pinctrl: at91: enhance (debugfs) at91_gpio_dbg_show
[cascardo/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name)                                              \
47 static ssize_t zram_attr_##name##_show(struct device *d,                \
48                                 struct device_attribute *attr, char *b) \
49 {                                                                       \
50         struct zram *zram = dev_to_zram(d);                             \
51         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
52                 (u64)atomic64_read(&zram->stats.name));                 \
53 }                                                                       \
54 static struct device_attribute dev_attr_##name =                        \
55         __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56
57 static inline int init_done(struct zram *zram)
58 {
59         return zram->meta != NULL;
60 }
61
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64         return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66
67 static ssize_t disksize_show(struct device *dev,
68                 struct device_attribute *attr, char *buf)
69 {
70         struct zram *zram = dev_to_zram(dev);
71
72         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74
75 static ssize_t initstate_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         u32 val;
79         struct zram *zram = dev_to_zram(dev);
80
81         down_read(&zram->init_lock);
82         val = init_done(zram);
83         up_read(&zram->init_lock);
84
85         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87
88 static ssize_t orig_data_size_show(struct device *dev,
89                 struct device_attribute *attr, char *buf)
90 {
91         struct zram *zram = dev_to_zram(dev);
92
93         return scnprintf(buf, PAGE_SIZE, "%llu\n",
94                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96
97 static ssize_t mem_used_total_show(struct device *dev,
98                 struct device_attribute *attr, char *buf)
99 {
100         u64 val = 0;
101         struct zram *zram = dev_to_zram(dev);
102         struct zram_meta *meta = zram->meta;
103
104         down_read(&zram->init_lock);
105         if (init_done(zram))
106                 val = zs_get_total_pages(meta->mem_pool);
107         up_read(&zram->init_lock);
108
109         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113                 struct device_attribute *attr, char *buf)
114 {
115         int val;
116         struct zram *zram = dev_to_zram(dev);
117
118         down_read(&zram->init_lock);
119         val = zram->max_comp_streams;
120         up_read(&zram->init_lock);
121
122         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t mem_limit_show(struct device *dev,
126                 struct device_attribute *attr, char *buf)
127 {
128         u64 val;
129         struct zram *zram = dev_to_zram(dev);
130
131         down_read(&zram->init_lock);
132         val = zram->limit_pages;
133         up_read(&zram->init_lock);
134
135         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136 }
137
138 static ssize_t mem_limit_store(struct device *dev,
139                 struct device_attribute *attr, const char *buf, size_t len)
140 {
141         u64 limit;
142         char *tmp;
143         struct zram *zram = dev_to_zram(dev);
144
145         limit = memparse(buf, &tmp);
146         if (buf == tmp) /* no chars parsed, invalid input */
147                 return -EINVAL;
148
149         down_write(&zram->init_lock);
150         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151         up_write(&zram->init_lock);
152
153         return len;
154 }
155
156 static ssize_t mem_used_max_show(struct device *dev,
157                 struct device_attribute *attr, char *buf)
158 {
159         u64 val = 0;
160         struct zram *zram = dev_to_zram(dev);
161
162         down_read(&zram->init_lock);
163         if (init_done(zram))
164                 val = atomic_long_read(&zram->stats.max_used_pages);
165         up_read(&zram->init_lock);
166
167         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168 }
169
170 static ssize_t mem_used_max_store(struct device *dev,
171                 struct device_attribute *attr, const char *buf, size_t len)
172 {
173         int err;
174         unsigned long val;
175         struct zram *zram = dev_to_zram(dev);
176         struct zram_meta *meta = zram->meta;
177
178         err = kstrtoul(buf, 10, &val);
179         if (err || val != 0)
180                 return -EINVAL;
181
182         down_read(&zram->init_lock);
183         if (init_done(zram))
184                 atomic_long_set(&zram->stats.max_used_pages,
185                                 zs_get_total_pages(meta->mem_pool));
186         up_read(&zram->init_lock);
187
188         return len;
189 }
190
191 static ssize_t max_comp_streams_store(struct device *dev,
192                 struct device_attribute *attr, const char *buf, size_t len)
193 {
194         int num;
195         struct zram *zram = dev_to_zram(dev);
196         int ret;
197
198         ret = kstrtoint(buf, 0, &num);
199         if (ret < 0)
200                 return ret;
201         if (num < 1)
202                 return -EINVAL;
203
204         down_write(&zram->init_lock);
205         if (init_done(zram)) {
206                 if (!zcomp_set_max_streams(zram->comp, num)) {
207                         pr_info("Cannot change max compression streams\n");
