257 }
258
259 static void do_kernel_range_flush(void *info)
260 {
261         struct flush_tlb_info *f = info;
262         unsigned long addr;
263
264         /* flush range by one by one 'invlpg' */
265         for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
266                 __flush_tlb_single(addr);
267 }
268
269 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
270 {
271
272         /* Balance as user space task's flush, a bit conservative */
273         if (end == TLB_FLUSH_ALL ||
274             (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
275                 on_each_cpu(do_flush_tlb_all, NULL, 1);
276         } else {
277                 struct flush_tlb_info info;
278                 info.flush_start = start;
279                 info.flush_end = end;
280                 on_each_cpu(do_kernel_range_flush, &info, 1);
281         }
282 }
283
284 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
285                              size_t count, loff_t *ppos)
286 {
287         char buf[32];
288         unsigned int len;
289
290         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
291         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
292 }
293
294 static ssize_t tlbflush_write_file(struct file *file,
295                  const char __user *user_buf, size_t count, loff_t *ppos)
296 {
297         char buf[32];
298         ssize_t len;
299         int ceiling;
300
301         len = min(count, sizeof(buf) - 1);
302         if (copy_from_user(buf, user_buf, len))
303                 return -EFAULT;
304
305         buf[len] = '\0';
306         if (kstrtoint(buf, 0, &ceiling))
307                 return -EINVAL;
308
309         if (ceiling < 0)
310                 return -EINVAL;
311
312         tlb_single_page_flush_ceiling = ceiling;
313         return count;
314 }
315
316 static const struct file_operations fops_tlbflush = {
317         .read = tlbflush_read_file,
318         .write = tlbflush_write_file,
319         .llseek = default_llseek,
320 };
321
322 static int __init create_tlb_single_page_flush_ceiling(void)
323 {
324         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
325                             arch_debugfs_dir, NULL, &fops_tlbflush);
326         return 0;
327 }
328 late_initcall(create_tlb_single_page_flush_ceiling);