NVMe: Fix warning in free_irq
[cascardo/linux.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid() - Allocate a Command ID
146  * @nvmeq: The queue that will be used for this command
147  * @ctx: A pointer that will be passed to the handler
148  * @handler: The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth - 1;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /*
186  * If you need more than four handlers, you'll need to change how
187  * alloc_cmdid and nvme_process_cq work.  Consider using a special
188  * CMD_CTX value instead, if that works for your situation.
189  */
190 enum {
191         sync_completion_id = 0,
192         bio_completion_id,
193 };
194
195 /* Special values must be a multiple of 4, and less than 0x1000 */
196 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203 {
204         unsigned long data;
205         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206
207         if (cmdid >= nvmeq->q_depth)
208                 return CMD_CTX_INVALID;
209         data = info[cmdid].ctx;
210         info[cmdid].ctx = CMD_CTX_COMPLETED;
211         clear_bit(cmdid, nvmeq->cmdid_data);
212         wake_up(&nvmeq->sq_full);
213         return data;
214 }
215
216 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
217 {
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         info[cmdid].ctx = CMD_CTX_CANCELLED;
220 }
221
222 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223 {
224         return ns->dev->queues[get_cpu() + 1];
225 }
226
227 static void put_nvmeq(struct nvme_queue *nvmeq)
228 {
229         put_cpu();
230 }
231
232 /**
233  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
234  * @nvmeq: The queue to use
235  * @cmd: The command to send
236  *
237  * Safe to use from interrupt context
238  */
239 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
240 {
241         unsigned long flags;
242         u16 tail;
243         spin_lock_irqsave(&nvmeq->q_lock, flags);
244         tail = nvmeq->sq_tail;
245         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
246         if (++tail == nvmeq->q_depth)
247                 tail = 0;
248         writel(tail, nvmeq->q_db);
249         nvmeq->sq_tail = tail;
250         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
251
252         return 0;
253 }
254
255 struct nvme_prps {
256         int npages;
257         dma_addr_t first_dma;
258         __le64 *list[0];
259 };
260
261 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
262 {
263         const int last_prp = PAGE_SIZE / 8 - 1;
264         int i;
265         dma_addr_t prp_dma;
266
267         if (!prps)
268                 return;
269
270         prp_dma = prps->first_dma;
271
272         if (prps->npages == 0)
273                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
274         for (i = 0; i < prps->npages; i++) {
275                 __le64 *prp_list = prps->list[i];
276                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
277                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
278                 prp_dma = next_prp_dma;
279         }
280         kfree(prps);
281 }
282
283 struct nvme_bio {
284         struct bio *bio;
285         int nents;
286         struct nvme_prps *prps;
287         struct scatterlist sg[0];
288 };
289
290 /* XXX: use a mempool */
291 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
292 {
293         return kzalloc(sizeof(struct nvme_bio) +
294                         sizeof(struct scatterlist) * nseg, gfp);
295 }
296
297 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
298 {
299         nvme_free_prps(nvmeq->dev, nbio->prps);
300         kfree(nbio);
301 }
302
303 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
304                                                 struct nvme_completion *cqe)
305 {
306         struct nvme_bio *nbio = ctx;
307         struct bio *bio = nbio->bio;
308         u16 status = le16_to_cpup(&cqe->status) >> 1;
309
310         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
311                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
312         free_nbio(nvmeq, nbio);
313         if (status)
314                 bio_endio(bio, -EIO);
315         if (bio->bi_vcnt > bio->bi_idx) {
316                 bio_list_add(&nvmeq->sq_cong, bio);
317                 wake_up_process(nvme_thread);
318         } else {
319                 bio_endio(bio, 0);
320         }
321 }
322
323 /* length is in bytes */
324 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
325                                         struct nvme_common_command *cmd,
326                                         struct scatterlist *sg, int length)
327 {
328         struct dma_pool *pool;
329         int dma_len = sg_dma_len(sg);
330         u64 dma_addr = sg_dma_address(sg);
331         int offset = offset_in_page(dma_addr);
332         __le64 *prp_list;
333         dma_addr_t prp_dma;
334         int nprps, npages, i, prp_page;
335         struct nvme_prps *prps = NULL;
336
337         cmd->prp1 = cpu_to_le64(dma_addr);
338         length -= (PAGE_SIZE - offset);
339         if (length <= 0)
340                 return prps;
341
342         dma_len -= (PAGE_SIZE - offset);
343         if (dma_len) {
344                 dma_addr += (PAGE_SIZE - offset);
345         } else {
346                 sg = sg_next(sg);
347                 dma_addr = sg_dma_address(sg);
348                 dma_len = sg_dma_len(sg);
349         }
350
351         if (length <= PAGE_SIZE) {
352                 cmd->prp2 = cpu_to_le64(dma_addr);
353                 return prps;
354         }
355
356         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
357         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
358         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
359         prp_page = 0;
360         if (nprps <= (256 / 8)) {
361                 pool = dev->prp_small_pool;
362                 prps->npages = 0;
363         } else {
364                 pool = dev->prp_page_pool;
365                 prps->npages = npages;
366         }
367
368         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
369         prps->list[prp_page++] = prp_list;
370         prps->first_dma = prp_dma;
371         cmd->prp2 = cpu_to_le64(prp_dma);
372         i = 0;
373         for (;;) {
374                 if (i == PAGE_SIZE / 8) {
