Merge tag 'pm+acpi-3.20-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[cascardo/linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS             (1U << MINORBITS)
46 #define NVME_Q_DEPTH            1024
47 #define NVME_AQ_DEPTH           64
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86         struct kthread_work work;
87         struct kthread_worker *worker;
88         struct request *req;
89         u32 result;
90         int status;
91         void *ctx;
92 };
93
94 /*
95  * An NVM Express queue.  Each device has at least two (one for admin
96  * commands and one for I/O commands).
97  */
98 struct nvme_queue {
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         dma_addr_t sq_dma_addr;
106         dma_addr_t cq_dma_addr;
107         u32 __iomem *q_db;
108         u16 q_depth;
109         s16 cq_vector;
110         u16 sq_head;
111         u16 sq_tail;
112         u16 cq_head;
113         u16 qid;
114         u8 cq_phase;
115         u8 cqe_seen;
116         struct async_cmd_info cmdinfo;
117         struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         int aborted;
146         struct nvme_queue *nvmeq;
147         struct nvme_iod iod[0];
148 };
149
150 /*
151  * Max size of iod being embedded in the request payload
152  */
153 #define NVME_INT_PAGES          2
154 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157  * Will slightly overestimate the number of pages needed.  This is OK
158  * as it only leads to a small amount of wasted memory for the lifetime of
159  * the I/O.
160  */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169         unsigned int ret = sizeof(struct nvme_cmd_info);
170
171         ret += sizeof(struct nvme_iod);
172         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175         return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179                                 unsigned int hctx_idx)
180 {
181         struct nvme_dev *dev = data;
182         struct nvme_queue *nvmeq = dev->queues[0];
183
184         WARN_ON(nvmeq->hctx);
185         nvmeq->hctx = hctx;
186         hctx->driver_data = nvmeq;
187         return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191                                 unsigned int hctx_idx, unsigned int rq_idx,
192                                 unsigned int numa_node)
193 {
194         struct nvme_dev *dev = data;
195         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196         struct nvme_queue *nvmeq = dev->queues[0];
197
198         BUG_ON(!nvmeq);
199         cmd->nvmeq = nvmeq;
200         return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205         struct nvme_queue *nvmeq = hctx->driver_data;
206
207         nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211                           unsigned int hctx_idx)
212 {
213         struct nvme_dev *dev = data;
214         struct nvme_queue *nvmeq = dev->queues[
215                                         (hctx_idx % dev->queue_count) + 1];
216
217         if (!nvmeq->hctx)
218                 nvmeq->hctx = hctx;
219
220         /* nvmeq queues are shared between namespaces. We assume here that
221          * blk-mq map the tags so they match up with the nvme queue tags. */
222         WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224         hctx->driver_data = nvmeq;
225         return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229                                 unsigned int hctx_idx, unsigned int rq_idx,
230                                 unsigned int numa_node)
231 {
232         struct nvme_dev *dev = data;
233         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236         BUG_ON(!nvmeq);
237         cmd->nvmeq = nvmeq;
238         return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242                                 nvme_completion_fn handler)
243 {
244         cmd->fn = handler;
245         cmd->ctx = ctx;
246         cmd->aborted = 0;
247         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252         return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256  * If bit 0 is set, the iod is embedded in the request payload.
257  */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260         return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270                                                 struct nvme_completion *cqe)
271 {
272         if (ctx == CMD_CTX_CANCELLED)
273                 return;
274         if (ctx == CMD_CTX_COMPLETED) {
275                 dev_warn(nvmeq->q_dmadev,
276                                 "completed id %d twice on queue %d\n",
277                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278                 return;
279         }
280         if (ctx == CMD_CTX_INVALID) {
281                 dev_warn(nvmeq->q_dmadev,
282                                 "invalid id %d completed on queue %d\n",
283                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284                 return;
285         }
286         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291         void *ctx;
292
293         if (fn)
294                 *fn = cmd->fn;
295         ctx = cmd->ctx;
296         cmd->fn = special_completion;
297         cmd->ctx = CMD_CTX_CANCELLED;
298         return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct request *req = ctx;
305
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status == NVME_SC_SUCCESS)
312                 dev_warn(nvmeq->q_dmadev,
313                         "async event result %08x\n", result);
314
315         blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319                                                 struct nvme_completion *cqe)
320 {
321         struct request *req = ctx;
322
323         u16 status = le16_to_cpup(&cqe->status) >> 1;
324         u32 result = le32_to_cpup(&cqe->result);
325
326         blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329         ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333                                                 struct nvme_completion *cqe)
334 {
335         struct async_cmd_info *cmdinfo = ctx;
336         cmdinfo->result = le32_to_cpup(&cqe->result);
337         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343                                   unsigned int tag)
344 {
345         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348         return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352  * Called with local interrupts disabled and the q_lock held.  May not sleep.
353  */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355                                                 nvme_completion_fn *fn)
356 {
357         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358         void *ctx;
359         if (tag >= nvmeq->q_depth) {
360                 *fn = special_completion;
361                 return CMD_CTX_INVALID;
362         }
363         if (fn)
364                 *fn = cmd->fn;
365         ctx = cmd->ctx;
366         cmd->fn = special_completion;
367         cmd->ctx = CMD_CTX_COMPLETED;
368         return ctx;
369 }
370
371 /**
372  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373  * @nvmeq: The queue to use
374  * @cmd: The command to send
375  *
376  * Safe to use from interrupt context
377  */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380         u16 tail = nvmeq->sq_tail;
381
382         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383         if (++tail == nvmeq->q_depth)
384                 tail = 0;
385         writel(tail, nvmeq->q_db);
386         nvmeq->sq_tail = tail;
387
388         return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393         unsigned long flags;
394         int ret;
395         spin_lock_irqsave(&nvmeq->q_lock, flags);
396         ret = __nvme_submit_cmd(nvmeq, cmd);
397         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398         return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403         return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407                             unsigned nseg, unsigned long private)
408 {
409         iod->private = private;
410         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411         iod->npages = -1;
412         iod->length = nbytes;
413         iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418                  unsigned long priv, gfp_t gfp)
419 {
420         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422                                 sizeof(struct scatterlist) * nseg, gfp);
423
424         if (iod)
425                 iod_init(iod, bytes, nseg, priv);
426
427         return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431                                        gfp_t gfp)
432 {
433         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434                                                 sizeof(struct nvme_dsm_range);
435         unsigned long mask = 0;
436         struct nvme_iod *iod;
437
438         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439             size <= NVME_INT_BYTES(dev)) {
440                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442                 iod = cmd->iod;
443                 mask = 0x01;
444                 iod_init(iod, size, rq->nr_phys_segments,
445                                 (unsigned long) rq | 0x01);
446                 return iod;
447         }
448
449         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450                                 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455         const int last_prp = dev->page_size / 8 - 1;
456         int i;
457         __le64 **list = iod_list(iod);
458         dma_addr_t prp_dma = iod->first_dma;
459
460         if (iod->npages == 0)
461                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462         for (i = 0; i < iod->npages; i++) {
463                 __le64 *prp_list = list[i];
464                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466                 prp_dma = next_prp_dma;
467         }
468
469         if (iod_should_kfree(iod))
470                 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475         switch (status & 0x7ff) {
476         case NVME_SC_SUCCESS:
477                 return 0;
478         case NVME_SC_CAP_EXCEEDED:
479                 return -ENOSPC;
480         default:
481                 return -EIO;
482         }
483 }
484
485 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
486 {
487         if (be32_to_cpu(pi->ref_tag) == v)
488                 pi->ref_tag = cpu_to_be32(p);
489 }
490
491 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
492 {
493         if (be32_to_cpu(pi->ref_tag) == p)
494                 pi->ref_tag = cpu_to_be32(v);
495 }
496
497 /**
498  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
499  *
500  * The virtual start sector is the one that was originally submitted by the
501  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
502  * start sector may be different. Remap protection information to match the
503  * physical LBA on writes, and back to the original seed on reads.
504  *
505  * Type 0 and 3 do not have a ref tag, so no remapping required.
506  */
507 static void nvme_dif_remap(struct request *req,
508                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
509 {
510         struct nvme_ns *ns = req->rq_disk->private_data;
511         struct bio_integrity_payload *bip;
512         struct t10_pi_tuple *pi;
513         void *p, *pmap;
514         u32 i, nlb, ts, phys, virt;
515
516         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
517                 return;
518
519         bip = bio_integrity(req->bio);
520         if (!bip)
521                 return;
522
523         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
524         if (!pmap)
525                 return;
526
527         p = pmap;
528         virt = bip_get_seed(bip);
529         phys = nvme_block_nr(ns, blk_rq_pos(req));
530         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
531         ts = ns->disk->integrity->tuple_size;
532
533         for (i = 0; i < nlb; i++, virt++, phys++) {
534                 pi = (struct t10_pi_tuple *)p;
535                 dif_swap(phys, virt, pi);
536                 p += ts;
537         }
538         kunmap_atomic(pmap);
539 }
540
541 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
542                                                 struct nvme_completion *cqe)
543 {
544         struct nvme_iod *iod = ctx;
545         struct request *req = iod_get_private(iod);
546         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
547
548         u16 status = le16_to_cpup(&cqe->status) >> 1;
549
550         if (unlikely(status)) {
551                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
552                     && (jiffies - req->start_time) < req->timeout) {
553                         unsigned long flags;
554
555                         blk_mq_requeue_request(req);
556                         spin_lock_irqsave(req->q->queue_lock, flags);
557                         if (!blk_queue_stopped(req->q))
558                                 blk_mq_kick_requeue_list(req->q);
559                         spin_unlock_irqrestore(req->q->queue_lock, flags);
560                         return;
561                 }
562                 req->errors = nvme_error_status(status);
563         } else
564                 req->errors = 0;
565
566         if (cmd_rq->aborted)
567                 dev_warn(&nvmeq->dev->pci_dev->dev,
568                         "completing aborted command with status:%04x\n",
569                         status);
570
571         if (iod->nents) {
572                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
573                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
574                 if (blk_integrity_rq(req)) {
575                         if (!rq_data_dir(req))
576                                 nvme_dif_remap(req, nvme_dif_complete);
577                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
578                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
579                 }
580         }
581         nvme_free_iod(nvmeq->dev, iod);
582
583         blk_mq_complete_request(req);
584 }
585
586 /* length is in bytes.  gfp flags indicates whether we may sleep. */
587 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
588                                                                 gfp_t gfp)
589 {
590         struct dma_pool *pool;
591         int length = total_len;
592         struct scatterlist *sg = iod->sg;
593         int dma_len = sg_dma_len(sg);
594         u64 dma_addr = sg_dma_address(sg);
595         int offset = offset_in_page(dma_addr);
596         __le64 *prp_list;
597         __le64 **list = iod_list(iod);
598         dma_addr_t prp_dma;
599         int nprps, i;
600         u32 page_size = dev->page_size;
601
602         length -= (page_size - offset);
603         if (length <= 0)
604                 return total_len;
605
606         dma_len -= (page_size - offset);
607         if (dma_len) {
608                 dma_addr += (page_size - offset);
609         } else {
610                 sg = sg_next(sg);
611                 dma_addr = sg_dma_address(sg);
612                 dma_len = sg_dma_len(sg);
613         }
614
615         if (length <= page_size) {
616                 iod->first_dma = dma_addr;
617                 return total_len;
618         }
619
620         nprps = DIV_ROUND_UP(length, page_size);
621         if (nprps <= (256 / 8)) {
622                 pool = dev->prp_small_pool;
623                 iod->npages = 0;
624         } else {
625                 pool = dev->prp_page_pool;
626                 iod->npages = 1;
627         }
628
629         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
630         if (!prp_list) {
631                 iod->first_dma = dma_addr;
632                 iod->npages = -1;
633                 return (total_len - length) + page_size;
634         }
635         list[0] = prp_list;
636         iod->first_dma = prp_dma;
637         i = 0;
638         for (;;) {
639                 if (i == page_size >> 3) {
640                         __le64 *old_prp_list = prp_list;
641                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
642                         if (!prp_list)
643                                 return total_len - length;
644                         list[iod->npages++] = prp_list;
645                         prp_list[0] = old_prp_list[i - 1];
646                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647                         i = 1;
648                 }
649                 prp_list[i++] = cpu_to_le64(dma_addr);
650                 dma_len -= page_size;
651                 dma_addr += page_size;
652                 length -= page_size;
653                 if (length <= 0)
654                         break;
655                 if (dma_len > 0)
656                         continue;
657                 BUG_ON(dma_len < 0);
658                 sg = sg_next(sg);
659                 dma_addr = sg_dma_address(sg);
660                 dma_len = sg_dma_len(sg);
661         }
662
663         return total_len;
664 }
665
666 /*
667  * We reuse the small pool to allocate the 16-byte range here as it is not
668  * worth having a special pool for these or additional cases to handle freeing
669  * the iod.