208                         ret = -EINVAL;
209                         goto out;
210                 }
211         }
212
213         zram->max_comp_streams = num;
214         ret = len;
215 out:
216         up_write(&zram->init_lock);
217         return ret;
218 }
219
220 static ssize_t comp_algorithm_show(struct device *dev,
221                 struct device_attribute *attr, char *buf)
222 {
223         size_t sz;
224         struct zram *zram = dev_to_zram(dev);
225
226         down_read(&zram->init_lock);
227         sz = zcomp_available_show(zram->compressor, buf);
228         up_read(&zram->init_lock);
229
230         return sz;
231 }
232
233 static ssize_t comp_algorithm_store(struct device *dev,
234                 struct device_attribute *attr, const char *buf, size_t len)
235 {
236         struct zram *zram = dev_to_zram(dev);
237         down_write(&zram->init_lock);
238         if (init_done(zram)) {
239                 up_write(&zram->init_lock);
240                 pr_info("Can't change algorithm for initialized device\n");
241                 return -EBUSY;
242         }
243         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
244         up_write(&zram->init_lock);
245         return len;
246 }
247
248 /* flag operations needs meta->tb_lock */
249 static int zram_test_flag(struct zram_meta *meta, u32 index,
250                         enum zram_pageflags flag)
251 {
252         return meta->table[index].value & BIT(flag);
253 }
254
255 static void zram_set_flag(struct zram_meta *meta, u32 index,
256                         enum zram_pageflags flag)
257 {
258         meta->table[index].value |= BIT(flag);
259 }
260
261 static void zram_clear_flag(struct zram_meta *meta, u32 index,
262                         enum zram_pageflags flag)
263 {
264         meta->table[index].value &= ~BIT(flag);
265 }
266
267 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
268 {
269         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
270 }
271
272 static void zram_set_obj_size(struct zram_meta *meta,
273                                         u32 index, size_t size)
274 {
275         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
276
277         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
278 }
279
280 static inline int is_partial_io(struct bio_vec *bvec)
281 {
282         return bvec->bv_len != PAGE_SIZE;
283 }
284
285 /*
286  * Check if request is within bounds and aligned on zram logical blocks.
287  */
288 static inline int valid_io_request(struct zram *zram, struct bio *bio)
289 {
290         u64 start, end, bound;
291
292         /* unaligned request */
293         if (unlikely(bio->bi_iter.bi_sector &
294                      (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
295                 return 0;
296         if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
297                 return 0;
298
299         start = bio->bi_iter.bi_sector;
300         end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
301         bound = zram->disksize >> SECTOR_SHIFT;
302         /* out of range range */
303         if (unlikely(start >= bound || end > bound || start > end))
304                 return 0;
305
306         /* I/O request is valid */
307         return 1;
308 }
309
310 static void zram_meta_free(struct zram_meta *meta)
311 {
312         zs_destroy_pool(meta->mem_pool);
313         vfree(meta->table);
314         kfree(meta);
315 }
316
317 static struct zram_meta *zram_meta_alloc(u64 disksize)
318 {
319         size_t num_pages;
320         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
321         if (!meta)
322                 goto out;
323
324         num_pages = disksize >> PAGE_SHIFT;
325         meta->table = vzalloc(num_pages * sizeof(*meta->table));
326         if (!meta->table) {
327                 pr_err("Error allocating zram address table\n");
328                 goto free_meta;
329         }
330
331         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
332         if (!meta->mem_pool) {
333                 pr_err("Error creating memory pool\n");
334                 goto free_table;
335         }
336
337         return meta;
338
339 free_table:
340         vfree(meta->table);
341 free_meta:
342         kfree(meta);
343         meta = NULL;
344 out:
345         return meta;
346 }
347
348 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
349 {
350         if (*offset + bvec->bv_len >= PAGE_SIZE)
351                 (*index)++;
352         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
353 }
354
355 static int page_zero_filled(void *ptr)
356 {
357         unsigned int pos;
358         unsigned long *page;
359
360         page = (unsigned long *)ptr;
361
362         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
363                 if (page[pos])
364                         return 0;
365         }
366
367         return 1;
368 }
369
370 static void handle_zero_page(struct bio_vec *bvec)
371 {
372         struct page *page = bvec->bv_page;
373         void *user_mem;
374
375         user_mem = kmap_atomic(page);
376         if (is_partial_io(bvec))
377                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
378         else
379                 clear_page(user_mem);
380         kunmap_atomic(user_mem);
381
382         flush_dcache_page(page);
383 }
384
385
386 /*
387  * To protect concurrent access to the same index entry,
388  * caller should hold this table index entry's bit_spinlock to
389  * indicate this index entry is accessing.