375                         __le64 *old_prp_list = prp_list;
376                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
377                         prps->list[prp_page++] = prp_list;
378                         prp_list[0] = old_prp_list[i - 1];
379                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
380                         i = 1;
381                 }
382                 prp_list[i++] = cpu_to_le64(dma_addr);
383                 dma_len -= PAGE_SIZE;
384                 dma_addr += PAGE_SIZE;
385                 length -= PAGE_SIZE;
386                 if (length <= 0)
387                         break;
388                 if (dma_len > 0)
389                         continue;
390                 BUG_ON(dma_len < 0);
391                 sg = sg_next(sg);
392                 dma_addr = sg_dma_address(sg);
393                 dma_len = sg_dma_len(sg);
394         }
395
396         return prps;
397 }
398
399 /* NVMe scatterlists require no holes in the virtual address */
400 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
401                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
402
403 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
404                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
405 {
406         struct bio_vec *bvec, *bvprv = NULL;
407         struct scatterlist *sg = NULL;
408         int i, old_idx, length = 0, nsegs = 0;
409
410         sg_init_table(nbio->sg, psegs);
411         old_idx = bio->bi_idx;
412         bio_for_each_segment(bvec, bio, i) {
413                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
414                         sg->length += bvec->bv_len;
415                 } else {
416                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
417                                 break;
418                         sg = sg ? sg + 1 : nbio->sg;
419                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
420                                                         bvec->bv_offset);
421                         nsegs++;
422                 }
423                 length += bvec->bv_len;
424                 bvprv = bvec;
425         }
426         bio->bi_idx = i;
427         nbio->nents = nsegs;
428         sg_mark_end(sg);
429         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
430                 bio->bi_idx = old_idx;
431                 return -ENOMEM;
432         }
433         return length;
434 }
435
436 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
437                                                                 int cmdid)
438 {
439         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
440
441         memset(cmnd, 0, sizeof(*cmnd));
442         cmnd->common.opcode = nvme_cmd_flush;
443         cmnd->common.command_id = cmdid;
444         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
445
446         if (++nvmeq->sq_tail == nvmeq->q_depth)
447                 nvmeq->sq_tail = 0;
448         writel(nvmeq->sq_tail, nvmeq->q_db);
449
450         return 0;
451 }
452
453 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
454 {
455         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
456                                                 sync_completion_id, IO_TIMEOUT);
457         if (unlikely(cmdid < 0))
458                 return cmdid;
459
460         return nvme_submit_flush(nvmeq, ns, cmdid);
461 }
462
463 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
464                                                                 struct bio *bio)
465 {
466         struct nvme_command *cmnd;
467         struct nvme_bio *nbio;
468         enum dma_data_direction dma_dir;
469         int cmdid, length, result = -ENOMEM;
470         u16 control;
471         u32 dsmgmt;
472         int psegs = bio_phys_segments(ns->queue, bio);
473
474         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
475                 result = nvme_submit_flush_data(nvmeq, ns);
476                 if (result)
477                         return result;
478         }
479
480         nbio = alloc_nbio(psegs, GFP_ATOMIC);
481         if (!nbio)
482                 goto nomem;
483         nbio->bio = bio;
484
485         result = -EBUSY;
486         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
487         if (unlikely(cmdid < 0))
488                 goto free_nbio;
489
490         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
491                 return nvme_submit_flush(nvmeq, ns, cmdid);
492
493         control = 0;
494         if (bio->bi_rw & REQ_FUA)
495                 control |= NVME_RW_FUA;
496         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
497                 control |= NVME_RW_LR;
498
499         dsmgmt = 0;
500         if (bio->bi_rw & REQ_RAHEAD)
501                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
502
503         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
504
505         memset(cmnd, 0, sizeof(*cmnd));
506         if (bio_data_dir(bio)) {
507                 cmnd->rw.opcode = nvme_cmd_write;
508                 dma_dir = DMA_TO_DEVICE;
509         } else {
510                 cmnd->rw.opcode = nvme_cmd_read;
511                 dma_dir = DMA_FROM_DEVICE;
512         }
513
514         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
515         if (result < 0)
516                 goto free_nbio;
517         length = result;
518
519         cmnd->rw.command_id = cmdid;
520         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
521         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
522                                                                 length);
523         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
524         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
525         cmnd->rw.control = cpu_to_le16(control);
526         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
527
528         bio->bi_sector += length >> 9;
529
530         if (++nvmeq->sq_tail == nvmeq->q_depth)
531                 nvmeq->sq_tail = 0;
532         writel(nvmeq->sq_tail, nvmeq->q_db);
533
534         return 0;
535
536  free_nbio:
537         free_nbio(nvmeq, nbio);
538  nomem:
539         return result;
540 }
541
542 /*
543  * NB: return value of non-zero would mean that we were a stacking driver.
544  * make_request must always succeed.