670  */
671 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
672                 struct request *req, struct nvme_iod *iod)
673 {
674         struct nvme_dsm_range *range =
675                                 (struct nvme_dsm_range *)iod_list(iod)[0];
676         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
677
678         range->cattr = cpu_to_le32(0);
679         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
680         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
681
682         memset(cmnd, 0, sizeof(*cmnd));
683         cmnd->dsm.opcode = nvme_cmd_dsm;
684         cmnd->dsm.command_id = req->tag;
685         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
686         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
687         cmnd->dsm.nr = 0;
688         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
689
690         if (++nvmeq->sq_tail == nvmeq->q_depth)
691                 nvmeq->sq_tail = 0;
692         writel(nvmeq->sq_tail, nvmeq->q_db);
693 }
694
695 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
696                                                                 int cmdid)
697 {
698         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
699
700         memset(cmnd, 0, sizeof(*cmnd));
701         cmnd->common.opcode = nvme_cmd_flush;
702         cmnd->common.command_id = cmdid;
703         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
704
705         if (++nvmeq->sq_tail == nvmeq->q_depth)
706                 nvmeq->sq_tail = 0;
707         writel(nvmeq->sq_tail, nvmeq->q_db);
708 }
709
710 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
711                                                         struct nvme_ns *ns)
712 {
713         struct request *req = iod_get_private(iod);
714         struct nvme_command *cmnd;
715         u16 control = 0;
716         u32 dsmgmt = 0;
717
718         if (req->cmd_flags & REQ_FUA)
719                 control |= NVME_RW_FUA;
720         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
721                 control |= NVME_RW_LR;
722
723         if (req->cmd_flags & REQ_RAHEAD)
724                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
725
726         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
727         memset(cmnd, 0, sizeof(*cmnd));
728
729         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
730         cmnd->rw.command_id = req->tag;
731         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
732         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
733         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
734         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
735         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
736
737         if (blk_integrity_rq(req)) {
738                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
739                 switch (ns->pi_type) {
740                 case NVME_NS_DPS_PI_TYPE3:
741                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
742                         break;
743                 case NVME_NS_DPS_PI_TYPE1:
744                 case NVME_NS_DPS_PI_TYPE2:
745                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
746                                         NVME_RW_PRINFO_PRCHK_REF;
747                         cmnd->rw.reftag = cpu_to_le32(
748                                         nvme_block_nr(ns, blk_rq_pos(req)));
749                         break;
750                 }
751         } else if (ns->ms)
752                 control |= NVME_RW_PRINFO_PRACT;
753
754         cmnd->rw.control = cpu_to_le16(control);
755         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
756
757         if (++nvmeq->sq_tail == nvmeq->q_depth)
758                 nvmeq->sq_tail = 0;
759         writel(nvmeq->sq_tail, nvmeq->q_db);
760
761         return 0;
762 }
763
764 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
765                          const struct blk_mq_queue_data *bd)
766 {
767         struct nvme_ns *ns = hctx->queue->queuedata;
768         struct nvme_queue *nvmeq = hctx->driver_data;
769         struct request *req = bd->rq;
770         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
771         struct nvme_iod *iod;
772         enum dma_data_direction dma_dir;
773
774         /*
775          * If formated with metadata, require the block layer provide a buffer
776          * unless this namespace is formated such that the metadata can be
777          * stripped/generated by the controller with PRACT=1.
778          */
779         if (ns->ms && !blk_integrity_rq(req)) {
780                 if (!(ns->pi_type && ns->ms == 8)) {
781                         req->errors = -EFAULT;
782                         blk_mq_complete_request(req);
783                         return BLK_MQ_RQ_QUEUE_OK;
784                 }
785         }
786
787         iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
788         if (!iod)
789                 return BLK_MQ_RQ_QUEUE_BUSY;
790
791         if (req->cmd_flags & REQ_DISCARD) {
792                 void *range;
793                 /*
794                  * We reuse the small pool to allocate the 16-byte range here
795                  * as it is not worth having a special pool for these or
796                  * additional cases to handle freeing the iod.
797                  */
798                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
799                                                 GFP_ATOMIC,
800                                                 &iod->first_dma);
801                 if (!range)
802                         goto retry_cmd;
803                 iod_list(iod)[0] = (__le64 *)range;
804                 iod->npages = 0;
805         } else if (req->nr_phys_segments) {
806                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
807
808                 sg_init_table(iod->sg, req->nr_phys_segments);
809                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
810                 if (!iod->nents)
811                         goto error_cmd;
812
813                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
814                         goto retry_cmd;
815
816                 if (blk_rq_bytes(req) !=
817                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
818                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
819                                         iod->nents, dma_dir);
820                         goto retry_cmd;
821                 }
822                 if (blk_integrity_rq(req)) {
823                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
824                                 goto error_cmd;
825
826                         sg_init_table(iod->meta_sg, 1);
827                         if (blk_rq_map_integrity_sg(
828                                         req->q, req->bio, iod->meta_sg) != 1)
829                                 goto error_cmd;
830
831                         if (rq_data_dir(req))
832                                 nvme_dif_remap(req, nvme_dif_prep);
833
834                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
835                                 goto error_cmd;
836                 }
837         }
838
839         nvme_set_info(cmd, iod, req_completion);
840         spin_lock_irq(&nvmeq->q_lock);
841         if (req->cmd_flags & REQ_DISCARD)
842                 nvme_submit_discard(nvmeq, ns, req, iod);
843         else if (req->cmd_flags & REQ_FLUSH)
844                 nvme_submit_flush(nvmeq, ns, req->tag);
845         else
846                 nvme_submit_iod(nvmeq, iod, ns);
847
848         nvme_process_cq(nvmeq);
849         spin_unlock_irq(&nvmeq->q_lock);
850         return BLK_MQ_RQ_QUEUE_OK;
851
852  error_cmd:
853         nvme_free_iod(nvmeq->dev, iod);
854         return BLK_MQ_RQ_QUEUE_ERROR;
855  retry_cmd:
856         nvme_free_iod(nvmeq->dev, iod);
857         return BLK_MQ_RQ_QUEUE_BUSY;
858 }
859
860 static int nvme_process_cq(struct nvme_queue *nvmeq)
861 {
862         u16 head, phase;
863
864         head = nvmeq->cq_head;
865         phase = nvmeq->cq_phase;
866
867         for (;;) {
868                 void *ctx;
869                 nvme_completion_fn fn;
870                 struct nvme_completion cqe = nvmeq->cqes[head];
871                 if ((le16_to_cpu(cqe.status) & 1) != phase)
872                         break;
873                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
874                 if (++head == nvmeq->q_depth) {
875                         head = 0;
876                         phase = !phase;
877                 }
878                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
879                 fn(nvmeq, ctx, &cqe);
880         }
881
882         /* If the controller ignores the cq head doorbell and continuously
883          * writes to the queue, it is theoretically possible to wrap around
884          * the queue twice and mistakenly return IRQ_NONE.  Linux only
885          * requires that 0.1% of your interrupts are handled, so this isn't
886          * a big problem.
