Merge tag 'pinctrl-v3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[cascardo/linux.git] / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35
36 #include "../base.h"
37 #include "power.h"
38
39 typedef int (*pm_callback_t)(struct device *);
40
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60
61 static int async_error;
62
63 static char *pm_verb(int event)
64 {
65         switch (event) {
66         case PM_EVENT_SUSPEND:
67                 return "suspend";
68         case PM_EVENT_RESUME:
69                 return "resume";
70         case PM_EVENT_FREEZE:
71                 return "freeze";
72         case PM_EVENT_QUIESCE:
73                 return "quiesce";
74         case PM_EVENT_HIBERNATE:
75                 return "hibernate";
76         case PM_EVENT_THAW:
77                 return "thaw";
78         case PM_EVENT_RESTORE:
79                 return "restore";
80         case PM_EVENT_RECOVER:
81                 return "recover";
82         default:
83                 return "(unknown PM event)";
84         }
85 }
86
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93         dev->power.is_prepared = false;
94         dev->power.is_suspended = false;
95         dev->power.is_noirq_suspended = false;
96         dev->power.is_late_suspended = false;
97         init_completion(&dev->power.completion);
98         complete_all(&dev->power.completion);
99         dev->power.wakeup = NULL;
100         INIT_LIST_HEAD(&dev->power.entry);
101 }
102
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108         mutex_lock(&dpm_list_mtx);
109 }
110
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116         mutex_unlock(&dpm_list_mtx);
117 }
118
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125         pr_debug("PM: Adding info for %s:%s\n",
126                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127         mutex_lock(&dpm_list_mtx);
128         if (dev->parent && dev->parent->power.is_prepared)
129                 dev_warn(dev, "parent %s should not be sleeping\n",
130                         dev_name(dev->parent));
131         list_add_tail(&dev->power.entry, &dpm_list);
132         mutex_unlock(&dpm_list_mtx);
133 }
134
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141         pr_debug("PM: Removing info for %s:%s\n",
142                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143         complete_all(&dev->power.completion);
144         mutex_lock(&dpm_list_mtx);
145         list_del_init(&dev->power.entry);
146         mutex_unlock(&dpm_list_mtx);
147         device_wakeup_disable(dev);
148         pm_runtime_remove(dev);
149 }
150
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158         pr_debug("PM: Moving %s:%s before %s:%s\n",
159                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161         /* Delete deva from dpm_list and reinsert before devb. */
162         list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172         pr_debug("PM: Moving %s:%s after %s:%s\n",
173                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175         /* Delete deva from dpm_list and reinsert after devb. */
176         list_move(&deva->power.entry, &devb->power.entry);
177 }
178
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185         pr_debug("PM: Moving %s:%s to end of list\n",
186                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187         list_move_tail(&dev->power.entry, &dpm_list);
188 }
189
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192         ktime_t calltime = ktime_set(0, 0);
193
194         if (pm_print_times_enabled) {
195                 pr_info("calling  %s+ @ %i, parent: %s\n",
196                         dev_name(dev), task_pid_nr(current),
197                         dev->parent ? dev_name(dev->parent) : "none");
198                 calltime = ktime_get();
199         }
200
201         return calltime;
202 }
203
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205                                   int error, pm_message_t state, char *info)
206 {
207         ktime_t rettime;
208         s64 nsecs;
209
210         rettime = ktime_get();
211         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212
213         if (pm_print_times_enabled) {
214                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215                         error, (unsigned long long)nsecs >> 10);
216         }
217 }
218
219 /**
220  * dpm_wait - Wait for a PM operation to complete.
221  * @dev: Device to wait for.
222  * @async: If unset, wait only if the device's power.async_suspend flag is set.
223  */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226         if (!dev)
227                 return;
228
229         if (async || (pm_async_enabled && dev->power.async_suspend))
230                 wait_for_completion(&dev->power.completion);
231 }
232
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235         dpm_wait(dev, *((bool *)async_ptr));
236         return 0;
237 }
238
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241        device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243
244 /**
245  * pm_op - Return the PM operation appropriate for given PM event.
246  * @ops: PM operations to choose from.
247  * @state: PM transition of the system being carried out.
248  */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251         switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253         case PM_EVENT_SUSPEND:
254                 return ops->suspend;
255         case PM_EVENT_RESUME:
256                 return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259         case PM_EVENT_FREEZE:
260         case PM_EVENT_QUIESCE:
261                 return ops->freeze;
262         case PM_EVENT_HIBERNATE:
263                 return ops->poweroff;
264         case PM_EVENT_THAW:
265         case PM_EVENT_RECOVER:
266                 return ops->thaw;
267                 break;
268         case PM_EVENT_RESTORE:
269                 return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271         }
272
273         return NULL;
274 }
275
276 /**
277  * pm_late_early_op - Return the PM operation appropriate for given PM event.
278  * @ops: PM operations to choose from.
279  * @state: PM transition of the system being carried out.
280  *
281  * Runtime PM is disabled for @dev while this function is being executed.
282  */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284                                       pm_message_t state)
285 {
286         switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288         case PM_EVENT_SUSPEND:
289                 return ops->suspend_late;
290         case PM_EVENT_RESUME:
291                 return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294         case PM_EVENT_FREEZE:
295         case PM_EVENT_QUIESCE:
296                 return ops->freeze_late;
297         case PM_EVENT_HIBERNATE:
298                 return ops->poweroff_late;
299         case PM_EVENT_THAW:
300         case PM_EVENT_RECOVER:
301                 return ops->thaw_early;
302         case PM_EVENT_RESTORE:
303                 return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305         }
306
307         return NULL;
308 }
309
310 /**
311  * pm_noirq_op - Return the PM operation appropriate for given PM event.
312  * @ops: PM operations to choose from.
313  * @state: PM transition of the system being carried out.