545  */
546 static int nvme_make_request(struct request_queue *q, struct bio *bio)
547 {
548         struct nvme_ns *ns = q->queuedata;
549         struct nvme_queue *nvmeq = get_nvmeq(ns);
550         int result = -EBUSY;
551
552         spin_lock_irq(&nvmeq->q_lock);
553         if (bio_list_empty(&nvmeq->sq_cong))
554                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
555         if (unlikely(result)) {
556                 if (bio_list_empty(&nvmeq->sq_cong))
557                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
558                 bio_list_add(&nvmeq->sq_cong, bio);
559         }
560
561         spin_unlock_irq(&nvmeq->q_lock);
562         put_nvmeq(nvmeq);
563
564         return 0;
565 }
566
567 struct sync_cmd_info {
568         struct task_struct *task;
569         u32 result;
570         int status;
571 };
572
573 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
574                                                 struct nvme_completion *cqe)
575 {
576         struct sync_cmd_info *cmdinfo = ctx;
577         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
578                 return;
579         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
580                 return;
581         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
582                 dev_warn(nvmeq->q_dmadev,
583                                 "completed id %d twice on queue %d\n",
584                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
585                 return;
586         }
587         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
588                 dev_warn(nvmeq->q_dmadev,
589                                 "invalid id %d completed on queue %d\n",
590                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
591                 return;
592         }
593         cmdinfo->result = le32_to_cpup(&cqe->result);
594         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
595         wake_up_process(cmdinfo->task);
596 }
597
598 typedef void (*completion_fn)(struct nvme_queue *, void *,
599                                                 struct nvme_completion *);
600
601 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
602 {
603         u16 head, phase;
604
605         static const completion_fn completions[4] = {
606                 [sync_completion_id] = sync_completion,
607                 [bio_completion_id]  = bio_completion,
608         };
609
610         head = nvmeq->cq_head;
611         phase = nvmeq->cq_phase;
612
613         for (;;) {
614                 unsigned long data;
615                 void *ptr;
616                 unsigned char handler;
617                 struct nvme_completion cqe = nvmeq->cqes[head];
618                 if ((le16_to_cpu(cqe.status) & 1) != phase)
619                         break;
620                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
621                 if (++head == nvmeq->q_depth) {
622                         head = 0;
623                         phase = !phase;
624                 }
625
626                 data = free_cmdid(nvmeq, cqe.command_id);
627                 handler = data & 3;
628                 ptr = (void *)(data & ~3UL);
629                 completions[handler](nvmeq, ptr, &cqe);
630         }
631
632         /* If the controller ignores the cq head doorbell and continuously
633          * writes to the queue, it is theoretically possible to wrap around
634          * the queue twice and mistakenly return IRQ_NONE.  Linux only
635          * requires that 0.1% of your interrupts are handled, so this isn't
636          * a big problem.
637          */
638         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
639                 return IRQ_NONE;
640
641         writel(head, nvmeq->q_db + 1);
642         nvmeq->cq_head = head;
643         nvmeq->cq_phase = phase;
644
645         return IRQ_HANDLED;
646 }
647
648 static irqreturn_t nvme_irq(int irq, void *data)
649 {
650         irqreturn_t result;
651         struct nvme_queue *nvmeq = data;
652         spin_lock(&nvmeq->q_lock);
653         result = nvme_process_cq(nvmeq);
654         spin_unlock(&nvmeq->q_lock);
655         return result;
656 }
657
658 static irqreturn_t nvme_irq_check(int irq, void *data)
659 {
660         struct nvme_queue *nvmeq = data;
661         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
662         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
663                 return IRQ_NONE;
664         return IRQ_WAKE_THREAD;
665 }
666
667 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
668 {
669         spin_lock_irq(&nvmeq->q_lock);
670         cancel_cmdid_data(nvmeq, cmdid);
671         spin_unlock_irq(&nvmeq->q_lock);
672 }
673
674 /*
675  * Returns 0 on success.  If the result is negative, it's a Linux error code;
676  * if the result is positive, it's an NVM Express status code
677  */
678 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
679                         struct nvme_command *cmd, u32 *result, unsigned timeout)
680 {
681         int cmdid;
682         struct sync_cmd_info cmdinfo;
683
684         cmdinfo.task = current;
685         cmdinfo.status = -EINTR;
686
687         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
688                                                                 timeout);
689         if (cmdid < 0)
690                 return cmdid;
691         cmd->common.command_id = cmdid;
692
693         set_current_state(TASK_KILLABLE);
694         nvme_submit_cmd(nvmeq, cmd);
695         schedule();
696
697         if (cmdinfo.status == -EINTR) {
698                 nvme_abort_command(nvmeq, cmdid);
699                 return -EINTR;
700         }
701
702         if (result)
703                 *result = cmdinfo.result;
704
705         return cmdinfo.status;
706 }
707
708 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
709                                                                 u32 *result)
710 {
711         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
712 }
713
714 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
715 {
716         int status;
717         struct nvme_command c;
718
719         memset(&c, 0, sizeof(c));
720         c.delete_queue.opcode = opcode;
721         c.delete_queue.qid = cpu_to_le16(id);
722
723         status = nvme_submit_admin_cmd(dev, &c, NULL);
724         if (status)
725                 return -EIO;
726         return 0;
727 }
728
729 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