887          */
888         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
889                 return 0;
890
891         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
892         nvmeq->cq_head = head;
893         nvmeq->cq_phase = phase;
894
895         nvmeq->cqe_seen = 1;
896         return 1;
897 }
898
899 /* Admin queue isn't initialized as a request queue. If at some point this
900  * happens anyway, make sure to notify the user */
901 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
902                                const struct blk_mq_queue_data *bd)
903 {
904         WARN_ON_ONCE(1);
905         return BLK_MQ_RQ_QUEUE_ERROR;
906 }
907
908 static irqreturn_t nvme_irq(int irq, void *data)
909 {
910         irqreturn_t result;
911         struct nvme_queue *nvmeq = data;
912         spin_lock(&nvmeq->q_lock);
913         nvme_process_cq(nvmeq);
914         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
915         nvmeq->cqe_seen = 0;
916         spin_unlock(&nvmeq->q_lock);
917         return result;
918 }
919
920 static irqreturn_t nvme_irq_check(int irq, void *data)
921 {
922         struct nvme_queue *nvmeq = data;
923         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
924         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
925                 return IRQ_NONE;
926         return IRQ_WAKE_THREAD;
927 }
928
929 struct sync_cmd_info {
930         struct task_struct *task;
931         u32 result;
932         int status;
933 };
934
935 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
936                                                 struct nvme_completion *cqe)
937 {
938         struct sync_cmd_info *cmdinfo = ctx;
939         cmdinfo->result = le32_to_cpup(&cqe->result);
940         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
941         wake_up_process(cmdinfo->task);
942 }
943
944 /*
945  * Returns 0 on success.  If the result is negative, it's a Linux error code;
946  * if the result is positive, it's an NVM Express status code
947  */
948 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
949                                                 u32 *result, unsigned timeout)
950 {
951         struct sync_cmd_info cmdinfo;
952         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
953         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
954
955         cmdinfo.task = current;
956         cmdinfo.status = -EINTR;
957
958         cmd->common.command_id = req->tag;
959
960         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
961
962         set_current_state(TASK_UNINTERRUPTIBLE);
963         nvme_submit_cmd(nvmeq, cmd);
964         schedule();
965
966         if (result)
967                 *result = cmdinfo.result;
968         return cmdinfo.status;
969 }
970
971 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972 {
973         struct nvme_queue *nvmeq = dev->queues[0];
974         struct nvme_command c;
975         struct nvme_cmd_info *cmd_info;
976         struct request *req;
977
978         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
979         if (IS_ERR(req))
980                 return PTR_ERR(req);
981
982         req->cmd_flags |= REQ_NO_TIMEOUT;
983         cmd_info = blk_mq_rq_to_pdu(req);
984         nvme_set_info(cmd_info, req, async_req_completion);
985
986         memset(&c, 0, sizeof(c));
987         c.common.opcode = nvme_admin_async_event;
988         c.common.command_id = req->tag;
989
990         return __nvme_submit_cmd(nvmeq, &c);
991 }
992
993 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
994                         struct nvme_command *cmd,
995                         struct async_cmd_info *cmdinfo, unsigned timeout)
996 {
997         struct nvme_queue *nvmeq = dev->queues[0];
998         struct request *req;
999         struct nvme_cmd_info *cmd_rq;
1000
1001         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1002         if (IS_ERR(req))
1003                 return PTR_ERR(req);
1004
1005         req->timeout = timeout;
1006         cmd_rq = blk_mq_rq_to_pdu(req);
1007         cmdinfo->req = req;
1008         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1009         cmdinfo->status = -EINTR;
1010
1011         cmd->common.command_id = req->tag;
1012
1013         return nvme_submit_cmd(nvmeq, cmd);
1014 }
1015
1016 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1017                                                 u32 *result, unsigned timeout)
1018 {
1019         int res;
1020         struct request *req;
1021
1022         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1023         if (IS_ERR(req))
1024                 return PTR_ERR(req);
1025         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1026         blk_mq_free_request(req);
1027         return res;
1028 }
1029
1030 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1031                                                                 u32 *result)
1032 {
1033         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1034 }
1035
1036 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1037                                         struct nvme_command *cmd, u32 *result)
1038 {
1039         int res;
1040         struct request *req;
1041
1042         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1043                                                                         false);
1044         if (IS_ERR(req))
1045                 return PTR_ERR(req);
1046         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1047         blk_mq_free_request(req);
1048         return res;
1049 }
1050
1051 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1052 {
1053         struct nvme_command c;
1054
1055         memset(&c, 0, sizeof(c));
1056         c.delete_queue.opcode = opcode;
1057         c.delete_queue.qid = cpu_to_le16(id);
1058
1059         return nvme_submit_admin_cmd(dev, &c, NULL);
1060 }
1061
1062 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1063                                                 struct nvme_queue *nvmeq)
1064 {
1065         struct nvme_command c;
1066         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1067
1068         memset(&c, 0, sizeof(c));
1069         c.create_cq.opcode = nvme_admin_create_cq;
1070         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1071         c.create_cq.cqid = cpu_to_le16(qid);
1072         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1073         c.create_cq.cq_flags = cpu_to_le16(flags);
1074         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1075
1076         return nvme_submit_admin_cmd(dev, &c, NULL);
1077 }
1078
1079 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1080                                                 struct nvme_queue *nvmeq)
1081 {
1082         struct nvme_command c;
1083         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1084
1085         memset(&c, 0, sizeof(c));
1086         c.create_sq.opcode = nvme_admin_create_sq;
1087         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1088         c.create_sq.sqid = cpu_to_le16(qid);
1089         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1090         c.create_sq.sq_flags = cpu_to_le16(flags);
1091         c.create_sq.cqid = cpu_to_le16(qid);
1092
1093         return nvme_submit_admin_cmd(dev, &c, NULL);
1094 }
1095
1096 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1097 {
1098         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1099 }
1100
1101 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1102 {
1103         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1104 }
1105
1106 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1107                                                         dma_addr_t dma_addr)
1108 {
1109         struct nvme_command c;
1110
1111         memset(&c, 0, sizeof(c));
1112         c.identify.opcode = nvme_admin_identify;
1113         c.identify.nsid = cpu_to_le32(nsid);
1114         c.identify.prp1 = cpu_to_le64(dma_addr);
1115         c.identify.cns = cpu_to_le32(cns);
1116
1117         return nvme_submit_admin_cmd(dev, &c, NULL);
1118 }
1119
1120 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1121                                         dma_addr_t dma_addr, u32 *result)
1122 {
1123         struct nvme_command c;
1124
1125         memset(&c, 0, sizeof(c));
1126         c.features.opcode = nvme_admin_get_features;
1127         c.features.nsid = cpu_to_le32(nsid);
1128         c.features.prp1 = cpu_to_le64(dma_addr);
1129         c.features.fid = cpu_to_le32(fid);
1130
1131         return nvme_submit_admin_cmd(dev, &c, result);
1132 }
1133
1134 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1135                                         dma_addr_t dma_addr, u32 *result)
1136 {
1137         struct nvme_command c;
1138
1139         memset(&c, 0, sizeof(c));
1140         c.features.opcode = nvme_admin_set_features;
1141         c.features.prp1 = cpu_to_le64(dma_addr);
1142         c.features.fid = cpu_to_le32(fid);
1143         c.features.dword11 = cpu_to_le32(dword11);
1144
1145         return nvme_submit_admin_cmd(dev, &c, result);
1146 }
1147
1148 /**
1149  * nvme_abort_req - Attempt aborting a request
1150  *
1151  * Schedule controller reset if the command was already aborted once before and
1152  * still hasn't been returned to the driver, or if this is the admin queue.
1153  */
1154 static void nvme_abort_req(struct request *req)
1155 {
1156         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1157         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1158         struct nvme_dev *dev = nvmeq->dev;
1159         struct request *abort_req;
1160         struct nvme_cmd_info *abort_cmd;
1161         struct nvme_command cmd;
1162
1163         if (!nvmeq->qid || cmd_rq->aborted) {
1164                 unsigned long flags;
1165
1166                 spin_lock_irqsave(&dev_list_lock, flags);
1167                 if (work_busy(&dev->reset_work))
1168                         goto out;
1169                 list_del_init(&dev->node);
1170                 dev_warn(&dev->pci_dev->dev,
1171                         "I/O %d QID %d timeout, reset controller\n",
1172                                                         req->tag, nvmeq->qid);
1173                 dev->reset_workfn = nvme_reset_failed_dev;
1174                 queue_work(nvme_workq, &dev->reset_work);
1175  out:
1176                 spin_unlock_irqrestore(&dev_list_lock, flags);
1177                 return;
1178         }
1179
1180         if (!dev->abort_limit)
1181                 return;
1182
1183         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1184                                                                         false);
1185         if (IS_ERR(abort_req))
1186                 return;
1187
1188         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1189         nvme_set_info(abort_cmd, abort_req, abort_completion);
1190
1191         memset(&cmd, 0, sizeof(cmd));
1192         cmd.abort.opcode = nvme_admin_abort_cmd;
1193         cmd.abort.cid = req->tag;
1194         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1195         cmd.abort.command_id = abort_req->tag;
1196
1197         --dev->abort_limit;
1198         cmd_rq->aborted = 1;
1199
1200         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1201                                                         nvmeq->qid);
1202         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1203                 dev_warn(nvmeq->q_dmadev,
1204                                 "Could not abort I/O %d QID %d",
1205                                 req->tag, nvmeq->qid);
1206                 blk_mq_free_request(abort_req);
1207         }
1208 }
1209
1210 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1211                                 struct request *req, void *data, bool reserved)
1212 {
1213         struct nvme_queue *nvmeq = data;
1214         void *ctx;
1215         nvme_completion_fn fn;
1216         struct nvme_cmd_info *cmd;
1217         struct nvme_completion cqe;
1218
1219         if (!blk_mq_request_started(req))
1220                 return;
1221
1222         cmd = blk_mq_rq_to_pdu(req);
1223
1224         if (cmd->ctx == CMD_CTX_CANCELLED)
1225                 return;
1226
1227         if (blk_queue_dying(req->q))
1228                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1229         else
1230                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1231
1232
1233         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1234                                                 req->tag, nvmeq->qid);
1235         ctx = cancel_cmd_info(cmd, &fn);
1236         fn(nvmeq, ctx, &cqe);
1237 }
1238
1239 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1240 {
1241         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1242         struct nvme_queue *nvmeq = cmd->nvmeq;
1243
1244         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1245                                                         nvmeq->qid);
1246         spin_lock_irq(&nvmeq->q_lock);
1247         nvme_abort_req(req);
1248         spin_unlock_irq(&nvmeq->q_lock);
1249
1250         /*
1251          * The aborted req will be completed on receiving the abort req.
1252          * We enable the timer again. If hit twice, it'll cause a device reset,
1253          * as the device then is in a faulty state.
1254          */
1255         return BLK_EH_RESET_TIMER;
1256 }
1257
1258 static void nvme_free_queue(struct nvme_queue *nvmeq)
1259 {
1260         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1261                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1262         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1263                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1264         kfree(nvmeq);
1265 }
1266
1267 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1268 {
1269         int i;
1270
1271         for (i = dev->queue_count - 1; i >= lowest; i--) {
1272                 struct nvme_queue *nvmeq = dev->queues[i];
1273                 dev->queue_count--;
1274                 dev->queues[i] = NULL;
1275                 nvme_free_queue(nvmeq);
1276         }
1277 }
1278
1279 /**
1280  * nvme_suspend_queue - put queue into suspended state
1281  * @nvmeq - queue to suspend
1282  */
1283 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1284 {
1285         int vector;
1286
1287         spin_lock_irq(&nvmeq->q_lock);
1288         if (nvmeq->cq_vector == -1) {
1289                 spin_unlock_irq(&nvmeq->q_lock);
1290                 return 1;
1291         }
1292         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1293         nvmeq->dev->online_queues--;
1294         nvmeq->cq_vector = -1;
1295         spin_unlock_irq(&nvmeq->q_lock);
1296
1297         irq_set_affinity_hint(vector, NULL);
1298         free_irq(vector, nvmeq);
1299
1300         return 0;
1301 }
1302
1303 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1304 {
1305         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1306
1307         spin_lock_irq(&nvmeq->q_lock);
1308         if (hctx && hctx->tags)
1309                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1310         spin_unlock_irq(&nvmeq->q_lock);
1311 }
1312
1313 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1314 {
1315         struct nvme_queue *nvmeq = dev->queues[qid];
1316
1317         if (!nvmeq)
1318                 return;
1319         if (nvme_suspend_queue(nvmeq))
1320                 return;
1321
1322         /* Don't tell the adapter to delete the admin queue.