314  *
315  * The driver of @dev will not receive interrupts while this function is being
316  * executed.
317  */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320         switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322         case PM_EVENT_SUSPEND:
323                 return ops->suspend_noirq;
324         case PM_EVENT_RESUME:
325                 return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328         case PM_EVENT_FREEZE:
329         case PM_EVENT_QUIESCE:
330                 return ops->freeze_noirq;
331         case PM_EVENT_HIBERNATE:
332                 return ops->poweroff_noirq;
333         case PM_EVENT_THAW:
334         case PM_EVENT_RECOVER:
335                 return ops->thaw_noirq;
336         case PM_EVENT_RESTORE:
337                 return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339         }
340
341         return NULL;
342 }
343
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348                 ", may wakeup" : "");
349 }
350
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352                         int error)
353 {
354         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355                 dev_name(dev), pm_verb(state.event), info, error);
356 }
357
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360         ktime_t calltime;
361         u64 usecs64;
362         int usecs;
363
364         calltime = ktime_get();
365         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366         do_div(usecs64, NSEC_PER_USEC);
367         usecs = usecs64;
368         if (usecs == 0)
369                 usecs = 1;
370         pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371                 info ?: "", info ? " " : "", pm_verb(state.event),
372                 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376                             pm_message_t state, char *info)
377 {
378         ktime_t calltime;
379         int error;
380
381         if (!cb)
382                 return 0;
383
384         calltime = initcall_debug_start(dev);
385
386         pm_dev_dbg(dev, state, info);
387         trace_device_pm_callback_start(dev, info, state.event);
388         error = cb(dev);
389         trace_device_pm_callback_end(dev, error);
390         suspend_report_result(cb, error);
391
392         initcall_debug_report(dev, calltime, error, state, info);
393
394         return error;
395 }
396
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399         struct device           *dev;
400         struct task_struct      *tsk;
401         struct timer_list       timer;
402 };
403
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405         struct dpm_watchdog wd
406
407 /**
408  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409  * @data: Watchdog object address.
410  *
411  * Called when a driver has timed out suspending or resuming.
412  * There's not much we can do here to recover so panic() to
413  * capture a crash-dump in pstore.
414  */
415 static void dpm_watchdog_handler(unsigned long data)
416 {
417         struct dpm_watchdog *wd = (void *)data;
418
419         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420         show_stack(wd->tsk, NULL);
421         panic("%s %s: unrecoverable failure\n",
422                 dev_driver_string(wd->dev), dev_name(wd->dev));
423 }
424
425 /**
426  * dpm_watchdog_set - Enable pm watchdog for given device.
427  * @wd: Watchdog. Must be allocated on the stack.
428  * @dev: Device to handle.
429  */
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
431 {
432         struct timer_list *timer = &wd->timer;
433
434         wd->dev = dev;
435         wd->tsk = current;
436
437         init_timer_on_stack(timer);
438         /* use same timeout value for both suspend and resume */
439         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440         timer->function = dpm_watchdog_handler;
441         timer->data = (unsigned long)wd;
442         add_timer(timer);
443 }
444
445 /**
446  * dpm_watchdog_clear - Disable suspend/resume watchdog.
447  * @wd: Watchdog to disable.
448  */
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
450 {
451         struct timer_list *timer = &wd->timer;
452
453         del_timer_sync(timer);
454         destroy_timer_on_stack(timer);
455 }
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
461
462 /*------------------------- Resume routines -------------------------*/
463
464 /**
465  * device_resume_noirq - Execute an "early resume" callback for given device.
466  * @dev: Device to handle.
467  * @state: PM transition of the system being carried out.
468  * @async: If true, the device is being resumed asynchronously.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475         pm_callback_t callback = NULL;
476         char *info = NULL;
477         int error = 0;
478
479         TRACE_DEVICE(dev);
480         TRACE_RESUME(0);
481
482         if (dev->power.syscore || dev->power.direct_complete)
483                 goto Out;
484
485         if (!dev->power.is_noirq_suspended)
486                 goto Out;
487
488         dpm_wait(dev->parent, async);
489
490         if (dev->pm_domain) {
491                 info = "noirq power domain ";
492                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
493         } else if (dev->type && dev->type->pm) {
494                 info = "noirq type ";
495                 callback = pm_noirq_op(dev->type->pm, state);
496         } else if (dev->class && dev->class->pm) {
497                 info = "noirq class ";
498                 callback = pm_noirq_op(dev->class->pm, state);
499         } else if (dev->bus && dev->bus->pm) {
500                 info = "noirq bus ";
501                 callback = pm_noirq_op(dev->bus->pm, state);
502         }
503
504         if (!callback && dev->driver && dev->driver->pm) {
505                 info = "noirq driver ";
506                 callback = pm_noirq_op(dev->driver->pm, state);
507         }
508
509         error = dpm_run_callback(callback, dev, state, info);
510         dev->power.is_noirq_suspended = false;
511
512  Out:
513         complete_all(&dev->power.completion);
514         TRACE_RESUME(error);
515         return error;
516 }
517
518 static bool is_async(struct device *dev)
519 {
520         return dev->power.async_suspend && pm_async_enabled
521                 && !pm_trace_is_enabled();
522 }
523
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526         struct device *dev = (struct device *)data;
527         int error;
528
529         error = device_resume_noirq(dev, pm_transition, true);
530         if (error)
531                 pm_dev_err(dev, pm_transition, " async", error);
532
533         put_device(dev);
534 }
535
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 void dpm_resume_noirq(pm_message_t state)
544 {
545         struct device *dev;
546         ktime_t starttime = ktime_get();
547
548         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
549         mutex_lock(&dpm_list_mtx);
550         pm_transition = state;
551
552         /*
553          * Advanced the async threads upfront,
554          * in case the starting of async threads is
555          * delayed by non-async resuming devices.