730                                                 struct nvme_queue *nvmeq)
731 {
732         int status;
733         struct nvme_command c;
734         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
735
736         memset(&c, 0, sizeof(c));
737         c.create_cq.opcode = nvme_admin_create_cq;
738         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
739         c.create_cq.cqid = cpu_to_le16(qid);
740         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
741         c.create_cq.cq_flags = cpu_to_le16(flags);
742         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
743
744         status = nvme_submit_admin_cmd(dev, &c, NULL);
745         if (status)
746                 return -EIO;
747         return 0;
748 }
749
750 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
751                                                 struct nvme_queue *nvmeq)
752 {
753         int status;
754         struct nvme_command c;
755         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
756
757         memset(&c, 0, sizeof(c));
758         c.create_sq.opcode = nvme_admin_create_sq;
759         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
760         c.create_sq.sqid = cpu_to_le16(qid);
761         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
762         c.create_sq.sq_flags = cpu_to_le16(flags);
763         c.create_sq.cqid = cpu_to_le16(qid);
764
765         status = nvme_submit_admin_cmd(dev, &c, NULL);
766         if (status)
767                 return -EIO;
768         return 0;
769 }
770
771 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
772 {
773         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
774 }
775
776 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
777 {
778         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
779 }
780
781 static void nvme_free_queue(struct nvme_dev *dev, int qid)
782 {
783         struct nvme_queue *nvmeq = dev->queues[qid];
784         int vector = dev->entry[nvmeq->cq_vector].vector;
785
786         irq_set_affinity_hint(vector, NULL);
787         free_irq(vector, nvmeq);
788
789         /* Don't tell the adapter to delete the admin queue */
790         if (qid) {
791                 adapter_delete_sq(dev, qid);
792                 adapter_delete_cq(dev, qid);
793         }
794
795         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
796                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
797         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
798                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
799         kfree(nvmeq);
800 }
801
802 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
803                                                         int depth, int vector)
804 {
805         struct device *dmadev = &dev->pci_dev->dev;
806         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
807         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
808         if (!nvmeq)
809                 return NULL;
810
811         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
812                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
813         if (!nvmeq->cqes)
814                 goto free_nvmeq;
815         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
816
817         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
818                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
819         if (!nvmeq->sq_cmds)
820                 goto free_cqdma;
821
822         nvmeq->q_dmadev = dmadev;
823         nvmeq->dev = dev;
824         spin_lock_init(&nvmeq->q_lock);
825         nvmeq->cq_head = 0;
826         nvmeq->cq_phase = 1;
827         init_waitqueue_head(&nvmeq->sq_full);
828         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
829         bio_list_init(&nvmeq->sq_cong);
830         nvmeq->q_db = &dev->dbs[qid * 2];
831         nvmeq->q_depth = depth;
832         nvmeq->cq_vector = vector;
833
834         return nvmeq;
835
836  free_cqdma:
837         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
838                                                         nvmeq->cq_dma_addr);
839  free_nvmeq:
840         kfree(nvmeq);
841         return NULL;
842 }
843
844 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
845                                                         const char *name)
846 {
847         if (use_threaded_interrupts)
848                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
849                                         nvme_irq_check, nvme_irq,
850                                         IRQF_DISABLED | IRQF_SHARED,
851                                         name, nvmeq);
852         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
853                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
854 }
855
856 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
857                                         int qid, int cq_size, int vector)
858 {
859         int result;
860         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
861
862         if (!nvmeq)
863                 return NULL;
864
865         result = adapter_alloc_cq(dev, qid, nvmeq);
866         if (result < 0)
867                 goto free_nvmeq;
868
869         result = adapter_alloc_sq(dev, qid, nvmeq);
870         if (result < 0)
871                 goto release_cq;
872
873         result = queue_request_irq(dev, nvmeq, "nvme");
874         if (result < 0)
875                 goto release_sq;
876
877         return nvmeq;
878
879  release_sq:
880         adapter_delete_sq(dev, qid);
881  release_cq:
882         adapter_delete_cq(dev, qid);
883  free_nvmeq:
884         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
885                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
886         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
887                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
888         kfree(nvmeq);
889         return NULL;
890 }
891
892 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
893 {
894         int result;
895         u32 aqa;
896         struct nvme_queue *nvmeq;
897
898         dev->dbs = ((void __iomem *)dev->bar) + 4096;
899
900         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
901         if (!nvmeq)
902                 return -ENOMEM;
903
904         aqa = nvmeq->q_depth - 1;
905         aqa |= aqa << 16;
906
907         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
908         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