1323          * Don't tell a removed adapter to delete IO queues. */
1324         if (qid && readl(&dev->bar->csts) != -1) {
1325                 adapter_delete_sq(dev, qid);
1326                 adapter_delete_cq(dev, qid);
1327         }
1328         if (!qid && dev->admin_q)
1329                 blk_mq_freeze_queue_start(dev->admin_q);
1330
1331         spin_lock_irq(&nvmeq->q_lock);
1332         nvme_process_cq(nvmeq);
1333         spin_unlock_irq(&nvmeq->q_lock);
1334 }
1335
1336 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1337                                                         int depth)
1338 {
1339         struct device *dmadev = &dev->pci_dev->dev;
1340         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1341         if (!nvmeq)
1342                 return NULL;
1343
1344         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1345                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1346         if (!nvmeq->cqes)
1347                 goto free_nvmeq;
1348
1349         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1350                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1351         if (!nvmeq->sq_cmds)
1352                 goto free_cqdma;
1353
1354         nvmeq->q_dmadev = dmadev;
1355         nvmeq->dev = dev;
1356         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1357                         dev->instance, qid);
1358         spin_lock_init(&nvmeq->q_lock);
1359         nvmeq->cq_head = 0;
1360         nvmeq->cq_phase = 1;
1361         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1362         nvmeq->q_depth = depth;
1363         nvmeq->qid = qid;
1364         dev->queue_count++;
1365         dev->queues[qid] = nvmeq;
1366
1367         return nvmeq;
1368
1369  free_cqdma:
1370         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1371                                                         nvmeq->cq_dma_addr);
1372  free_nvmeq:
1373         kfree(nvmeq);
1374         return NULL;
1375 }
1376
1377 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1378                                                         const char *name)
1379 {
1380         if (use_threaded_interrupts)
1381                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1382                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1383                                         name, nvmeq);
1384         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1385                                 IRQF_SHARED, name, nvmeq);
1386 }
1387
1388 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1389 {
1390         struct nvme_dev *dev = nvmeq->dev;
1391
1392         spin_lock_irq(&nvmeq->q_lock);
1393         nvmeq->sq_tail = 0;
1394         nvmeq->cq_head = 0;
1395         nvmeq->cq_phase = 1;
1396         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1397         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1398         dev->online_queues++;
1399         spin_unlock_irq(&nvmeq->q_lock);
1400 }
1401
1402 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1403 {
1404         struct nvme_dev *dev = nvmeq->dev;
1405         int result;
1406
1407         nvmeq->cq_vector = qid - 1;
1408         result = adapter_alloc_cq(dev, qid, nvmeq);
1409         if (result < 0)
1410                 return result;
1411
1412         result = adapter_alloc_sq(dev, qid, nvmeq);
1413         if (result < 0)
1414                 goto release_cq;
1415
1416         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1417         if (result < 0)
1418                 goto release_sq;
1419
1420         nvme_init_queue(nvmeq, qid);
1421         return result;
1422
1423  release_sq:
1424         adapter_delete_sq(dev, qid);
1425  release_cq:
1426         adapter_delete_cq(dev, qid);
1427         return result;
1428 }
1429
1430 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1431 {
1432         unsigned long timeout;
1433         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1434
1435         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1436
1437         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1438                 msleep(100);
1439                 if (fatal_signal_pending(current))
1440                         return -EINTR;
1441                 if (time_after(jiffies, timeout)) {
1442                         dev_err(&dev->pci_dev->dev,
1443                                 "Device not ready; aborting %s\n", enabled ?
1444                                                 "initialisation" : "reset");
1445                         return -ENODEV;
1446                 }
1447         }
1448
1449         return 0;
1450 }
1451
1452 /*
1453  * If the device has been passed off to us in an enabled state, just clear
1454  * the enabled bit.  The spec says we should set the 'shutdown notification
1455  * bits', but doing so may cause the device to complete commands to the
1456  * admin queue ... and we don't know what memory that might be pointing at!
1457  */
1458 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1459 {
1460         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1461         dev->ctrl_config &= ~NVME_CC_ENABLE;
1462         writel(dev->ctrl_config, &dev->bar->cc);
1463
1464         return nvme_wait_ready(dev, cap, false);
1465 }
1466
1467 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1468 {
1469         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1470         dev->ctrl_config |= NVME_CC_ENABLE;
1471         writel(dev->ctrl_config, &dev->bar->cc);
1472
1473         return nvme_wait_ready(dev, cap, true);
1474 }
1475
1476 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1477 {
1478         unsigned long timeout;
1479
1480         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1481         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1482
1483         writel(dev->ctrl_config, &dev->bar->cc);
1484
1485         timeout = SHUTDOWN_TIMEOUT + jiffies;
1486         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1487                                                         NVME_CSTS_SHST_CMPLT) {
1488                 msleep(100);
1489                 if (fatal_signal_pending(current))
1490                         return -EINTR;
1491                 if (time_after(jiffies, timeout)) {
1492                         dev_err(&dev->pci_dev->dev,
1493                                 "Device shutdown incomplete; abort shutdown\n");
1494                         return -ENODEV;
1495                 }
1496         }
1497
1498         return 0;
1499 }
1500
1501 static struct blk_mq_ops nvme_mq_admin_ops = {
1502         .queue_rq       = nvme_admin_queue_rq,
1503         .map_queue      = blk_mq_map_queue,
1504         .init_hctx      = nvme_admin_init_hctx,
1505         .exit_hctx      = nvme_exit_hctx,
1506         .init_request   = nvme_admin_init_request,
1507         .timeout        = nvme_timeout,
1508 };
1509
1510 static struct blk_mq_ops nvme_mq_ops = {
1511         .queue_rq       = nvme_queue_rq,
1512         .map_queue      = blk_mq_map_queue,
1513         .init_hctx      = nvme_init_hctx,
1514         .exit_hctx      = nvme_exit_hctx,
1515         .init_request   = nvme_init_request,
1516         .timeout        = nvme_timeout,
1517 };
1518
1519 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1520 {
1521         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1522                 blk_cleanup_queue(dev->admin_q);
1523                 blk_mq_free_tag_set(&dev->admin_tagset);
1524         }
1525 }
1526
1527 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1528 {
1529         if (!dev->admin_q) {
1530                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1531                 dev->admin_tagset.nr_hw_queues = 1;
1532                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1533                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1534                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1535                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1536                 dev->admin_tagset.driver_data = dev;
1537
1538                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1539                         return -ENOMEM;
1540
1541                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1542                 if (IS_ERR(dev->admin_q)) {
1543                         blk_mq_free_tag_set(&dev->admin_tagset);
1544                         return -ENOMEM;
1545                 }
1546                 if (!blk_get_queue(dev->admin_q)) {
1547                         nvme_dev_remove_admin(dev);
1548                         return -ENODEV;
1549                 }
1550         } else
1551                 blk_mq_unfreeze_queue(dev->admin_q);
1552
1553         return 0;
1554 }
1555
1556 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1557 {
1558         int result;
1559         u32 aqa;
1560         u64 cap = readq(&dev->bar->cap);
1561         struct nvme_queue *nvmeq;
1562         unsigned page_shift = PAGE_SHIFT;
1563         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1564         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1565
1566         if (page_shift < dev_page_min) {
1567                 dev_err(&dev->pci_dev->dev,
1568                                 "Minimum device page size (%u) too large for "
1569                                 "host (%u)\n", 1 << dev_page_min,
1570                                 1 << page_shift);
1571                 return -ENODEV;
1572         }
1573         if (page_shift > dev_page_max) {
1574                 dev_info(&dev->pci_dev->dev,
1575                                 "Device maximum page size (%u) smaller than "
1576                                 "host (%u); enabling work-around\n",
1577                                 1 << dev_page_max, 1 << page_shift);
1578                 page_shift = dev_page_max;
1579         }
1580
1581         result = nvme_disable_ctrl(dev, cap);
1582         if (result < 0)
1583                 return result;
1584
1585         nvmeq = dev->queues[0];
1586         if (!nvmeq) {
1587                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1588                 if (!nvmeq)
1589                         return -ENOMEM;
1590         }
1591
1592         aqa = nvmeq->q_depth - 1;
1593         aqa |= aqa << 16;
1594
1595         dev->page_size = 1 << page_shift;
1596
1597         dev->ctrl_config = NVME_CC_CSS_NVM;
1598         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1599         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1600         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1601
1602         writel(aqa, &dev->bar->aqa);
1603         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1604         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1605
1606         result = nvme_enable_ctrl(dev, cap);
1607         if (result)
1608                 goto free_nvmeq;
1609
1610         nvmeq->cq_vector = 0;
1611         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1612         if (result)
1613                 goto free_nvmeq;
1614
1615         return result;
1616
1617  free_nvmeq:
1618         nvme_free_queues(dev, 0);
1619         return result;
1620 }
1621
1622 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1623                                 unsigned long addr, unsigned length)
1624 {
1625         int i, err, count, nents, offset;
1626         struct scatterlist *sg;
1627         struct page **pages;
1628         struct nvme_iod *iod;
1629
1630         if (addr & 3)
1631                 return ERR_PTR(-EINVAL);
1632         if (!length || length > INT_MAX - PAGE_SIZE)
1633                 return ERR_PTR(-EINVAL);
1634
1635         offset = offset_in_page(addr);
1636         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1637         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1638         if (!pages)
1639                 return ERR_PTR(-ENOMEM);
1640
1641         err = get_user_pages_fast(addr, count, 1, pages);
1642         if (err < count) {
1643                 count = err;
1644                 err = -EFAULT;
1645                 goto put_pages;
1646         }
1647
1648         err = -ENOMEM;
1649         iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1650         if (!iod)
1651                 goto put_pages;
1652
1653         sg = iod->sg;
1654         sg_init_table(sg, count);
1655         for (i = 0; i < count; i++) {
1656                 sg_set_page(&sg[i], pages[i],
1657                             min_t(unsigned, length, PAGE_SIZE - offset),
1658                             offset);
1659                 length -= (PAGE_SIZE - offset);
1660                 offset = 0;
1661         }
1662         sg_mark_end(&sg[i - 1]);
1663         iod->nents = count;
1664
1665         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1666                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1667         if (!nents)
1668                 goto free_iod;
1669
1670         kfree(pages);
1671         return iod;
1672
1673  free_iod:
1674         kfree(iod);
1675  put_pages:
1676         for (i = 0; i < count; i++)
1677                 put_page(pages[i]);
1678         kfree(pages);
1679         return ERR_PTR(err);
1680 }
1681
1682 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1683                         struct nvme_iod *iod)
1684 {
1685         int i;
1686