556          */
557         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
558                 reinit_completion(&dev->power.completion);
559                 if (is_async(dev)) {
560                         get_device(dev);
561                         async_schedule(async_resume_noirq, dev);
562                 }
563         }
564
565         while (!list_empty(&dpm_noirq_list)) {
566                 dev = to_device(dpm_noirq_list.next);
567                 get_device(dev);
568                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
569                 mutex_unlock(&dpm_list_mtx);
570
571                 if (!is_async(dev)) {
572                         int error;
573
574                         error = device_resume_noirq(dev, state, false);
575                         if (error) {
576                                 suspend_stats.failed_resume_noirq++;
577                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
578                                 dpm_save_failed_dev(dev_name(dev));
579                                 pm_dev_err(dev, state, " noirq", error);
580                         }
581                 }
582
583                 mutex_lock(&dpm_list_mtx);
584                 put_device(dev);
585         }
586         mutex_unlock(&dpm_list_mtx);
587         async_synchronize_full();
588         dpm_show_time(starttime, state, "noirq");
589         resume_device_irqs();
590         cpuidle_resume();
591         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
592 }
593
594 /**
595  * device_resume_early - Execute an "early resume" callback for given device.
596  * @dev: Device to handle.
597  * @state: PM transition of the system being carried out.
598  * @async: If true, the device is being resumed asynchronously.
599  *
600  * Runtime PM is disabled for @dev while this function is being executed.
601  */
602 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
603 {
604         pm_callback_t callback = NULL;
605         char *info = NULL;
606         int error = 0;
607
608         TRACE_DEVICE(dev);
609         TRACE_RESUME(0);
610
611         if (dev->power.syscore || dev->power.direct_complete)
612                 goto Out;
613
614         if (!dev->power.is_late_suspended)
615                 goto Out;
616
617         dpm_wait(dev->parent, async);
618
619         if (dev->pm_domain) {
620                 info = "early power domain ";
621                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
622         } else if (dev->type && dev->type->pm) {
623                 info = "early type ";
624                 callback = pm_late_early_op(dev->type->pm, state);
625         } else if (dev->class && dev->class->pm) {
626                 info = "early class ";
627                 callback = pm_late_early_op(dev->class->pm, state);
628         } else if (dev->bus && dev->bus->pm) {
629                 info = "early bus ";
630                 callback = pm_late_early_op(dev->bus->pm, state);
631         }
632
633         if (!callback && dev->driver && dev->driver->pm) {
634                 info = "early driver ";
635                 callback = pm_late_early_op(dev->driver->pm, state);
636         }
637
638         error = dpm_run_callback(callback, dev, state, info);
639         dev->power.is_late_suspended = false;
640
641  Out:
642         TRACE_RESUME(error);
643
644         pm_runtime_enable(dev);
645         complete_all(&dev->power.completion);
646         return error;
647 }
648
649 static void async_resume_early(void *data, async_cookie_t cookie)
650 {
651         struct device *dev = (struct device *)data;
652         int error;
653
654         error = device_resume_early(dev, pm_transition, true);
655         if (error)
656                 pm_dev_err(dev, pm_transition, " async", error);
657
658         put_device(dev);
659 }
660
661 /**
662  * dpm_resume_early - Execute "early resume" callbacks for all devices.
663  * @state: PM transition of the system being carried out.
664  */
665 void dpm_resume_early(pm_message_t state)
666 {
667         struct device *dev;
668         ktime_t starttime = ktime_get();
669
670         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
671         mutex_lock(&dpm_list_mtx);
672         pm_transition = state;
673
674         /*
675          * Advanced the async threads upfront,
676          * in case the starting of async threads is
677          * delayed by non-async resuming devices.
678          */
679         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
680                 reinit_completion(&dev->power.completion);
681                 if (is_async(dev)) {
682                         get_device(dev);
683                         async_schedule(async_resume_early, dev);
684                 }
685         }
686
687         while (!list_empty(&dpm_late_early_list)) {
688                 dev = to_device(dpm_late_early_list.next);
689                 get_device(dev);
690                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
691                 mutex_unlock(&dpm_list_mtx);
692
693                 if (!is_async(dev)) {
694                         int error;
695
696                         error = device_resume_early(dev, state, false);
697                         if (error) {
698                                 suspend_stats.failed_resume_early++;
699                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
700                                 dpm_save_failed_dev(dev_name(dev));
701                                 pm_dev_err(dev, state, " early", error);
702                         }
703                 }
704                 mutex_lock(&dpm_list_mtx);
705                 put_device(dev);
706         }
707         mutex_unlock(&dpm_list_mtx);
708         async_synchronize_full();
709         dpm_show_time(starttime, state, "early");
710         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
711 }
712
713 /**
714  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
715  * @state: PM transition of the system being carried out.
716  */
717 void dpm_resume_start(pm_message_t state)
718 {
719         dpm_resume_noirq(state);
720         dpm_resume_early(state);
721 }
722 EXPORT_SYMBOL_GPL(dpm_resume_start);
723
724 /**
725  * device_resume - Execute "resume" callbacks for given device.
726  * @dev: Device to handle.
727  * @state: PM transition of the system being carried out.
728  * @async: If true, the device is being resumed asynchronously.
729  */
730 static int device_resume(struct device *dev, pm_message_t state, bool async)
731 {
732         pm_callback_t callback = NULL;
733         char *info = NULL;
734         int error = 0;
735         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
736
737         TRACE_DEVICE(dev);
738         TRACE_RESUME(0);
739
740         if (dev->power.syscore)
741                 goto Complete;
742
743         if (dev->power.direct_complete) {
744                 /* Match the pm_runtime_disable() in __device_suspend(). */
745                 pm_runtime_enable(dev);
746                 goto Complete;
747         }
748
749         dpm_wait(dev->parent, async);
750         dpm_watchdog_set(&wd, dev);
751         device_lock(dev);
752
753         /*
754          * This is a fib.  But we'll allow new children to be added below
755          * a resumed device, even if the device hasn't been completed yet.