909         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
910         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
911
912         writel(0, &dev->bar->cc);
913         writel(aqa, &dev->bar->aqa);
914         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
915         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
916         writel(dev->ctrl_config, &dev->bar->cc);
917
918         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
919                 msleep(100);
920                 if (fatal_signal_pending(current))
921                         return -EINTR;
922         }
923
924         result = queue_request_irq(dev, nvmeq, "nvme admin");
925         dev->queues[0] = nvmeq;
926         return result;
927 }
928
929 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
930                                 unsigned long addr, unsigned length,
931                                 struct scatterlist **sgp)
932 {
933         int i, err, count, nents, offset;
934         struct scatterlist *sg;
935         struct page **pages;
936
937         if (addr & 3)
938                 return -EINVAL;
939         if (!length)
940                 return -EINVAL;
941
942         offset = offset_in_page(addr);
943         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
944         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
945
946         err = get_user_pages_fast(addr, count, 1, pages);
947         if (err < count) {
948                 count = err;
949                 err = -EFAULT;
950                 goto put_pages;
951         }
952
953         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
954         sg_init_table(sg, count);
955         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
956         length -= (PAGE_SIZE - offset);
957         for (i = 1; i < count; i++) {
958                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
959                 length -= PAGE_SIZE;
960         }
961
962         err = -ENOMEM;
963         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
964                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
965         if (!nents)
966                 goto put_pages;
967
968         kfree(pages);
969         *sgp = sg;
970         return nents;
971
972  put_pages:
973         for (i = 0; i < count; i++)
974                 put_page(pages[i]);
975         kfree(pages);
976         return err;
977 }
978
979 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
980                                 unsigned long addr, int length,
981                                 struct scatterlist *sg, int nents)
982 {
983         int i, count;
984
985         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
986         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
987
988         for (i = 0; i < count; i++)
989                 put_page(sg_page(&sg[i]));
990 }
991
992 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
993                                         unsigned long addr, unsigned length,
994                                         struct nvme_command *cmd)
995 {
996         int err, nents;
997         struct scatterlist *sg;
998         struct nvme_prps *prps;
999
1000         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1001         if (nents < 0)
1002                 return nents;
1003         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1004         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1005         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1006         nvme_free_prps(dev, prps);
1007         return err ? -EIO : 0;
1008 }
1009
1010 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1011 {
1012         struct nvme_command c;
1013
1014         memset(&c, 0, sizeof(c));
1015         c.identify.opcode = nvme_admin_identify;
1016         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1017         c.identify.cns = cpu_to_le32(cns);
1018
1019         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1020 }
1021
1022 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1023 {
1024         struct nvme_command c;
1025
1026         memset(&c, 0, sizeof(c));
1027         c.features.opcode = nvme_admin_get_features;
1028         c.features.nsid = cpu_to_le32(ns->ns_id);
1029         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1030
1031         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1032 }
1033
1034 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1035 {
1036         struct nvme_dev *dev = ns->dev;
1037         struct nvme_queue *nvmeq;
1038         struct nvme_user_io io;
1039         struct nvme_command c;
1040         unsigned length;
1041         int nents, status;
1042         struct scatterlist *sg;
1043         struct nvme_prps *prps;
1044
1045         if (copy_from_user(&io, uio, sizeof(io)))
1046                 return -EFAULT;
1047         length = (io.nblocks + 1) << ns->lba_shift;
1048
1049         switch (io.opcode) {
1050         case nvme_cmd_write:
1051         case nvme_cmd_read:
1052                 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1053                                                                 length, &sg);
1054         default:
1055                 return -EFAULT;
1056         }
1057
1058         if (nents < 0)
1059                 return nents;
1060
1061         memset(&c, 0, sizeof(c));
1062         c.rw.opcode = io.opcode;
1063         c.rw.flags = io.flags;
1064         c.rw.nsid = cpu_to_le32(ns->ns_id);
1065         c.rw.slba = cpu_to_le64(io.slba);
1066         c.rw.length = cpu_to_le16(io.nblocks);
1067         c.rw.control = cpu_to_le16(io.control);
1068         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1069         c.rw.reftag = io.reftag;
1070         c.rw.apptag = io.apptag;
1071         c.rw.appmask = io.appmask;
1072         /* XXX: metadata */
1073         prps = nvme_setup_prps(dev, &c.common, sg, length);
1074
1075         nvmeq = get_nvmeq(ns);
1076         /*
1077          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1078          * disabled.  We may be preempted at any point, and be rescheduled
1079          * to a different CPU.  That will cause cacheline bouncing, but no
1080          * additional races since q_lock already protects against other CPUs.
1081          */
1082         put_nvmeq(nvmeq);
1083         status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1084
1085         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1086         nvme_free_prps(dev, prps);
1087         return status;