390  */
391 static void zram_free_page(struct zram *zram, size_t index)
392 {
393         struct zram_meta *meta = zram->meta;
394         unsigned long handle = meta->table[index].handle;
395
396         if (unlikely(!handle)) {
397                 /*
398                  * No memory is allocated for zero filled pages.
399                  * Simply clear zero page flag.
400                  */
401                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
402                         zram_clear_flag(meta, index, ZRAM_ZERO);
403                         atomic64_dec(&zram->stats.zero_pages);
404                 }
405                 return;
406         }
407
408         zs_free(meta->mem_pool, handle);
409
410         atomic64_sub(zram_get_obj_size(meta, index),
411                         &zram->stats.compr_data_size);
412         atomic64_dec(&zram->stats.pages_stored);
413
414         meta->table[index].handle = 0;
415         zram_set_obj_size(meta, index, 0);
416 }
417
418 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
419 {
420         int ret = 0;
421         unsigned char *cmem;
422         struct zram_meta *meta = zram->meta;
423         unsigned long handle;
424         size_t size;
425
426         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
427         handle = meta->table[index].handle;
428         size = zram_get_obj_size(meta, index);
429
430         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
431                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
432                 clear_page(mem);
433                 return 0;
434         }
435
436         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
437         if (size == PAGE_SIZE)
438                 copy_page(mem, cmem);
439         else
440                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
441         zs_unmap_object(meta->mem_pool, handle);
442         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
443
444         /* Should NEVER happen. Return bio error if it does. */
445         if (unlikely(ret)) {
446                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
447                 return ret;
448         }
449
450         return 0;
451 }
452
453 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
454                           u32 index, int offset, struct bio *bio)
455 {
456         int ret;
457         struct page *page;
458         unsigned char *user_mem, *uncmem = NULL;
459         struct zram_meta *meta = zram->meta;
460         page = bvec->bv_page;
461
462         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
463         if (unlikely(!meta->table[index].handle) ||
464                         zram_test_flag(meta, index, ZRAM_ZERO)) {
465                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
466                 handle_zero_page(bvec);
467                 return 0;
468         }
469         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
470
471         if (is_partial_io(bvec))
472                 /* Use  a temporary buffer to decompress the page */
473                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
474
475         user_mem = kmap_atomic(page);
476         if (!is_partial_io(bvec))
477                 uncmem = user_mem;
478
479         if (!uncmem) {
480                 pr_info("Unable to allocate temp memory\n");
481                 ret = -ENOMEM;
482                 goto out_cleanup;
483         }
484
485         ret = zram_decompress_page(zram, uncmem, index);
486         /* Should NEVER happen. Return bio error if it does. */
487         if (unlikely(ret))
488                 goto out_cleanup;
489
490         if (is_partial_io(bvec))
491                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
492                                 bvec->bv_len);
493
494         flush_dcache_page(page);
495         ret = 0;
496 out_cleanup:
497         kunmap_atomic(user_mem);
498         if (is_partial_io(bvec))
499                 kfree(uncmem);
500         return ret;
501 }
502
503 static inline void update_used_max(struct zram *zram,
504                                         const unsigned long pages)
505 {
506         int old_max, cur_max;
507
508         old_max = atomic_long_read(&zram->stats.max_used_pages);
509
510         do {
511                 cur_max = old_max;
512                 if (pages > cur_max)
513                         old_max = atomic_long_cmpxchg(
514                                 &zram->stats.max_used_pages, cur_max, pages);
515         } while (old_max != cur_max);
516 }
517
518 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
519                            int offset)
520 {
521         int ret = 0;
522         size_t clen;
523         unsigned long handle;
524         struct page *page;
525         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
526         struct zram_meta *meta = zram->meta;
527         struct zcomp_strm *zstrm;
528         bool locked = false;
529         unsigned long alloced_pages;
530
531         page = bvec->bv_page;
532         if (is_partial_io(bvec)) {
533                 /*
534                  * This is a partial IO. We need to read the full page
535                  * before to write the changes.