756          */
757         dev->power.is_prepared = false;
758
759         if (!dev->power.is_suspended)
760                 goto Unlock;
761
762         if (dev->pm_domain) {
763                 info = "power domain ";
764                 callback = pm_op(&dev->pm_domain->ops, state);
765                 goto Driver;
766         }
767
768         if (dev->type && dev->type->pm) {
769                 info = "type ";
770                 callback = pm_op(dev->type->pm, state);
771                 goto Driver;
772         }
773
774         if (dev->class) {
775                 if (dev->class->pm) {
776                         info = "class ";
777                         callback = pm_op(dev->class->pm, state);
778                         goto Driver;
779                 } else if (dev->class->resume) {
780                         info = "legacy class ";
781                         callback = dev->class->resume;
782                         goto End;
783                 }
784         }
785
786         if (dev->bus) {
787                 if (dev->bus->pm) {
788                         info = "bus ";
789                         callback = pm_op(dev->bus->pm, state);
790                 } else if (dev->bus->resume) {
791                         info = "legacy bus ";
792                         callback = dev->bus->resume;
793                         goto End;
794                 }
795         }
796
797  Driver:
798         if (!callback && dev->driver && dev->driver->pm) {
799                 info = "driver ";
800                 callback = pm_op(dev->driver->pm, state);
801         }
802
803  End:
804         error = dpm_run_callback(callback, dev, state, info);
805         dev->power.is_suspended = false;
806
807  Unlock:
808         device_unlock(dev);
809         dpm_watchdog_clear(&wd);
810
811  Complete:
812         complete_all(&dev->power.completion);
813
814         TRACE_RESUME(error);
815
816         return error;
817 }
818
819 static void async_resume(void *data, async_cookie_t cookie)
820 {
821         struct device *dev = (struct device *)data;
822         int error;
823
824         error = device_resume(dev, pm_transition, true);
825         if (error)
826                 pm_dev_err(dev, pm_transition, " async", error);
827         put_device(dev);
828 }
829
830 /**
831  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
832  * @state: PM transition of the system being carried out.
833  *
834  * Execute the appropriate "resume" callback for all devices whose status
835  * indicates that they are suspended.
836  */
837 void dpm_resume(pm_message_t state)
838 {
839         struct device *dev;
840         ktime_t starttime = ktime_get();
841
842         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
843         might_sleep();
844
845         mutex_lock(&dpm_list_mtx);
846         pm_transition = state;
847         async_error = 0;
848
849         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
850                 reinit_completion(&dev->power.completion);
851                 if (is_async(dev)) {
852                         get_device(dev);
853                         async_schedule(async_resume, dev);
854                 }
855         }
856
857         while (!list_empty(&dpm_suspended_list)) {
858                 dev = to_device(dpm_suspended_list.next);
859                 get_device(dev);
860                 if (!is_async(dev)) {
861                         int error;
862
863                         mutex_unlock(&dpm_list_mtx);
864
865                         error = device_resume(dev, state, false);
866                         if (error) {
867                                 suspend_stats.failed_resume++;
868                                 dpm_save_failed_step(SUSPEND_RESUME);
869                                 dpm_save_failed_dev(dev_name(dev));
870                                 pm_dev_err(dev, state, "", error);
871                         }
872
873                         mutex_lock(&dpm_list_mtx);
874                 }
875                 if (!list_empty(&dev->power.entry))
876                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
877                 put_device(dev);
878         }
879         mutex_unlock(&dpm_list_mtx);
880         async_synchronize_full();
881         dpm_show_time(starttime, state, NULL);
882
883         cpufreq_resume();
884         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
885 }
886
887 /**
888  * device_complete - Complete a PM transition for given device.
889  * @dev: Device to handle.
890  * @state: PM transition of the system being carried out.
891  */
892 static void device_complete(struct device *dev, pm_message_t state)
893 {
894         void (*callback)(struct device *) = NULL;
895         char *info = NULL;
896
897         if (dev->power.syscore)
898                 return;
899
900         device_lock(dev);
901
902         if (dev->pm_domain) {
903                 info = "completing power domain ";
904                 callback = dev->pm_domain->ops.complete;
905         } else if (dev->type && dev->type->pm) {
906                 info = "completing type ";
907                 callback = dev->type->pm->complete;
908         } else if (dev->class && dev->class->pm) {
909                 info = "completing class ";
910                 callback = dev->class->pm->complete;
911         } else if (dev->bus && dev->bus->pm) {
912                 info = "completing bus ";
913                 callback = dev->bus->pm->complete;
914         }
915
916         if (!callback && dev->driver && dev->driver->pm) {
917                 info = "completing driver ";
918                 callback = dev->driver->pm->complete;
919         }
920
921         if (callback) {
922                 pm_dev_dbg(dev, state, info);
923                 trace_device_pm_callback_start(dev, info, state.event);
924                 callback(dev);
925                 trace_device_pm_callback_end(dev, 0);
926         }
927
928         device_unlock(dev);
929
930         pm_runtime_put(dev);
931 }
932
933 /**
934  * dpm_complete - Complete a PM transition for all non-sysdev devices.
935  * @state: PM transition of the system being carried out.
936  *
937  * Execute the ->complete() callbacks for all devices whose PM status is not
938  * DPM_ON (this allows new devices to be registered).