1088 }
1089
1090 static int nvme_download_firmware(struct nvme_ns *ns,
1091                                                 struct nvme_dlfw __user *udlfw)
1092 {
1093         struct nvme_dev *dev = ns->dev;
1094         struct nvme_dlfw dlfw;
1095         struct nvme_command c;
1096         int nents, status;
1097         struct scatterlist *sg;
1098         struct nvme_prps *prps;
1099
1100         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1101                 return -EFAULT;
1102         if (dlfw.length >= (1 << 30))
1103                 return -EINVAL;
1104
1105         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1106         if (nents < 0)
1107                 return nents;
1108
1109         memset(&c, 0, sizeof(c));
1110         c.dlfw.opcode = nvme_admin_download_fw;
1111         c.dlfw.numd = cpu_to_le32(dlfw.length);
1112         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1113         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1114
1115         status = nvme_submit_admin_cmd(dev, &c, NULL);
1116         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1117         nvme_free_prps(dev, prps);
1118         return status;
1119 }
1120
1121 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1122 {
1123         struct nvme_dev *dev = ns->dev;
1124         struct nvme_command c;
1125
1126         memset(&c, 0, sizeof(c));
1127         c.common.opcode = nvme_admin_activate_fw;
1128         c.common.rsvd10[0] = cpu_to_le32(arg);
1129
1130         return nvme_submit_admin_cmd(dev, &c, NULL);
1131 }
1132
1133 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1134                                                         unsigned long arg)
1135 {
1136         struct nvme_ns *ns = bdev->bd_disk->private_data;
1137
1138         switch (cmd) {
1139         case NVME_IOCTL_IDENTIFY_NS:
1140                 return nvme_identify(ns, arg, 0);
1141         case NVME_IOCTL_IDENTIFY_CTRL:
1142                 return nvme_identify(ns, arg, 1);
1143         case NVME_IOCTL_GET_RANGE_TYPE:
1144                 return nvme_get_range_type(ns, arg);
1145         case NVME_IOCTL_SUBMIT_IO:
1146                 return nvme_submit_io(ns, (void __user *)arg);
1147         case NVME_IOCTL_DOWNLOAD_FW:
1148                 return nvme_download_firmware(ns, (void __user *)arg);
1149         case NVME_IOCTL_ACTIVATE_FW:
1150                 return nvme_activate_firmware(ns, arg);
1151         default:
1152                 return -ENOTTY;
1153         }
1154 }
1155
1156 static const struct block_device_operations nvme_fops = {
1157         .owner          = THIS_MODULE,
1158         .ioctl          = nvme_ioctl,
1159         .compat_ioctl   = nvme_ioctl,
1160 };
1161
1162 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1163 {
1164         while (bio_list_peek(&nvmeq->sq_cong)) {
1165                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1166                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1167                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1168                         bio_list_add_head(&nvmeq->sq_cong, bio);
1169                         break;
1170                 }
1171                 if (bio_list_empty(&nvmeq->sq_cong))
1172                         remove_wait_queue(&nvmeq->sq_full,
1173                                                         &nvmeq->sq_cong_wait);
1174         }
1175 }
1176
1177 static int nvme_kthread(void *data)
1178 {
1179         struct nvme_dev *dev;
1180
1181         while (!kthread_should_stop()) {
1182                 __set_current_state(TASK_RUNNING);
1183                 spin_lock(&dev_list_lock);
1184                 list_for_each_entry(dev, &dev_list, node) {
1185                         int i;
1186                         for (i = 0; i < dev->queue_count; i++) {
1187                                 struct nvme_queue *nvmeq = dev->queues[i];
1188                                 if (!nvmeq)
1189                                         continue;
1190                                 spin_lock_irq(&nvmeq->q_lock);
1191                                 if (nvme_process_cq(nvmeq))
1192                                         printk("process_cq did something\n");
1193                                 nvme_resubmit_bios(nvmeq);
1194                                 spin_unlock_irq(&nvmeq->q_lock);
1195                         }
1196                 }
1197                 spin_unlock(&dev_list_lock);
1198                 set_current_state(TASK_INTERRUPTIBLE);
1199                 schedule_timeout(HZ);
1200         }
1201         return 0;
1202 }
1203
1204 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1205                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1206 {
1207         struct nvme_ns *ns;
1208         struct gendisk *disk;
1209         int lbaf;
1210
1211         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1212                 return NULL;
1213
1214         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1215         if (!ns)
1216                 return NULL;
1217         ns->queue = blk_alloc_queue(GFP_KERNEL);
1218         if (!ns->queue)
1219                 goto out_free_ns;
1220         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1221                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1222         blk_queue_make_request(ns->queue, nvme_make_request);
1223         ns->dev = dev;
1224         ns->queue->queuedata = ns;
1225
1226         disk = alloc_disk(NVME_MINORS);
1227         if (!disk)
1228                 goto out_free_queue;
1229         ns->ns_id = index;
1230         ns->disk = disk;
1231         lbaf = id->flbas & 0xf;
1232         ns->lba_shift = id->lbaf[lbaf].ds;
1233
1234         disk->major = nvme_major;
1235         disk->minors = NVME_MINORS;
1236         disk->first_minor = NVME_MINORS * index;
1237         disk->fops = &nvme_fops;
1238         disk->private_data = ns;
1239         disk->queue = ns->queue;
1240         disk->driverfs_dev = &dev->pci_dev->dev;
1241         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1242         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1243
1244         return ns;
1245
1246  out_free_queue:
1247         blk_cleanup_queue(ns->queue);
1248  out_free_ns:
1249         kfree(ns);
1250         return NULL;
1251 }
1252
1253 static void nvme_ns_free(struct nvme_ns *ns)
1254 {
1255         put_disk(ns->disk);
1256         blk_cleanup_queue(ns->queue);
1257         kfree(ns);
1258 }
1259
1260 static int set_queue_count(struct nvme_dev *dev, int count)