536                  */
537                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
538                 if (!uncmem) {
539                         ret = -ENOMEM;
540                         goto out;
541                 }
542                 ret = zram_decompress_page(zram, uncmem, index);
543                 if (ret)
544                         goto out;
545         }
546
547         zstrm = zcomp_strm_find(zram->comp);
548         locked = true;
549         user_mem = kmap_atomic(page);
550
551         if (is_partial_io(bvec)) {
552                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
553                        bvec->bv_len);
554                 kunmap_atomic(user_mem);
555                 user_mem = NULL;
556         } else {
557                 uncmem = user_mem;
558         }
559
560         if (page_zero_filled(uncmem)) {
561                 kunmap_atomic(user_mem);
562                 /* Free memory associated with this sector now. */
563                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
564                 zram_free_page(zram, index);
565                 zram_set_flag(meta, index, ZRAM_ZERO);
566                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
567
568                 atomic64_inc(&zram->stats.zero_pages);
569                 ret = 0;
570                 goto out;
571         }
572
573         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
574         if (!is_partial_io(bvec)) {
575                 kunmap_atomic(user_mem);
576                 user_mem = NULL;
577                 uncmem = NULL;
578         }
579
580         if (unlikely(ret)) {
581                 pr_err("Compression failed! err=%d\n", ret);
582                 goto out;
583         }
584         src = zstrm->buffer;
585         if (unlikely(clen > max_zpage_size)) {
586                 clen = PAGE_SIZE;
587                 if (is_partial_io(bvec))
588                         src = uncmem;
589         }
590
591         handle = zs_malloc(meta->mem_pool, clen);
592         if (!handle) {
593                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
594                         index, clen);
595                 ret = -ENOMEM;
596                 goto out;
597         }
598
599         alloced_pages = zs_get_total_pages(meta->mem_pool);
600         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
601                 zs_free(meta->mem_pool, handle);
602                 ret = -ENOMEM;
603                 goto out;
604         }
605
606         update_used_max(zram, alloced_pages);
607
608         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
609
610         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
611                 src = kmap_atomic(page);
612                 copy_page(cmem, src);
613                 kunmap_atomic(src);
614         } else {
615                 memcpy(cmem, src, clen);
616         }
617
618         zcomp_strm_release(zram->comp, zstrm);
619         locked = false;
620         zs_unmap_object(meta->mem_pool, handle);
621
622         /*
623          * Free memory associated with this sector
624          * before overwriting unused sectors.
625          */
626         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
627         zram_free_page(zram, index);
628
629         meta->table[index].handle = handle;
630         zram_set_obj_size(meta, index, clen);
631         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
632
633         /* Update stats */
634         atomic64_add(clen, &zram->stats.compr_data_size);
635         atomic64_inc(&zram->stats.pages_stored);
636 out:
637         if (locked)
638                 zcomp_strm_release(zram->comp, zstrm);
639         if (is_partial_io(bvec))
640                 kfree(uncmem);
641         return ret;
642 }
643
644 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
645                         int offset, struct bio *bio)
646 {
647         int ret;
648         int rw = bio_data_dir(bio);
649
650         if (rw == READ) {
651                 atomic64_inc(&zram->stats.num_reads);
652                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
653         } else {
654                 atomic64_inc(&zram->stats.num_writes);
655                 ret = zram_bvec_write(zram, bvec, index, offset);
656         }
657
658         if (unlikely(ret)) {
659                 if (rw == READ)
660                         atomic64_inc(&zram->stats.failed_reads);
661                 else
662                         atomic64_inc(&zram->stats.failed_writes);
663         }
664
665         return ret;
666 }
667
668 /*
669  * zram_bio_discard - handler on discard request
670  * @index: physical block index in PAGE_SIZE units
671  * @offset: byte offset within physical block
672  */
673 static void zram_bio_discard(struct zram *zram, u32 index,
674                              int offset, struct bio *bio)
675 {
676         size_t n = bio->bi_iter.bi_size;
677         struct zram_meta *meta = zram->meta;
678
679         /*
680          * zram manages data in physical block size units. Because logical block
681          * size isn't identical with physical block size on some arch, we
682          * could get a discard request pointing to a specific offset within a
683          * certain physical block.  Although we can handle this request by
684          * reading that physiclal block and decompressing and partially zeroing
685          * and re-compressing and then re-storing it, this isn't reasonable
686          * because our intent with a discard request is to save memory.  So
687          * skipping this logical block is appropriate here.