939  */
940 void dpm_complete(pm_message_t state)
941 {
942         struct list_head list;
943
944         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945         might_sleep();
946
947         INIT_LIST_HEAD(&list);
948         mutex_lock(&dpm_list_mtx);
949         while (!list_empty(&dpm_prepared_list)) {
950                 struct device *dev = to_device(dpm_prepared_list.prev);
951
952                 get_device(dev);
953                 dev->power.is_prepared = false;
954                 list_move(&dev->power.entry, &list);
955                 mutex_unlock(&dpm_list_mtx);
956
957                 device_complete(dev, state);
958
959                 mutex_lock(&dpm_list_mtx);
960                 put_device(dev);
961         }
962         list_splice(&list, &dpm_list);
963         mutex_unlock(&dpm_list_mtx);
964         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
965 }
966
967 /**
968  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
969  * @state: PM transition of the system being carried out.
970  *
971  * Execute "resume" callbacks for all devices and complete the PM transition of
972  * the system.
973  */
974 void dpm_resume_end(pm_message_t state)
975 {
976         dpm_resume(state);
977         dpm_complete(state);
978 }
979 EXPORT_SYMBOL_GPL(dpm_resume_end);
980
981
982 /*------------------------- Suspend routines -------------------------*/
983
984 /**
985  * resume_event - Return a "resume" message for given "suspend" sleep state.
986  * @sleep_state: PM message representing a sleep state.
987  *
988  * Return a PM message representing the resume event corresponding to given
989  * sleep state.
990  */
991 static pm_message_t resume_event(pm_message_t sleep_state)
992 {
993         switch (sleep_state.event) {
994         case PM_EVENT_SUSPEND:
995                 return PMSG_RESUME;
996         case PM_EVENT_FREEZE:
997         case PM_EVENT_QUIESCE:
998                 return PMSG_RECOVER;
999         case PM_EVENT_HIBERNATE:
1000                 return PMSG_RESTORE;
1001         }
1002         return PMSG_ON;
1003 }
1004
1005 /**
1006  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1007  * @dev: Device to handle.
1008  * @state: PM transition of the system being carried out.
1009  * @async: If true, the device is being suspended asynchronously.
1010  *
1011  * The driver of @dev will not receive interrupts while this function is being
1012  * executed.
1013  */
1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1015 {
1016         pm_callback_t callback = NULL;
1017         char *info = NULL;
1018         int error = 0;
1019
1020         if (async_error)
1021                 goto Complete;
1022
1023         if (pm_wakeup_pending()) {
1024                 async_error = -EBUSY;
1025                 goto Complete;
1026         }
1027
1028         if (dev->power.syscore || dev->power.direct_complete)
1029                 goto Complete;
1030
1031         dpm_wait_for_children(dev, async);
1032
1033         if (dev->pm_domain) {
1034                 info = "noirq power domain ";
1035                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1036         } else if (dev->type && dev->type->pm) {
1037                 info = "noirq type ";
1038                 callback = pm_noirq_op(dev->type->pm, state);
1039         } else if (dev->class && dev->class->pm) {
1040                 info = "noirq class ";
1041                 callback = pm_noirq_op(dev->class->pm, state);
1042         } else if (dev->bus && dev->bus->pm) {
1043                 info = "noirq bus ";
1044                 callback = pm_noirq_op(dev->bus->pm, state);
1045         }
1046
1047         if (!callback && dev->driver && dev->driver->pm) {
1048                 info = "noirq driver ";
1049                 callback = pm_noirq_op(dev->driver->pm, state);
1050         }
1051
1052         error = dpm_run_callback(callback, dev, state, info);
1053         if (!error)
1054                 dev->power.is_noirq_suspended = true;
1055         else
1056                 async_error = error;
1057
1058 Complete:
1059         complete_all(&dev->power.completion);
1060         return error;
1061 }
1062
1063 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1064 {
1065         struct device *dev = (struct device *)data;
1066         int error;
1067
1068         error = __device_suspend_noirq(dev, pm_transition, true);
1069         if (error) {
1070                 dpm_save_failed_dev(dev_name(dev));
1071                 pm_dev_err(dev, pm_transition, " async", error);
1072         }
1073
1074         put_device(dev);
1075 }
1076
1077 static int device_suspend_noirq(struct device *dev)
1078 {
1079         reinit_completion(&dev->power.completion);
1080
1081         if (pm_async_enabled && dev->power.async_suspend) {
1082                 get_device(dev);
1083                 async_schedule(async_suspend_noirq, dev);
1084                 return 0;
1085         }
1086         return __device_suspend_noirq(dev, pm_transition, false);
1087 }
1088
1089 /**
1090  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1091  * @state: PM transition of the system being carried out.
1092  *
1093  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1094  * handlers for all non-sysdev devices.
1095  */
1096 int dpm_suspend_noirq(pm_message_t state)
1097 {
1098         ktime_t starttime = ktime_get();
1099         int error = 0;
1100
1101         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1102         cpuidle_pause();
1103         suspend_device_irqs();
1104         mutex_lock(&dpm_list_mtx);
1105         pm_transition = state;
1106         async_error = 0;
1107
1108         while (!list_empty(&dpm_late_early_list)) {
1109                 struct device *dev = to_device(dpm_late_early_list.prev);
1110
1111                 get_device(dev);
1112                 mutex_unlock(&dpm_list_mtx);
1113
1114                 error = device_suspend_noirq(dev);
1115
1116                 mutex_lock(&dpm_list_mtx);
1117                 if (error) {
1118                         pm_dev_err(dev, state, " noirq", error);
1119                         dpm_save_failed_dev(dev_name(dev));
1120                         put_device(dev);
1121                         break;
1122                 }
1123                 if (!list_empty(&dev->power.entry))
1124                         list_move(&dev->power.entry, &dpm_noirq_list);
1125                 put_device(dev);
1126
1127                 if (async_error)
1128                         break;
1129         }
1130         mutex_unlock(&dpm_list_mtx);
1131         async_synchronize_full();
1132         if (!error)
1133                 error = async_error;
1134
1135         if (error) {
1136                 suspend_stats.failed_suspend_noirq++;
1137                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1138                 dpm_resume_noirq(resume_event(state));
1139         } else {
1140                 dpm_show_time(starttime, state, "noirq");
1141         }
1142         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1143         return error;
1144 }
1145
1146 /**
1147  * device_suspend_late - Execute a "late suspend" callback for given device.