1261 {
1262         int status;
1263         u32 result;
1264         struct nvme_command c;
1265         u32 q_count = (count - 1) | ((count - 1) << 16);
1266
1267         memset(&c, 0, sizeof(c));
1268         c.features.opcode = nvme_admin_get_features;
1269         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1270         c.features.dword11 = cpu_to_le32(q_count);
1271
1272         status = nvme_submit_admin_cmd(dev, &c, &result);
1273         if (status)
1274                 return -EIO;
1275         return min(result & 0xffff, result >> 16) + 1;
1276 }
1277
1278 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1279 {
1280         int result, cpu, i, nr_io_queues;
1281
1282         nr_io_queues = num_online_cpus();
1283         result = set_queue_count(dev, nr_io_queues);
1284         if (result < 0)
1285                 return result;
1286         if (result < nr_io_queues)
1287                 nr_io_queues = result;
1288
1289         /* Deregister the admin queue's interrupt */
1290         free_irq(dev->entry[0].vector, dev->queues[0]);
1291
1292         for (i = 0; i < nr_io_queues; i++)
1293                 dev->entry[i].entry = i;
1294         for (;;) {
1295                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1296                                                                 nr_io_queues);
1297                 if (result == 0) {
1298                         break;
1299                 } else if (result > 0) {
1300                         nr_io_queues = result;
1301                         continue;
1302                 } else {
1303                         nr_io_queues = 1;
1304                         break;
1305                 }
1306         }
1307
1308         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1309         /* XXX: handle failure here */
1310
1311         cpu = cpumask_first(cpu_online_mask);
1312         for (i = 0; i < nr_io_queues; i++) {
1313                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1314                 cpu = cpumask_next(cpu, cpu_online_mask);
1315         }
1316
1317         for (i = 0; i < nr_io_queues; i++) {
1318                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1319                                                         NVME_Q_DEPTH, i);
1320                 if (!dev->queues[i + 1])
1321                         return -ENOMEM;
1322                 dev->queue_count++;
1323         }
1324
1325         for (; i < num_possible_cpus(); i++) {
1326                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1327                 dev->queues[i + 1] = dev->queues[target + 1];
1328         }
1329
1330         return 0;
1331 }
1332
1333 static void nvme_free_queues(struct nvme_dev *dev)
1334 {
1335         int i;
1336
1337         for (i = dev->queue_count - 1; i >= 0; i--)
1338                 nvme_free_queue(dev, i);
1339 }
1340
1341 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1342 {
1343         int res, nn, i;
1344         struct nvme_ns *ns, *next;
1345         struct nvme_id_ctrl *ctrl;
1346         void *id;
1347         dma_addr_t dma_addr;
1348         struct nvme_command cid, crt;
1349
1350         res = nvme_setup_io_queues(dev);
1351         if (res)
1352                 return res;
1353
1354         /* XXX: Switch to a SG list once prp2 works */
1355         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1356                                                                 GFP_KERNEL);
1357
1358         memset(&cid, 0, sizeof(cid));
1359         cid.identify.opcode = nvme_admin_identify;
1360         cid.identify.nsid = 0;
1361         cid.identify.prp1 = cpu_to_le64(dma_addr);
1362         cid.identify.cns = cpu_to_le32(1);
1363
1364         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1365         if (res) {
1366                 res = -EIO;
1367                 goto out_free;
1368         }
1369
1370         ctrl = id;
1371         nn = le32_to_cpup(&ctrl->nn);
1372         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1373         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1374         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1375
1376         cid.identify.cns = 0;
1377         memset(&crt, 0, sizeof(crt));
1378         crt.features.opcode = nvme_admin_get_features;
1379         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1380         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1381
1382         for (i = 0; i <= nn; i++) {
1383                 cid.identify.nsid = cpu_to_le32(i);
1384                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1385                 if (res)
1386                         continue;
1387
1388                 if (((struct nvme_id_ns *)id)->ncap == 0)
1389                         continue;
1390
1391                 crt.features.nsid = cpu_to_le32(i);
1392                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1393                 if (res)
1394                         continue;
1395
1396                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1397                 if (ns)
1398                         list_add_tail(&ns->list, &dev->namespaces);
1399         }
1400         list_for_each_entry(ns, &dev->namespaces, list)
1401                 add_disk(ns->disk);
1402
1403         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1404         return 0;
1405
1406  out_free:
1407         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1408                 list_del(&ns->list);
1409                 nvme_ns_free(ns);
1410         }
1411
1412         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1413         return res;
1414 }
1415
1416 static int nvme_dev_remove(struct nvme_dev *dev)
1417 {
1418         struct nvme_ns *ns, *next;
1419
1420         spin_lock(&dev_list_lock);
1421         list_del(&dev->node);
1422         spin_unlock(&dev_list_lock);
1423
1424         /* TODO: wait all I/O finished or cancel them */
1425
1426         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1427                 list_del(&ns->list);
1428                 del_gendisk(ns->disk);
1429                 nvme_ns_free(ns);
1430         }
1431
1432         nvme_free_queues(dev);
1433
1434         return 0;
1435 }
1436
1437 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1438 {
1439         struct device *dmadev = &dev->pci_dev->dev;
1440         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1441                                                 PAGE_SIZE, PAGE_SIZE, 0);