1687         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1688                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1689
1690         for (i = 0; i < iod->nents; i++)
1691                 put_page(sg_page(&iod->sg[i]));
1692 }
1693
1694 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1695 {
1696         struct nvme_dev *dev = ns->dev;
1697         struct nvme_user_io io;
1698         struct nvme_command c;
1699         unsigned length, meta_len;
1700         int status, i;
1701         struct nvme_iod *iod, *meta_iod = NULL;
1702         dma_addr_t meta_dma_addr;
1703         void *meta, *uninitialized_var(meta_mem);
1704
1705         if (copy_from_user(&io, uio, sizeof(io)))
1706                 return -EFAULT;
1707         length = (io.nblocks + 1) << ns->lba_shift;
1708         meta_len = (io.nblocks + 1) * ns->ms;
1709
1710         if (meta_len && ((io.metadata & 3) || !io.metadata))
1711                 return -EINVAL;
1712
1713         switch (io.opcode) {
1714         case nvme_cmd_write:
1715         case nvme_cmd_read:
1716         case nvme_cmd_compare:
1717                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1718                 break;
1719         default:
1720                 return -EINVAL;
1721         }
1722
1723         if (IS_ERR(iod))
1724                 return PTR_ERR(iod);
1725
1726         memset(&c, 0, sizeof(c));
1727         c.rw.opcode = io.opcode;
1728         c.rw.flags = io.flags;
1729         c.rw.nsid = cpu_to_le32(ns->ns_id);
1730         c.rw.slba = cpu_to_le64(io.slba);
1731         c.rw.length = cpu_to_le16(io.nblocks);
1732         c.rw.control = cpu_to_le16(io.control);
1733         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1734         c.rw.reftag = cpu_to_le32(io.reftag);
1735         c.rw.apptag = cpu_to_le16(io.apptag);
1736         c.rw.appmask = cpu_to_le16(io.appmask);
1737
1738         if (meta_len) {
1739                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1740                                                                 meta_len);
1741                 if (IS_ERR(meta_iod)) {
1742                         status = PTR_ERR(meta_iod);
1743                         meta_iod = NULL;
1744                         goto unmap;
1745                 }
1746
1747                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1748                                                 &meta_dma_addr, GFP_KERNEL);
1749                 if (!meta_mem) {
1750                         status = -ENOMEM;
1751                         goto unmap;
1752                 }
1753
1754                 if (io.opcode & 1) {
1755                         int meta_offset = 0;
1756
1757                         for (i = 0; i < meta_iod->nents; i++) {
1758                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1759                                                 meta_iod->sg[i].offset;
1760                                 memcpy(meta_mem + meta_offset, meta,
1761                                                 meta_iod->sg[i].length);
1762                                 kunmap_atomic(meta);
1763                                 meta_offset += meta_iod->sg[i].length;
1764                         }
1765                 }
1766
1767                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1768         }
1769
1770         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1771         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1772         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1773
1774         if (length != (io.nblocks + 1) << ns->lba_shift)
1775                 status = -ENOMEM;
1776         else
1777                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1778
1779         if (meta_len) {
1780                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1781                         int meta_offset = 0;
1782
1783                         for (i = 0; i < meta_iod->nents; i++) {
1784                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1785                                                 meta_iod->sg[i].offset;
1786                                 memcpy(meta, meta_mem + meta_offset,
1787                                                 meta_iod->sg[i].length);
1788                                 kunmap_atomic(meta);
1789                                 meta_offset += meta_iod->sg[i].length;
1790                         }
1791                 }
1792
1793                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1794                                                                 meta_dma_addr);
1795         }
1796
1797  unmap:
1798         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1799         nvme_free_iod(dev, iod);
1800
1801         if (meta_iod) {
1802                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1803                 nvme_free_iod(dev, meta_iod);
1804         }
1805
1806         return status;
1807 }
1808
1809 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1810                         struct nvme_passthru_cmd __user *ucmd)
1811 {
1812         struct nvme_passthru_cmd cmd;
1813         struct nvme_command c;
1814         int status, length;
1815         struct nvme_iod *uninitialized_var(iod);
1816         unsigned timeout;
1817
1818         if (!capable(CAP_SYS_ADMIN))
1819                 return -EACCES;
1820         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1821                 return -EFAULT;
1822
1823         memset(&c, 0, sizeof(c));
1824         c.common.opcode = cmd.opcode;
1825         c.common.flags = cmd.flags;
1826         c.common.nsid = cpu_to_le32(cmd.nsid);
1827         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1828         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1829         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1830         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1831         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1832         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1833         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1834         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1835
1836         length = cmd.data_len;
1837         if (cmd.data_len) {
1838                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1839                                                                 length);
1840                 if (IS_ERR(iod))
1841                         return PTR_ERR(iod);
1842                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1843                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1844                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1845         }
1846
1847         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1848                                                                 ADMIN_TIMEOUT;
1849
1850         if (length != cmd.data_len)
1851                 status = -ENOMEM;
1852         else if (ns) {
1853                 struct request *req;
1854
1855                 req = blk_mq_alloc_request(ns->queue, WRITE,
1856                                                 (GFP_KERNEL|__GFP_WAIT), false);
1857                 if (IS_ERR(req))
1858                         status = PTR_ERR(req);
1859                 else {
1860                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1861                                                                 timeout);
1862                         blk_mq_free_request(req);
1863                 }
1864         } else
1865                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1866
1867         if (cmd.data_len) {
1868                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1869                 nvme_free_iod(dev, iod);
1870         }
1871
1872         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1873                                                         sizeof(cmd.result)))
1874                 status = -EFAULT;
1875
1876         return status;
1877 }
1878
1879 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1880                                                         unsigned long arg)
1881 {
1882         struct nvme_ns *ns = bdev->bd_disk->private_data;
1883
1884         switch (cmd) {
1885         case NVME_IOCTL_ID:
1886                 force_successful_syscall_return();
1887                 return ns->ns_id;
1888         case NVME_IOCTL_ADMIN_CMD:
1889                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1890         case NVME_IOCTL_IO_CMD:
1891                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1892         case NVME_IOCTL_SUBMIT_IO:
1893                 return nvme_submit_io(ns, (void __user *)arg);
1894         case SG_GET_VERSION_NUM:
1895                 return nvme_sg_get_version_num((void __user *)arg);
1896         case SG_IO:
1897                 return nvme_sg_io(ns, (void __user *)arg);
1898         default:
1899                 return -ENOTTY;
1900         }
1901 }
1902
1903 #ifdef CONFIG_COMPAT
1904 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1905                                         unsigned int cmd, unsigned long arg)
1906 {
1907         switch (cmd) {
1908         case SG_IO:
1909                 return -ENOIOCTLCMD;
1910         }
1911         return nvme_ioctl(bdev, mode, cmd, arg);
1912 }
1913 #else
1914 #define nvme_compat_ioctl       NULL
1915 #endif
1916
1917 static int nvme_open(struct block_device *bdev, fmode_t mode)
1918 {
1919         int ret = 0;
1920         struct nvme_ns *ns;
1921
1922         spin_lock(&dev_list_lock);
1923         ns = bdev->bd_disk->private_data;
1924         if (!ns)
1925                 ret = -ENXIO;
1926         else if (!kref_get_unless_zero(&ns->dev->kref))
1927                 ret = -ENXIO;
1928         spin_unlock(&dev_list_lock);
1929
1930         return ret;
1931 }
1932
1933 static void nvme_free_dev(struct kref *kref);
1934
1935 static void nvme_release(struct gendisk *disk, fmode_t mode)
1936 {
1937         struct nvme_ns *ns = disk->private_data;
1938         struct nvme_dev *dev = ns->dev;
1939
1940         kref_put(&dev->kref, nvme_free_dev);
1941 }
1942
1943 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1944 {
1945         /* some standard values */
1946         geo->heads = 1 << 6;
1947         geo->sectors = 1 << 5;
1948         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1949         return 0;
1950 }
1951
1952 static void nvme_config_discard(struct nvme_ns *ns)
1953 {
1954         u32 logical_block_size = queue_logical_block_size(ns->queue);
1955         ns->queue->limits.discard_zeroes_data = 0;
1956         ns->queue->limits.discard_alignment = logical_block_size;
1957         ns->queue->limits.discard_granularity = logical_block_size;
1958         ns->queue->limits.max_discard_sectors = 0xffffffff;
1959         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1960 }
1961
1962 static int nvme_noop_verify(struct blk_integrity_iter *iter)
1963 {
1964         return 0;
1965 }
1966
1967 static int nvme_noop_generate(struct blk_integrity_iter *iter)
1968 {
1969         return 0;
1970 }
1971
1972 struct blk_integrity nvme_meta_noop = {
1973         .name                   = "NVME_META_NOOP",
1974         .generate_fn            = nvme_noop_generate,
1975         .verify_fn              = nvme_noop_verify,
1976 };
1977
1978 static void nvme_init_integrity(struct nvme_ns *ns)
1979 {
1980         struct blk_integrity integrity;
1981
1982         switch (ns->pi_type) {
1983         case NVME_NS_DPS_PI_TYPE3:
1984                 integrity = t10_pi_type3_crc;
1985                 break;
1986         case NVME_NS_DPS_PI_TYPE1:
1987         case NVME_NS_DPS_PI_TYPE2:
1988                 integrity = t10_pi_type1_crc;
1989                 break;
1990         default:
1991                 integrity = nvme_meta_noop;
1992                 break;
1993         }
1994         integrity.tuple_size = ns->ms;
1995         blk_integrity_register(ns->disk, &integrity);
1996         blk_queue_max_integrity_segments(ns->queue, 1);
1997 }
1998
1999 static int nvme_revalidate_disk(struct gendisk *disk)
2000 {
2001         struct nvme_ns *ns = disk->private_data;
2002         struct nvme_dev *dev = ns->dev;
2003         struct nvme_id_ns *id;
2004         dma_addr_t dma_addr;
2005         int lbaf, pi_type, old_ms;
2006         unsigned short bs;
2007
2008         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2009                                                                 GFP_KERNEL);
2010         if (!id) {
2011                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2012                                                                 __func__);
2013                 return 0;
2014         }
2015         if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2016                 dev_warn(&dev->pci_dev->dev,
2017                         "identify failed ns:%d, setting capacity to 0\n",
2018                         ns->ns_id);
2019                 memset(id, 0, sizeof(*id));
2020         }
2021
2022         old_ms = ns->ms;
2023         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2024         ns->lba_shift = id->lbaf[lbaf].ds;
2025         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2026
2027         /*
2028          * If identify namespace failed, use default 512 byte block size so
2029          * block layer can use before failing read/write for 0 capacity.