1148  * @dev: Device to handle.
1149  * @state: PM transition of the system being carried out.
1150  * @async: If true, the device is being suspended asynchronously.
1151  *
1152  * Runtime PM is disabled for @dev while this function is being executed.
1153  */
1154 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1155 {
1156         pm_callback_t callback = NULL;
1157         char *info = NULL;
1158         int error = 0;
1159
1160         __pm_runtime_disable(dev, false);
1161
1162         if (async_error)
1163                 goto Complete;
1164
1165         if (pm_wakeup_pending()) {
1166                 async_error = -EBUSY;
1167                 goto Complete;
1168         }
1169
1170         if (dev->power.syscore || dev->power.direct_complete)
1171                 goto Complete;
1172
1173         dpm_wait_for_children(dev, async);
1174
1175         if (dev->pm_domain) {
1176                 info = "late power domain ";
1177                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1178         } else if (dev->type && dev->type->pm) {
1179                 info = "late type ";
1180                 callback = pm_late_early_op(dev->type->pm, state);
1181         } else if (dev->class && dev->class->pm) {
1182                 info = "late class ";
1183                 callback = pm_late_early_op(dev->class->pm, state);
1184         } else if (dev->bus && dev->bus->pm) {
1185                 info = "late bus ";
1186                 callback = pm_late_early_op(dev->bus->pm, state);
1187         }
1188
1189         if (!callback && dev->driver && dev->driver->pm) {
1190                 info = "late driver ";
1191                 callback = pm_late_early_op(dev->driver->pm, state);
1192         }
1193
1194         error = dpm_run_callback(callback, dev, state, info);
1195         if (!error)
1196                 dev->power.is_late_suspended = true;
1197         else
1198                 async_error = error;
1199
1200 Complete:
1201         complete_all(&dev->power.completion);
1202         return error;
1203 }
1204
1205 static void async_suspend_late(void *data, async_cookie_t cookie)
1206 {
1207         struct device *dev = (struct device *)data;
1208         int error;
1209
1210         error = __device_suspend_late(dev, pm_transition, true);
1211         if (error) {
1212                 dpm_save_failed_dev(dev_name(dev));
1213                 pm_dev_err(dev, pm_transition, " async", error);
1214         }
1215         put_device(dev);
1216 }
1217
1218 static int device_suspend_late(struct device *dev)
1219 {
1220         reinit_completion(&dev->power.completion);
1221
1222         if (pm_async_enabled && dev->power.async_suspend) {
1223                 get_device(dev);
1224                 async_schedule(async_suspend_late, dev);
1225                 return 0;
1226         }
1227
1228         return __device_suspend_late(dev, pm_transition, false);
1229 }
1230
1231 /**
1232  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1233  * @state: PM transition of the system being carried out.
1234  */
1235 int dpm_suspend_late(pm_message_t state)
1236 {
1237         ktime_t starttime = ktime_get();
1238         int error = 0;
1239
1240         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1241         mutex_lock(&dpm_list_mtx);
1242         pm_transition = state;
1243         async_error = 0;
1244
1245         while (!list_empty(&dpm_suspended_list)) {
1246                 struct device *dev = to_device(dpm_suspended_list.prev);
1247
1248                 get_device(dev);
1249                 mutex_unlock(&dpm_list_mtx);
1250
1251                 error = device_suspend_late(dev);
1252
1253                 mutex_lock(&dpm_list_mtx);
1254                 if (error) {
1255                         pm_dev_err(dev, state, " late", error);
1256                         dpm_save_failed_dev(dev_name(dev));
1257                         put_device(dev);
1258                         break;
1259                 }
1260                 if (!list_empty(&dev->power.entry))
1261                         list_move(&dev->power.entry, &dpm_late_early_list);
1262                 put_device(dev);
1263
1264                 if (async_error)
1265                         break;
1266         }
1267         mutex_unlock(&dpm_list_mtx);
1268         async_synchronize_full();
1269         if (!error)
1270                 error = async_error;
1271         if (error) {
1272                 suspend_stats.failed_suspend_late++;
1273                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1274                 dpm_resume_early(resume_event(state));
1275         } else {
1276                 dpm_show_time(starttime, state, "late");
1277         }
1278         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1279         return error;
1280 }
1281
1282 /**
1283  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1284  * @state: PM transition of the system being carried out.
1285  */
1286 int dpm_suspend_end(pm_message_t state)
1287 {
1288         int error = dpm_suspend_late(state);
1289         if (error)
1290                 return error;
1291
1292         error = dpm_suspend_noirq(state);
1293         if (error) {
1294                 dpm_resume_early(resume_event(state));
1295                 return error;
1296         }
1297
1298         return 0;
1299 }
1300 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1301
1302 /**
1303  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1304  * @dev: Device to suspend.
1305  * @state: PM transition of the system being carried out.
1306  * @cb: Suspend callback to execute.
1307  * @info: string description of caller.
1308  */
1309 static int legacy_suspend(struct device *dev, pm_message_t state,
1310                           int (*cb)(struct device *dev, pm_message_t state),
1311                           char *info)
1312 {
1313         int error;
1314         ktime_t calltime;
1315
1316         calltime = initcall_debug_start(dev);
1317
1318         trace_device_pm_callback_start(dev, info, state.event);
1319         error = cb(dev, state);
1320         trace_device_pm_callback_end(dev, error);
1321         suspend_report_result(cb, error);
1322
1323         initcall_debug_report(dev, calltime, error, state, info);
1324
1325         return error;
1326 }
1327
1328 /**
1329  * device_suspend - Execute "suspend" callbacks for given device.
1330  * @dev: Device to handle.
1331  * @state: PM transition of the system being carried out.