1442         if (!dev->prp_page_pool)
1443                 return -ENOMEM;
1444
1445         /* Optimisation for I/Os between 4k and 128k */
1446         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1447                                                 256, 256, 0);
1448         if (!dev->prp_small_pool) {
1449                 dma_pool_destroy(dev->prp_page_pool);
1450                 return -ENOMEM;
1451         }
1452         return 0;
1453 }
1454
1455 static void nvme_release_prp_pools(struct nvme_dev *dev)
1456 {
1457         dma_pool_destroy(dev->prp_page_pool);
1458         dma_pool_destroy(dev->prp_small_pool);
1459 }
1460
1461 /* XXX: Use an ida or something to let remove / add work correctly */
1462 static void nvme_set_instance(struct nvme_dev *dev)
1463 {
1464         static int instance;
1465         dev->instance = instance++;
1466 }
1467
1468 static void nvme_release_instance(struct nvme_dev *dev)
1469 {
1470 }
1471
1472 static int __devinit nvme_probe(struct pci_dev *pdev,
1473                                                 const struct pci_device_id *id)
1474 {
1475         int bars, result = -ENOMEM;
1476         struct nvme_dev *dev;
1477
1478         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1479         if (!dev)
1480                 return -ENOMEM;
1481         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1482                                                                 GFP_KERNEL);
1483         if (!dev->entry)
1484                 goto free;
1485         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1486                                                                 GFP_KERNEL);
1487         if (!dev->queues)
1488                 goto free;
1489
1490         if (pci_enable_device_mem(pdev))
1491                 goto free;
1492         pci_set_master(pdev);
1493         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1494         if (pci_request_selected_regions(pdev, bars, "nvme"))
1495                 goto disable;
1496
1497         INIT_LIST_HEAD(&dev->namespaces);
1498         dev->pci_dev = pdev;
1499         pci_set_drvdata(pdev, dev);
1500         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1501         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1502         nvme_set_instance(dev);
1503         dev->entry[0].vector = pdev->irq;
1504
1505         result = nvme_setup_prp_pools(dev);
1506         if (result)
1507                 goto disable_msix;
1508
1509         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1510         if (!dev->bar) {
1511                 result = -ENOMEM;
1512                 goto disable_msix;
1513         }
1514
1515         result = nvme_configure_admin_queue(dev);
1516         if (result)
1517                 goto unmap;
1518         dev->queue_count++;
1519
1520         spin_lock(&dev_list_lock);
1521         list_add(&dev->node, &dev_list);
1522         spin_unlock(&dev_list_lock);
1523
1524         result = nvme_dev_add(dev);
1525         if (result)
1526                 goto delete;
1527
1528         return 0;
1529
1530  delete:
1531         spin_lock(&dev_list_lock);
1532         list_del(&dev->node);
1533         spin_unlock(&dev_list_lock);
1534
1535         nvme_free_queues(dev);
1536  unmap:
1537         iounmap(dev->bar);
1538  disable_msix:
1539         pci_disable_msix(pdev);
1540         nvme_release_instance(dev);
1541         nvme_release_prp_pools(dev);
1542  disable:
1543         pci_disable_device(pdev);
1544         pci_release_regions(pdev);
1545  free:
1546         kfree(dev->queues);
1547         kfree(dev->entry);
1548         kfree(dev);
1549         return result;
1550 }
1551
1552 static void __devexit nvme_remove(struct pci_dev *pdev)
1553 {
1554         struct nvme_dev *dev = pci_get_drvdata(pdev);
1555         nvme_dev_remove(dev);
1556         pci_disable_msix(pdev);
1557         iounmap(dev->bar);
1558         nvme_release_instance(dev);
1559         nvme_release_prp_pools(dev);
1560         pci_disable_device(pdev);
1561         pci_release_regions(pdev);
1562         kfree(dev->queues);
1563         kfree(dev->entry);
1564         kfree(dev);
1565 }
1566
1567 /* These functions are yet to be implemented */
1568 #define nvme_error_detected NULL
1569 #define nvme_dump_registers NULL
1570 #define nvme_link_reset NULL
1571 #define nvme_slot_reset NULL
1572 #define nvme_error_resume NULL
1573 #define nvme_suspend NULL
1574 #define nvme_resume NULL
1575
1576 static struct pci_error_handlers nvme_err_handler = {
1577         .error_detected = nvme_error_detected,
1578         .mmio_enabled   = nvme_dump_registers,
1579         .link_reset     = nvme_link_reset,
1580         .slot_reset     = nvme_slot_reset,
1581         .resume         = nvme_error_resume,
1582 };
1583
1584 /* Move to pci_ids.h later */
1585 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1586
1587 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1588         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1589         { 0, }
1590 };
1591 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1592
1593 static struct pci_driver nvme_driver = {
1594         .name           = "nvme",
1595         .id_table       = nvme_id_table,
1596         .probe          = nvme_probe,
1597         .remove         = __devexit_p(nvme_remove),
1598         .suspend        = nvme_suspend,
1599         .resume         = nvme_resume,
1600         .err_handler    = &nvme_err_handler,
1601 };
1602
1603 static int __init nvme_init(void)
1604 {
1605         int result = -EBUSY;
1606
1607         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1608         if (IS_ERR(nvme_thread))
1609                 return PTR_ERR(nvme_thread);
1610
1611         nvme_major = register_blkdev(nvme_major, "nvme");
1612         if (nvme_major <= 0)
1613                 goto kill_kthread;
1614
1615         result = pci_register_driver(&nvme_driver);
1616         if (result)
1617                 goto unregister_blkdev;
1618         return 0;
1619
1620  unregister_blkdev:
1621         unregister_blkdev(nvme_major, "nvme");
1622  kill_kthread:
1623         kthread_stop(nvme_thread);
1624         return result;
1625 }
1626
1627 static void __exit nvme_exit(void)
1628 {
1629         pci_unregister_driver(&nvme_driver);
1630         unregister_blkdev(nvme_major, "nvme");
1631         kthread_stop(nvme_thread);
1632 }
1633
1634 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1635 MODULE_LICENSE("GPL");
1636 MODULE_VERSION("0.5");
1637 module_init(nvme_init);
1638 module_exit(nvme_exit);