2030          */
2031         if (ns->lba_shift == 0)
2032                 ns->lba_shift = 9;
2033         bs = 1 << ns->lba_shift;
2034
2035         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2036         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2037                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2038
2039         if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
2040                                 bs != queue_logical_block_size(disk->queue) ||
2041                                 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2042                 blk_integrity_unregister(disk);
2043
2044         ns->pi_type = pi_type;
2045         blk_queue_logical_block_size(ns->queue, bs);
2046
2047         if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
2048                                 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2049                 nvme_init_integrity(ns);
2050
2051         if (id->ncap == 0 || (ns->ms && !disk->integrity))
2052                 set_capacity(disk, 0);
2053         else
2054                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2055
2056         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2057                 nvme_config_discard(ns);
2058
2059         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2060         return 0;
2061 }
2062
2063 static const struct block_device_operations nvme_fops = {
2064         .owner          = THIS_MODULE,
2065         .ioctl          = nvme_ioctl,
2066         .compat_ioctl   = nvme_compat_ioctl,
2067         .open           = nvme_open,
2068         .release        = nvme_release,
2069         .getgeo         = nvme_getgeo,
2070         .revalidate_disk= nvme_revalidate_disk,
2071 };
2072
2073 static int nvme_kthread(void *data)
2074 {
2075         struct nvme_dev *dev, *next;
2076
2077         while (!kthread_should_stop()) {
2078                 set_current_state(TASK_INTERRUPTIBLE);
2079                 spin_lock(&dev_list_lock);
2080                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2081                         int i;
2082                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2083                                 if (work_busy(&dev->reset_work))
2084                                         continue;
2085                                 list_del_init(&dev->node);
2086                                 dev_warn(&dev->pci_dev->dev,
2087                                         "Failed status: %x, reset controller\n",
2088                                         readl(&dev->bar->csts));
2089                                 dev->reset_workfn = nvme_reset_failed_dev;
2090                                 queue_work(nvme_workq, &dev->reset_work);
2091                                 continue;
2092                         }
2093                         for (i = 0; i < dev->queue_count; i++) {
2094                                 struct nvme_queue *nvmeq = dev->queues[i];
2095                                 if (!nvmeq)
2096                                         continue;
2097                                 spin_lock_irq(&nvmeq->q_lock);
2098                                 nvme_process_cq(nvmeq);
2099
2100                                 while ((i == 0) && (dev->event_limit > 0)) {
2101                                         if (nvme_submit_async_admin_req(dev))
2102                                                 break;
2103                                         dev->event_limit--;
2104                                 }
2105                                 spin_unlock_irq(&nvmeq->q_lock);
2106                         }
2107                 }
2108                 spin_unlock(&dev_list_lock);
2109                 schedule_timeout(round_jiffies_relative(HZ));
2110         }
2111         return 0;
2112 }
2113
2114 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2115 {
2116         struct nvme_ns *ns;
2117         struct gendisk *disk;
2118         int node = dev_to_node(&dev->pci_dev->dev);
2119
2120         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2121         if (!ns)
2122                 return;
2123
2124         ns->queue = blk_mq_init_queue(&dev->tagset);
2125         if (IS_ERR(ns->queue))
2126                 goto out_free_ns;
2127         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2129         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2130         ns->dev = dev;
2131         ns->queue->queuedata = ns;
2132
2133         disk = alloc_disk_node(0, node);
2134         if (!disk)
2135                 goto out_free_queue;
2136
2137         ns->ns_id = nsid;
2138         ns->disk = disk;
2139         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140         list_add_tail(&ns->list, &dev->namespaces);
2141
2142         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2143         if (dev->max_hw_sectors)
2144                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2145         if (dev->stripe_size)
2146                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2147         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2148                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2149
2150         disk->major = nvme_major;
2151         disk->first_minor = 0;
2152         disk->fops = &nvme_fops;
2153         disk->private_data = ns;
2154         disk->queue = ns->queue;
2155         disk->driverfs_dev = dev->device;
2156         disk->flags = GENHD_FL_EXT_DEVT;
2157         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2158
2159         /*
2160          * Initialize capacity to 0 until we establish the namespace format and
2161          * setup integrity extentions if necessary. The revalidate_disk after
2162          * add_disk allows the driver to register with integrity if the format
2163          * requires it.
2164          */
2165         set_capacity(disk, 0);
2166         nvme_revalidate_disk(ns->disk);
2167         add_disk(ns->disk);
2168         if (ns->ms)
2169                 revalidate_disk(ns->disk);
2170         return;
2171  out_free_queue:
2172         blk_cleanup_queue(ns->queue);
2173  out_free_ns:
2174         kfree(ns);
2175 }
2176
2177 static void nvme_create_io_queues(struct nvme_dev *dev)
2178 {
2179         unsigned i;
2180
2181         for (i = dev->queue_count; i <= dev->max_qid; i++)
2182                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2183                         break;
2184
2185         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2186                 if (nvme_create_queue(dev->queues[i], i))
2187                         break;
2188 }
2189
2190 static int set_queue_count(struct nvme_dev *dev, int count)
2191 {
2192         int status;
2193         u32 result;
2194         u32 q_count = (count - 1) | ((count - 1) << 16);
2195
2196         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2197                                                                 &result);
2198         if (status < 0)
2199                 return status;
2200         if (status > 0) {
2201                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2202                                                                         status);
2203                 return 0;
2204         }
2205         return min(result & 0xffff, result >> 16) + 1;
2206 }
2207
2208 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2209 {
2210         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2211 }
2212
2213 static int nvme_setup_io_queues(struct nvme_dev *dev)
2214 {
2215         struct nvme_queue *adminq = dev->queues[0];
2216         struct pci_dev *pdev = dev->pci_dev;
2217         int result, i, vecs, nr_io_queues, size;
2218
2219         nr_io_queues = num_possible_cpus();
2220         result = set_queue_count(dev, nr_io_queues);
2221         if (result <= 0)
2222                 return result;
2223         if (result < nr_io_queues)
2224                 nr_io_queues = result;
2225
2226         size = db_bar_size(dev, nr_io_queues);
2227         if (size > 8192) {
2228                 iounmap(dev->bar);
2229                 do {
2230                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2231                         if (dev->bar)
2232                                 break;
2233                         if (!--nr_io_queues)
2234                                 return -ENOMEM;
2235                         size = db_bar_size(dev, nr_io_queues);
2236                 } while (1);
2237                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2238                 adminq->q_db = dev->dbs;
2239         }
2240
2241         /* Deregister the admin queue's interrupt */
2242         free_irq(dev->entry[0].vector, adminq);
2243
2244         /*
2245          * If we enable msix early due to not intx, disable it again before
2246          * setting up the full range we need.
2247          */
2248         if (!pdev->irq)
2249                 pci_disable_msix(pdev);
2250
2251         for (i = 0; i < nr_io_queues; i++)
2252                 dev->entry[i].entry = i;
2253         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2254         if (vecs < 0) {
2255                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2256                 if (vecs < 0) {
2257                         vecs = 1;
2258                 } else {
2259                         for (i = 0; i < vecs; i++)
2260                                 dev->entry[i].vector = i + pdev->irq;
2261                 }
2262         }
2263
2264         /*
2265          * Should investigate if there's a performance win from allocating
2266          * more queues than interrupt vectors; it might allow the submission
2267          * path to scale better, even if the receive path is limited by the
2268          * number of interrupts.
2269          */
2270         nr_io_queues = vecs;
2271         dev->max_qid = nr_io_queues;
2272
2273         result = queue_request_irq(dev, adminq, adminq->irqname);
2274         if (result)
2275                 goto free_queues;
2276
2277         /* Free previously allocated queues that are no longer usable */
2278         nvme_free_queues(dev, nr_io_queues + 1);
2279         nvme_create_io_queues(dev);
2280
2281         return 0;
2282
2283  free_queues:
2284         nvme_free_queues(dev, 1);
2285         return result;
2286 }
2287
2288 /*
2289  * Return: error value if an error occurred setting up the queues or calling
2290  * Identify Device.  0 if these succeeded, even if adding some of the
2291  * namespaces failed.  At the moment, these failures are silent.  TBD which
2292  * failures should be reported.
2293  */
2294 static int nvme_dev_add(struct nvme_dev *dev)
2295 {
2296         struct pci_dev *pdev = dev->pci_dev;
2297         int res;
2298         unsigned nn, i;
2299         struct nvme_id_ctrl *ctrl;
2300         void *mem;
2301         dma_addr_t dma_addr;
2302         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2303
2304         mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2305         if (!mem)
2306                 return -ENOMEM;
2307
2308         res = nvme_identify(dev, 0, 1, dma_addr);
2309         if (res) {
2310                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2311                 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2312                 return -EIO;
2313         }
2314
2315         ctrl = mem;
2316         nn = le32_to_cpup(&ctrl->nn);
2317         dev->oncs = le16_to_cpup(&ctrl->oncs);
2318         dev->abort_limit = ctrl->acl + 1;
2319         dev->vwc = ctrl->vwc;
2320         dev->event_limit = min(ctrl->aerl + 1, 8);
2321         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2322         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2323         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2324         if (ctrl->mdts)
2325                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2326         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2327                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2328                 unsigned int max_hw_sectors;
2329
2330                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2331                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2332                 if (dev->max_hw_sectors) {
2333                         dev->max_hw_sectors = min(max_hw_sectors,
2334                                                         dev->max_hw_sectors);
2335                 } else
2336                         dev->max_hw_sectors = max_hw_sectors;
2337         }
2338         dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2339
2340         dev->tagset.ops = &nvme_mq_ops;
2341         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2342         dev->tagset.timeout = NVME_IO_TIMEOUT;
2343         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2344         dev->tagset.queue_depth =
2345                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2346         dev->tagset.cmd_size = nvme_cmd_size(dev);
2347         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2348         dev->tagset.driver_data = dev;
2349
2350         if (blk_mq_alloc_tag_set(&dev->tagset))
2351                 return 0;
2352
2353         for (i = 1; i <= nn; i++)
2354                 nvme_alloc_ns(dev, i);
2355
2356         return 0;
2357 }
2358
2359 static int nvme_dev_map(struct nvme_dev *dev)
2360 {
2361         u64 cap;
2362         int bars, result = -ENOMEM;
2363         struct pci_dev *pdev = dev->pci_dev;
2364
2365         if (pci_enable_device_mem(pdev))
2366                 return result;
2367
2368         dev->entry[0].vector = pdev->irq;
2369         pci_set_master(pdev);
2370         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2371         if (!bars)
2372                 goto disable_pci;
2373
2374         if (pci_request_selected_regions(pdev, bars, "nvme"))
2375                 goto disable_pci;
2376
2377         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2378             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2379                 goto disable;
2380
2381         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2382         if (!dev->bar)
2383                 goto disable;
2384
2385         if (readl(&dev->bar->csts) == -1) {
2386                 result = -ENODEV;
2387                 goto unmap;
2388         }
2389
2390         /*
2391          * Some devices don't advertse INTx interrupts, pre-enable a single
2392          * MSIX vec for setup. We'll adjust this later.
2393          */
2394         if (!pdev->irq) {
2395                 result = pci_enable_msix(pdev, dev->entry, 1);
2396                 if (result < 0)
2397                         goto unmap;
2398         }
2399
2400         cap = readq(&dev->bar->cap);
2401         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2402         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2403         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2404
2405         return 0;
2406
2407  unmap:
2408         iounmap(dev->bar);
2409         dev->bar = NULL;
2410  disable:
2411         pci_release_regions(pdev);
2412  disable_pci:
2413         pci_disable_device(pdev);
2414         return result;
2415 }
2416
2417 static void nvme_dev_unmap(struct nvme_dev *dev)
2418 {
2419         if (dev->pci_dev->msi_enabled)
2420                 pci_disable_msi(dev->pci_dev);
2421         else if (dev->pci_dev->msix_enabled)
2422                 pci_disable_msix(dev->pci_dev);
2423
2424         if (dev->bar) {
2425                 iounmap(dev->bar);
2426                 dev->bar = NULL;
2427                 pci_release_regions(dev->pci_dev);
2428         }
2429
2430         if (pci_is_enabled(dev->pci_dev))
2431                 pci_disable_device(dev->pci_dev);
2432 }
2433
2434 struct nvme_delq_ctx {
2435         struct task_struct *waiter;
2436         struct kthread_worker *worker;
2437         atomic_t refcount;
2438 };
2439
2440 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2441 {
2442         dq->waiter = current;
2443         mb();
2444
2445         for (;;) {
2446                 set_current_state(TASK_KILLABLE);
2447                 if (!atomic_read(&dq->refcount))
2448                         break;
2449                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2450                                         fatal_signal_pending(current)) {
2451                         /*
2452                          * Disable the controller first since we can't trust it
2453                          * at this point, but leave the admin queue enabled
2454                          * until all queue deletion requests are flushed.