1332  * @async: If true, the device is being suspended asynchronously.
1333  */
1334 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1335 {
1336         pm_callback_t callback = NULL;
1337         char *info = NULL;
1338         int error = 0;
1339         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1340
1341         dpm_wait_for_children(dev, async);
1342
1343         if (async_error)
1344                 goto Complete;
1345
1346         /*
1347          * If a device configured to wake up the system from sleep states
1348          * has been suspended at run time and there's a resume request pending
1349          * for it, this is equivalent to the device signaling wakeup, so the
1350          * system suspend operation should be aborted.
1351          */
1352         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1353                 pm_wakeup_event(dev, 0);
1354
1355         if (pm_wakeup_pending()) {
1356                 async_error = -EBUSY;
1357                 goto Complete;
1358         }
1359
1360         if (dev->power.syscore)
1361                 goto Complete;
1362
1363         if (dev->power.direct_complete) {
1364                 if (pm_runtime_status_suspended(dev)) {
1365                         pm_runtime_disable(dev);
1366                         if (pm_runtime_suspended_if_enabled(dev))
1367                                 goto Complete;
1368
1369                         pm_runtime_enable(dev);
1370                 }
1371                 dev->power.direct_complete = false;
1372         }
1373
1374         dpm_watchdog_set(&wd, dev);
1375         device_lock(dev);
1376
1377         if (dev->pm_domain) {
1378                 info = "power domain ";
1379                 callback = pm_op(&dev->pm_domain->ops, state);
1380                 goto Run;
1381         }
1382
1383         if (dev->type && dev->type->pm) {
1384                 info = "type ";
1385                 callback = pm_op(dev->type->pm, state);
1386                 goto Run;
1387         }
1388
1389         if (dev->class) {
1390                 if (dev->class->pm) {
1391                         info = "class ";
1392                         callback = pm_op(dev->class->pm, state);
1393                         goto Run;
1394                 } else if (dev->class->suspend) {
1395                         pm_dev_dbg(dev, state, "legacy class ");
1396                         error = legacy_suspend(dev, state, dev->class->suspend,
1397                                                 "legacy class ");
1398                         goto End;
1399                 }
1400         }
1401
1402         if (dev->bus) {
1403                 if (dev->bus->pm) {
1404                         info = "bus ";
1405                         callback = pm_op(dev->bus->pm, state);
1406                 } else if (dev->bus->suspend) {
1407                         pm_dev_dbg(dev, state, "legacy bus ");
1408                         error = legacy_suspend(dev, state, dev->bus->suspend,
1409                                                 "legacy bus ");
1410                         goto End;
1411                 }
1412         }
1413
1414  Run:
1415         if (!callback && dev->driver && dev->driver->pm) {
1416                 info = "driver ";
1417                 callback = pm_op(dev->driver->pm, state);
1418         }
1419
1420         error = dpm_run_callback(callback, dev, state, info);
1421
1422  End:
1423         if (!error) {
1424                 struct device *parent = dev->parent;
1425
1426                 dev->power.is_suspended = true;
1427                 if (parent) {
1428                         spin_lock_irq(&parent->power.lock);
1429
1430                         dev->parent->power.direct_complete = false;
1431                         if (dev->power.wakeup_path
1432                             && !dev->parent->power.ignore_children)
1433                                 dev->parent->power.wakeup_path = true;
1434
1435                         spin_unlock_irq(&parent->power.lock);
1436                 }
1437         }
1438
1439         device_unlock(dev);
1440         dpm_watchdog_clear(&wd);
1441
1442  Complete:
1443         complete_all(&dev->power.completion);
1444         if (error)
1445                 async_error = error;
1446
1447         return error;
1448 }
1449
1450 static void async_suspend(void *data, async_cookie_t cookie)
1451 {
1452         struct device *dev = (struct device *)data;
1453         int error;
1454
1455         error = __device_suspend(dev, pm_transition, true);
1456         if (error) {
1457                 dpm_save_failed_dev(dev_name(dev));
1458                 pm_dev_err(dev, pm_transition, " async", error);
1459         }
1460
1461         put_device(dev);
1462 }
1463
1464 static int device_suspend(struct device *dev)
1465 {
1466         reinit_completion(&dev->power.completion);
1467
1468         if (pm_async_enabled && dev->power.async_suspend) {
1469                 get_device(dev);
1470                 async_schedule(async_suspend, dev);
1471                 return 0;
1472         }
1473
1474         return __device_suspend(dev, pm_transition, false);
1475 }
1476
1477 /**
1478  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1479  * @state: PM transition of the system being carried out.
1480  */
1481 int dpm_suspend(pm_message_t state)
1482 {
1483         ktime_t starttime = ktime_get();
1484         int error = 0;
1485
1486         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1487         might_sleep();
1488
1489         cpufreq_suspend();
1490
1491         mutex_lock(&dpm_list_mtx);
1492         pm_transition = state;
1493         async_error = 0;
1494         while (!list_empty(&dpm_prepared_list)) {
1495                 struct device *dev = to_device(dpm_prepared_list.prev);
1496
1497                 get_device(dev);
1498                 mutex_unlock(&dpm_list_mtx);
1499
1500                 error = device_suspend(dev);
1501
1502                 mutex_lock(&dpm_list_mtx);
1503                 if (error) {
1504                         pm_dev_err(dev, state, "", error);
1505                         dpm_save_failed_dev(dev_name(dev));
1506                         put_device(dev);
1507                         break;
1508                 }
1509                 if (!list_empty(&dev->power.entry))
1510                         list_move(&dev->power.entry, &dpm_suspended_list);
1511                 put_device(dev);
1512                 if (async_error)
1513                         break;
1514         }
1515         mutex_unlock(&dpm_list_mtx);
1516         async_synchronize_full();
1517         if (!error)
1518                 error = async_error;
1519         if (error) {
1520                 suspend_stats.failed_suspend++;
1521                 dpm_save_failed_step(SUSPEND_SUSPEND);
1522         } else
1523                 dpm_show_time(starttime, state, NULL);
1524         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1525         return error;
1526 }
1527
1528 /**
1529  * device_prepare - Prepare a device for system power transition.
1530  * @dev: Device to handle.
1531  * @state: PM transition of the system being carried out.
1532  *
1533  * Execute the ->prepare() callback(s) for given device.  No new children of the
1534  * device may be registered after this function has returned.
1535  */
1536 static int device_prepare(struct device *dev, pm_message_t state)
1537 {
1538         int (*callback)(struct device *) = NULL;
1539         char *info = NULL;
1540         int ret = 0;
1541
1542         if (dev->power.syscore)
1543                 return 0;
1544
1545         /*
1546          * If a device's parent goes into runtime suspend at the wrong time,
1547          * it won't be possible to resume the device.  To prevent this we
1548          * block runtime suspend here, during the prepare phase, and allow
1549          * it again during the complete phase.
1550          */
1551         pm_runtime_get_noresume(dev);
1552
1553         device_lock(dev);
1554
1555         dev->power.wakeup_path = device_may_wakeup(dev);
1556
1557         if (dev->pm_domain) {
1558                 info = "preparing power domain ";
1559                 callback = dev->pm_domain->ops.prepare;
1560         } else if (dev->type && dev->type->pm) {
1561                 info = "preparing type ";
1562                 callback = dev->type->pm->prepare;
1563         } else if (dev->class && dev->class->pm) {
1564                 info = "preparing class ";
1565                 callback = dev->class->pm->prepare;
1566         } else if (dev->bus && dev->bus->pm) {
1567                 info = "preparing bus ";
1568                 callback = dev->bus->pm->prepare;
1569         }
1570
1571         if (!callback && dev->driver && dev->driver->pm) {
1572                 info = "preparing driver ";
1573                 callback = dev->driver->pm->prepare;
1574         }
1575
1576         if (callback) {
1577                 trace_device_pm_callback_start(dev, info, state.event);
1578                 ret = callback(dev);
1579                 trace_device_pm_callback_end(dev, ret);
1580         }
1581
1582         device_unlock(dev);
1583
1584         if (ret < 0) {
1585                 suspend_report_result(callback, ret);
1586                 pm_runtime_put(dev);
1587                 return ret;
1588         }
1589         /*
1590          * A positive return value from ->prepare() means "this device appears
1591          * to be runtime-suspended and its state is fine, so if it really is
1592          * runtime-suspended, you can leave it in that state provided that you
1593          * will do the same thing with all of its descendants".  This only
1594          * applies to suspend transitions, however.
1595          */
1596         spin_lock_irq(&dev->power.lock);
1597         dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1598         spin_unlock_irq(&dev->power.lock);
1599         return 0;
1600 }
1601
1602 /**
1603  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1604  * @state: PM transition of the system being carried out.
1605  *
1606  * Execute the ->prepare() callback(s) for all devices.
1607  */
1608 int dpm_prepare(pm_message_t state)
1609 {
1610         int error = 0;
1611
1612         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1613         might_sleep();
1614
1615         mutex_lock(&dpm_list_mtx);
1616         while (!list_empty(&dpm_list)) {
1617                 struct device *dev = to_device(dpm_list.next);
1618
1619                 get_device(dev);
1620                 mutex_unlock(&dpm_list_mtx);
1621
1622                 error = device_prepare(dev, state);
1623
1624                 mutex_lock(&dpm_list_mtx);
1625                 if (error) {
1626                         if (error == -EAGAIN) {
1627                                 put_device(dev);
1628                                 error = 0;
1629                                 continue;
1630                         }
1631                         printk(KERN_INFO "PM: Device %s not prepared "
1632                                 "for power transition: code %d\n",
1633                                 dev_name(dev), error);
1634                         put_device(dev);
1635                         break;
1636                 }
1637                 dev->power.is_prepared = true;
1638                 if (!list_empty(&dev->power.entry))
1639                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1640                 put_device(dev);
1641         }
1642         mutex_unlock(&dpm_list_mtx);
1643         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1644         return error;
1645 }
1646
1647 /**
1648  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1649  * @state: PM transition of the system being carried out.
1650  *
1651  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1652  * callbacks for them.
1653  */
1654 int dpm_suspend_start(pm_message_t state)
1655 {
1656         int error;
1657
1658         error = dpm_prepare(state);
1659         if (error) {
1660                 suspend_stats.failed_prepare++;
1661                 dpm_save_failed_step(SUSPEND_PREPARE);
1662         } else
1663                 error = dpm_suspend(state);
1664         return error;
1665 }
1666 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1667
1668 void __suspend_report_result(const char *function, void *fn, int ret)
1669 {
1670         if (ret)
1671                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1672 }
1673 EXPORT_SYMBOL_GPL(__suspend_report_result);
1674
1675 /**
1676  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1677  * @dev: Device to wait for.
1678  * @subordinate: Device that needs to wait for @dev.
1679  */
1680 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1681 {
1682         dpm_wait(dev, subordinate->power.async_suspend);
1683         return async_error;
1684 }
1685 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1686
1687 /**
1688  * dpm_for_each_dev - device iterator.
1689  * @data: data for the callback.
1690  * @fn: function to be called for each device.
1691  *
1692  * Iterate over devices in dpm_list, and call @fn for each device,
1693  * passing it @data.
1694  */
1695 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1696 {
1697         struct device *dev;
1698
1699         if (!fn)
1700                 return;
1701
1702         device_pm_lock();
1703         list_for_each_entry(dev, &dpm_list, power.entry)
1704                 fn(dev, data);
1705         device_pm_unlock();
1706 }
1707 EXPORT_SYMBOL_GPL(dpm_for_each_dev);