2455                          * FIXME: This may take a while if there are more h/w
2456                          * queues than admin tags.
2457                          */
2458                         set_current_state(TASK_RUNNING);
2459                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2460                         nvme_clear_queue(dev->queues[0]);
2461                         flush_kthread_worker(dq->worker);
2462                         nvme_disable_queue(dev, 0);
2463                         return;
2464                 }
2465         }
2466         set_current_state(TASK_RUNNING);
2467 }
2468
2469 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2470 {
2471         atomic_dec(&dq->refcount);
2472         if (dq->waiter)
2473                 wake_up_process(dq->waiter);
2474 }
2475
2476 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2477 {
2478         atomic_inc(&dq->refcount);
2479         return dq;
2480 }
2481
2482 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2483 {
2484         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2485         nvme_put_dq(dq);
2486 }
2487
2488 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2489                                                 kthread_work_func_t fn)
2490 {
2491         struct nvme_command c;
2492
2493         memset(&c, 0, sizeof(c));
2494         c.delete_queue.opcode = opcode;
2495         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2496
2497         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2498         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2499                                                                 ADMIN_TIMEOUT);
2500 }
2501
2502 static void nvme_del_cq_work_handler(struct kthread_work *work)
2503 {
2504         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2505                                                         cmdinfo.work);
2506         nvme_del_queue_end(nvmeq);
2507 }
2508
2509 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2510 {
2511         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2512                                                 nvme_del_cq_work_handler);
2513 }
2514
2515 static void nvme_del_sq_work_handler(struct kthread_work *work)
2516 {
2517         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2518                                                         cmdinfo.work);
2519         int status = nvmeq->cmdinfo.status;
2520
2521         if (!status)
2522                 status = nvme_delete_cq(nvmeq);
2523         if (status)
2524                 nvme_del_queue_end(nvmeq);
2525 }
2526
2527 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2528 {
2529         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2530                                                 nvme_del_sq_work_handler);
2531 }
2532
2533 static void nvme_del_queue_start(struct kthread_work *work)
2534 {
2535         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2536                                                         cmdinfo.work);
2537         if (nvme_delete_sq(nvmeq))
2538                 nvme_del_queue_end(nvmeq);
2539 }
2540
2541 static void nvme_disable_io_queues(struct nvme_dev *dev)
2542 {
2543         int i;
2544         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2545         struct nvme_delq_ctx dq;
2546         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2547                                         &worker, "nvme%d", dev->instance);
2548
2549         if (IS_ERR(kworker_task)) {
2550                 dev_err(&dev->pci_dev->dev,
2551                         "Failed to create queue del task\n");
2552                 for (i = dev->queue_count - 1; i > 0; i--)
2553                         nvme_disable_queue(dev, i);
2554                 return;
2555         }
2556
2557         dq.waiter = NULL;
2558         atomic_set(&dq.refcount, 0);
2559         dq.worker = &worker;
2560         for (i = dev->queue_count - 1; i > 0; i--) {
2561                 struct nvme_queue *nvmeq = dev->queues[i];
2562
2563                 if (nvme_suspend_queue(nvmeq))
2564                         continue;
2565                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2566                 nvmeq->cmdinfo.worker = dq.worker;
2567                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2568                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2569         }
2570         nvme_wait_dq(&dq, dev);
2571         kthread_stop(kworker_task);
2572 }
2573
2574 /*
2575 * Remove the node from the device list and check
2576 * for whether or not we need to stop the nvme_thread.
2577 */
2578 static void nvme_dev_list_remove(struct nvme_dev *dev)
2579 {
2580         struct task_struct *tmp = NULL;
2581
2582         spin_lock(&dev_list_lock);
2583         list_del_init(&dev->node);
2584         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2585                 tmp = nvme_thread;
2586                 nvme_thread = NULL;
2587         }
2588         spin_unlock(&dev_list_lock);
2589
2590         if (tmp)
2591                 kthread_stop(tmp);
2592 }
2593
2594 static void nvme_freeze_queues(struct nvme_dev *dev)
2595 {
2596         struct nvme_ns *ns;
2597
2598         list_for_each_entry(ns, &dev->namespaces, list) {
2599                 blk_mq_freeze_queue_start(ns->queue);
2600
2601                 spin_lock(ns->queue->queue_lock);
2602                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2603                 spin_unlock(ns->queue->queue_lock);
2604
2605                 blk_mq_cancel_requeue_work(ns->queue);
2606                 blk_mq_stop_hw_queues(ns->queue);
2607         }
2608 }
2609
2610 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2611 {
2612         struct nvme_ns *ns;
2613
2614         list_for_each_entry(ns, &dev->namespaces, list) {
2615                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2616                 blk_mq_unfreeze_queue(ns->queue);
2617                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2618                 blk_mq_kick_requeue_list(ns->queue);
2619         }
2620 }
2621
2622 static void nvme_dev_shutdown(struct nvme_dev *dev)
2623 {
2624         int i;
2625         u32 csts = -1;
2626
2627         nvme_dev_list_remove(dev);
2628
2629         if (dev->bar) {
2630                 nvme_freeze_queues(dev);
2631                 csts = readl(&dev->bar->csts);
2632         }
2633         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2634                 for (i = dev->queue_count - 1; i >= 0; i--) {
2635                         struct nvme_queue *nvmeq = dev->queues[i];
2636                         nvme_suspend_queue(nvmeq);
2637                 }
2638         } else {
2639                 nvme_disable_io_queues(dev);
2640                 nvme_shutdown_ctrl(dev);
2641                 nvme_disable_queue(dev, 0);
2642         }
2643         nvme_dev_unmap(dev);
2644
2645         for (i = dev->queue_count - 1; i >= 0; i--)
2646                 nvme_clear_queue(dev->queues[i]);
2647 }
2648
2649 static void nvme_dev_remove(struct nvme_dev *dev)
2650 {
2651         struct nvme_ns *ns;
2652
2653         list_for_each_entry(ns, &dev->namespaces, list) {
2654                 if (ns->disk->flags & GENHD_FL_UP) {
2655                         if (ns->disk->integrity)
2656                                 blk_integrity_unregister(ns->disk);
2657                         del_gendisk(ns->disk);
2658                 }
2659                 if (!blk_queue_dying(ns->queue)) {
2660                         blk_mq_abort_requeue_list(ns->queue);
2661                         blk_cleanup_queue(ns->queue);
2662                 }
2663         }
2664 }
2665
2666 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2667 {
2668         struct device *dmadev = &dev->pci_dev->dev;
2669         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2670                                                 PAGE_SIZE, PAGE_SIZE, 0);
2671         if (!dev->prp_page_pool)
2672                 return -ENOMEM;
2673
2674         /* Optimisation for I/Os between 4k and 128k */
2675         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2676                                                 256, 256, 0);
2677         if (!dev->prp_small_pool) {
2678                 dma_pool_destroy(dev->prp_page_pool);
2679                 return -ENOMEM;
2680         }
2681         return 0;
2682 }
2683
2684 static void nvme_release_prp_pools(struct nvme_dev *dev)
2685 {
2686         dma_pool_destroy(dev->prp_page_pool);
2687         dma_pool_destroy(dev->prp_small_pool);
2688 }
2689
2690 static DEFINE_IDA(nvme_instance_ida);
2691
2692 static int nvme_set_instance(struct nvme_dev *dev)
2693 {
2694         int instance, error;
2695
2696         do {
2697                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2698                         return -ENODEV;
2699
2700                 spin_lock(&dev_list_lock);
2701                 error = ida_get_new(&nvme_instance_ida, &instance);
2702                 spin_unlock(&dev_list_lock);
2703         } while (error == -EAGAIN);
2704
2705         if (error)
2706                 return -ENODEV;
2707
2708         dev->instance = instance;
2709         return 0;
2710 }
2711
2712 static void nvme_release_instance(struct nvme_dev *dev)
2713 {
2714         spin_lock(&dev_list_lock);
2715         ida_remove(&nvme_instance_ida, dev->instance);
2716         spin_unlock(&dev_list_lock);
2717 }
2718
2719 static void nvme_free_namespaces(struct nvme_dev *dev)
2720 {
2721         struct nvme_ns *ns, *next;
2722
2723         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2724                 list_del(&ns->list);
2725
2726                 spin_lock(&dev_list_lock);
2727                 ns->disk->private_data = NULL;
2728                 spin_unlock(&dev_list_lock);
2729
2730                 put_disk(ns->disk);
2731                 kfree(ns);
2732         }
2733 }
2734
2735 static void nvme_free_dev(struct kref *kref)
2736 {
2737         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2738
2739         pci_dev_put(dev->pci_dev);
2740         put_device(dev->device);
2741         nvme_free_namespaces(dev);
2742         nvme_release_instance(dev);
2743         blk_mq_free_tag_set(&dev->tagset);
2744         blk_put_queue(dev->admin_q);
2745         kfree(dev->queues);
2746         kfree(dev->entry);
2747         kfree(dev);
2748 }
2749
2750 static int nvme_dev_open(struct inode *inode, struct file *f)
2751 {
2752         struct nvme_dev *dev;
2753         int instance = iminor(inode);
2754         int ret = -ENODEV;
2755
2756         spin_lock(&dev_list_lock);
2757         list_for_each_entry(dev, &dev_list, node) {
2758                 if (dev->instance == instance) {
2759                         if (!dev->admin_q) {
2760                                 ret = -EWOULDBLOCK;
2761                                 break;
2762                         }
2763                         if (!kref_get_unless_zero(&dev->kref))
2764                                 break;
2765                         f->private_data = dev;
2766                         ret = 0;
2767                         break;
2768                 }
2769         }
2770         spin_unlock(&dev_list_lock);
2771
2772         return ret;
2773 }
2774
2775 static int nvme_dev_release(struct inode *inode, struct file *f)
2776 {
2777         struct nvme_dev *dev = f->private_data;
2778         kref_put(&dev->kref, nvme_free_dev);
2779         return 0;
2780 }
2781
2782 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2783 {
2784         struct nvme_dev *dev = f->private_data;
2785         struct nvme_ns *ns;
2786
2787         switch (cmd) {
2788         case NVME_IOCTL_ADMIN_CMD:
2789                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2790         case NVME_IOCTL_IO_CMD:
2791                 if (list_empty(&dev->namespaces))
2792                         return -ENOTTY;
2793                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2794                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2795         default:
2796                 return -ENOTTY;
2797         }
2798 }
2799
2800 static const struct file_operations nvme_dev_fops = {
2801         .owner          = THIS_MODULE,
2802         .open           = nvme_dev_open,
2803         .release        = nvme_dev_release,
2804         .unlocked_ioctl = nvme_dev_ioctl,
2805         .compat_ioctl   = nvme_dev_ioctl,
2806 };
2807
2808 static void nvme_set_irq_hints(struct nvme_dev *dev)
2809 {
2810         struct nvme_queue *nvmeq;
2811         int i;
2812
2813         for (i = 0; i < dev->online_queues; i++) {
2814                 nvmeq = dev->queues[i];
2815
2816                 if (!nvmeq->hctx)
2817                         continue;
2818
2819                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2820                                                         nvmeq->hctx->cpumask);
2821         }
2822 }
2823
2824 static int nvme_dev_start(struct nvme_dev *dev)
2825 {
2826         int result;
2827         bool start_thread = false;
2828
2829         result = nvme_dev_map(dev);
2830         if (result)
2831                 return result;
2832
2833         result = nvme_configure_admin_queue(dev);
2834         if (result)
2835                 goto unmap;
2836
2837         spin_lock(&dev_list_lock);
2838         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2839                 start_thread = true;
2840                 nvme_thread = NULL;
2841         }
2842         list_add(&dev->node, &dev_list);
2843         spin_unlock(&dev_list_lock);
2844
2845         if (start_thread) {
2846                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2847                 wake_up_all(&nvme_kthread_wait);
2848         } else
2849                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2850
2851         if (IS_ERR_OR_NULL(nvme_thread)) {
2852                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2853                 goto disable;
2854         }
2855
2856         nvme_init_queue(dev->queues[0], 0);
2857         result = nvme_alloc_admin_tags(dev);
2858         if (result)
2859                 goto disable;
2860
2861         result = nvme_setup_io_queues(dev);
2862         if (result)
2863                 goto free_tags;
2864
2865         nvme_set_irq_hints(dev);
2866
2867         return result;
2868
2869  free_tags:
2870         nvme_dev_remove_admin(dev);
2871  disable:
2872         nvme_disable_queue(dev, 0);
2873         nvme_dev_list_remove(dev);
2874  unmap:
2875         nvme_dev_unmap(dev);
2876         return result;
2877 }
2878
2879 static int nvme_remove_dead_ctrl(void *arg)
2880 {
2881         struct nvme_dev *dev = (struct nvme_dev *)arg;
2882         struct pci_dev *pdev = dev->pci_dev;
2883
2884         if (pci_get_drvdata(pdev))
2885                 pci_stop_and_remove_bus_device_locked(pdev);
2886         kref_put(&dev->kref, nvme_free_dev);
2887         return 0;
2888 }
2889
2890 static void nvme_remove_disks(struct work_struct *ws)
2891 {
2892         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2893
2894         nvme_free_queues(dev, 1);
2895         nvme_dev_remove(dev);
2896 }
2897
2898 static int nvme_dev_resume(struct nvme_dev *dev)
2899 {
2900         int ret;
2901
2902         ret = nvme_dev_start(dev);
2903         if (ret)
2904                 return ret;
2905         if (dev->online_queues < 2) {
2906                 spin_lock(&dev_list_lock);
2907                 dev->reset_workfn = nvme_remove_disks;
2908                 queue_work(nvme_workq, &dev->reset_work);
2909                 spin_unlock(&dev_list_lock);
2910         } else {
2911                 nvme_unfreeze_queues(dev);
2912                 nvme_set_irq_hints(dev);
2913         }
2914         return 0;
2915 }
2916
2917 static void nvme_dev_reset(struct nvme_dev *dev)
2918 {
2919         nvme_dev_shutdown(dev);
2920         if (nvme_dev_resume(dev)) {
2921                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2922                 kref_get(&dev->kref);
2923                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2924                                                         dev->instance))) {
2925                         dev_err(&dev->pci_dev->dev,
2926                                 "Failed to start controller remove task\n");
2927                         kref_put(&dev->kref, nvme_free_dev);
2928                 }
2929         }
2930 }
2931
2932 static void nvme_reset_failed_dev(struct work_struct *ws)
2933 {
2934         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2935         nvme_dev_reset(dev);
2936 }
2937
2938 static void nvme_reset_workfn(struct work_struct *work)
2939 {
2940         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2941         dev->reset_workfn(work);
2942 }
2943
2944 static void nvme_async_probe(struct work_struct *work);
2945 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2946 {
2947         int node, result = -ENOMEM;
2948         struct nvme_dev *dev;
2949
2950         node = dev_to_node(&pdev->dev);
2951         if (node == NUMA_NO_NODE)
2952                 set_dev_node(&pdev->dev, 0);
2953
2954         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2955         if (!dev)
2956                 return -ENOMEM;
2957         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2958                                                         GFP_KERNEL, node);
2959         if (!dev->entry)
2960                 goto free;
2961         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2962                                                         GFP_KERNEL, node);
2963         if (!dev->queues)
2964                 goto free;
2965
2966         INIT_LIST_HEAD(&dev->namespaces);
2967         dev->reset_workfn = nvme_reset_failed_dev;
2968         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2969         dev->pci_dev = pci_dev_get(pdev);
2970         pci_set_drvdata(pdev, dev);
2971         result = nvme_set_instance(dev);
2972         if (result)
2973                 goto put_pci;
2974
2975         result = nvme_setup_prp_pools(dev);
2976         if (result)
2977                 goto release;
2978
2979         kref_init(&dev->kref);
2980         dev->device = device_create(nvme_class, &pdev->dev,
2981                                 MKDEV(nvme_char_major, dev->instance),
2982                                 dev, "nvme%d", dev->instance);
2983         if (IS_ERR(dev->device)) {
2984                 result = PTR_ERR(dev->device);
2985                 goto release_pools;
2986         }
2987         get_device(dev->device);
2988
2989         INIT_WORK(&dev->probe_work, nvme_async_probe);
2990         schedule_work(&dev->probe_work);
2991         return 0;
2992
2993  release_pools:
2994         nvme_release_prp_pools(dev);
2995  release:
2996         nvme_release_instance(dev);
2997  put_pci:
2998         pci_dev_put(dev->pci_dev);
2999  free:
3000         kfree(dev->queues);
3001         kfree(dev->entry);
3002         kfree(dev);
3003         return result;
3004 }
3005
3006 static void nvme_async_probe(struct work_struct *work)
3007 {
3008         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3009         int result;
3010
3011         result = nvme_dev_start(dev);
3012         if (result)
3013                 goto reset;
3014
3015         if (dev->online_queues > 1)
3016                 result = nvme_dev_add(dev);
3017         if (result)
3018                 goto reset;
3019
3020         nvme_set_irq_hints(dev);
3021         return;
3022  reset:
3023         if (!work_busy(&dev->reset_work)) {
3024                 dev->reset_workfn = nvme_reset_failed_dev;
3025                 queue_work(nvme_workq, &dev->reset_work);
3026         }
3027 }
3028
3029 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3030 {
3031         struct nvme_dev *dev = pci_get_drvdata(pdev);
3032
3033         if (prepare)
3034                 nvme_dev_shutdown(dev);
3035         else
3036                 nvme_dev_resume(dev);
3037 }
3038
3039 static void nvme_shutdown(struct pci_dev *pdev)
3040 {
3041         struct nvme_dev *dev = pci_get_drvdata(pdev);
3042         nvme_dev_shutdown(dev);
3043 }
3044
3045 static void nvme_remove(struct pci_dev *pdev)
3046 {
3047         struct nvme_dev *dev = pci_get_drvdata(pdev);
3048
3049         spin_lock(&dev_list_lock);
3050         list_del_init(&dev->node);
3051         spin_unlock(&dev_list_lock);
3052
3053         pci_set_drvdata(pdev, NULL);
3054         flush_work(&dev->probe_work);
3055         flush_work(&dev->reset_work);
3056         nvme_dev_shutdown(dev);
3057         nvme_dev_remove(dev);
3058         nvme_dev_remove_admin(dev);
3059         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3060         nvme_free_queues(dev, 0);
3061         nvme_release_prp_pools(dev);
3062         kref_put(&dev->kref, nvme_free_dev);
3063 }
3064
3065 /* These functions are yet to be implemented */
3066 #define nvme_error_detected NULL
3067 #define nvme_dump_registers NULL
3068 #define nvme_link_reset NULL
3069 #define nvme_slot_reset NULL
3070 #define nvme_error_resume NULL
3071
3072 #ifdef CONFIG_PM_SLEEP
3073 static int nvme_suspend(struct device *dev)
3074 {
3075         struct pci_dev *pdev = to_pci_dev(dev);
3076         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3077
3078         nvme_dev_shutdown(ndev);
3079         return 0;
3080 }
3081
3082 static int nvme_resume(struct device *dev)
3083 {
3084         struct pci_dev *pdev = to_pci_dev(dev);
3085         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3086
3087         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3088                 ndev->reset_workfn = nvme_reset_failed_dev;
3089                 queue_work(nvme_workq, &ndev->reset_work);
3090         }
3091         return 0;
3092 }
3093 #endif
3094
3095 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3096
3097 static const struct pci_error_handlers nvme_err_handler = {
3098         .error_detected = nvme_error_detected,
3099         .mmio_enabled   = nvme_dump_registers,
3100         .link_reset     = nvme_link_reset,
3101         .slot_reset     = nvme_slot_reset,
3102         .resume         = nvme_error_resume,
3103         .reset_notify   = nvme_reset_notify,
3104 };
3105
3106 /* Move to pci_ids.h later */
3107 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3108
3109 static const struct pci_device_id nvme_id_table[] = {
3110         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3111         { 0, }
3112 };
3113 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3114
3115 static struct pci_driver nvme_driver = {
3116         .name           = "nvme",
3117         .id_table       = nvme_id_table,
3118         .probe          = nvme_probe,
3119         .remove         = nvme_remove,
3120         .shutdown       = nvme_shutdown,
3121         .driver         = {
3122                 .pm     = &nvme_dev_pm_ops,
3123         },
3124         .err_handler    = &nvme_err_handler,
3125 };
3126
3127 static int __init nvme_init(void)
3128 {
3129         int result;
3130
3131         init_waitqueue_head(&nvme_kthread_wait);
3132
3133         nvme_workq = create_singlethread_workqueue("nvme");
3134         if (!nvme_workq)
3135                 return -ENOMEM;
3136
3137         result = register_blkdev(nvme_major, "nvme");
3138         if (result < 0)
3139                 goto kill_workq;
3140         else if (result > 0)
3141                 nvme_major = result;
3142
3143         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3144                                                         &nvme_dev_fops);
3145         if (result < 0)
3146                 goto unregister_blkdev;
3147         else if (result > 0)
3148                 nvme_char_major = result;
3149
3150         nvme_class = class_create(THIS_MODULE, "nvme");
3151         if (!nvme_class)
3152                 goto unregister_chrdev;
3153
3154         result = pci_register_driver(&nvme_driver);
3155         if (result)
3156                 goto destroy_class;
3157         return 0;
3158
3159  destroy_class:
3160         class_destroy(nvme_class);
3161  unregister_chrdev:
3162         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3163  unregister_blkdev:
3164         unregister_blkdev(nvme_major, "nvme");
3165  kill_workq:
3166         destroy_workqueue(nvme_workq);
3167         return result;
3168 }
3169
3170 static void __exit nvme_exit(void)
3171 {
3172         pci_unregister_driver(&nvme_driver);
3173         unregister_blkdev(nvme_major, "nvme");
3174         destroy_workqueue(nvme_workq);
3175         class_destroy(nvme_class);
3176         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3177         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3178         _nvme_check_size();
3179 }
3180
3181 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3182 MODULE_LICENSE("GPL");
3183 MODULE_VERSION("1.0");
3184 module_init(nvme_init);
3185 module_exit(nvme_exit);