688          */
689         if (offset) {
690                 if (n <= (PAGE_SIZE - offset))
691                         return;
692
693                 n -= (PAGE_SIZE - offset);
694                 index++;
695         }
696
697         while (n >= PAGE_SIZE) {
698                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
699                 zram_free_page(zram, index);
700                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
701                 atomic64_inc(&zram->stats.notify_free);
702                 index++;
703                 n -= PAGE_SIZE;
704         }
705 }
706
707 static void zram_reset_device(struct zram *zram, bool reset_capacity)
708 {
709         size_t index;
710         struct zram_meta *meta;
711
712         down_write(&zram->init_lock);
713
714         zram->limit_pages = 0;
715
716         if (!init_done(zram)) {
717                 up_write(&zram->init_lock);
718                 return;
719         }
720
721         meta = zram->meta;
722         /* Free all pages that are still in this zram device */
723         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
724                 unsigned long handle = meta->table[index].handle;
725                 if (!handle)
726                         continue;
727
728                 zs_free(meta->mem_pool, handle);
729         }
730
731         zcomp_destroy(zram->comp);
732         zram->max_comp_streams = 1;
733
734         zram_meta_free(zram->meta);
735         zram->meta = NULL;
736         /* Reset stats */
737         memset(&zram->stats, 0, sizeof(zram->stats));
738
739         zram->disksize = 0;
740         if (reset_capacity)
741                 set_capacity(zram->disk, 0);
742
743         up_write(&zram->init_lock);
744
745         /*
746          * Revalidate disk out of the init_lock to avoid lockdep splat.
747          * It's okay because disk's capacity is protected by init_lock
748          * so that revalidate_disk always sees up-to-date capacity.
749          */
750         if (reset_capacity)
751                 revalidate_disk(zram->disk);
752 }
753
754 static ssize_t disksize_store(struct device *dev,
755                 struct device_attribute *attr, const char *buf, size_t len)
756 {
757         u64 disksize;
758         struct zcomp *comp;
759         struct zram_meta *meta;
760         struct zram *zram = dev_to_zram(dev);
761         int err;
762
763         disksize = memparse(buf, NULL);
764         if (!disksize)
765                 return -EINVAL;
766
767         disksize = PAGE_ALIGN(disksize);
768         meta = zram_meta_alloc(disksize);
769         if (!meta)
770                 return -ENOMEM;
771
772         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
773         if (IS_ERR(comp)) {
774                 pr_info("Cannot initialise %s compressing backend\n",
775                                 zram->compressor);
776                 err = PTR_ERR(comp);
777                 goto out_free_meta;
778         }
779
780         down_write(&zram->init_lock);
781         if (init_done(zram)) {
782                 pr_info("Cannot change disksize for initialized device\n");
783                 err = -EBUSY;
784                 goto out_destroy_comp;
785         }
786
787         zram->meta = meta;
788         zram->comp = comp;
789         zram->disksize = disksize;
790         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
791         up_write(&zram->init_lock);
792
793         /*
794          * Revalidate disk out of the init_lock to avoid lockdep splat.
795          * It's okay because disk's capacity is protected by init_lock
796          * so that revalidate_disk always sees up-to-date capacity.
797          */
798         revalidate_disk(zram->disk);
799
800         return len;
801
802 out_destroy_comp:
803         up_write(&zram->init_lock);
804         zcomp_destroy(comp);
805 out_free_meta:
806         zram_meta_free(meta);
807         return err;
808 }
809
810 static ssize_t reset_store(struct device *dev,
811                 struct device_attribute *attr, const char *buf, size_t len)
812 {
813         int ret;
814         unsigned short do_reset;
815         struct zram *zram;
816         struct block_device *bdev;
817
818         zram = dev_to_zram(dev);
819         bdev = bdget_disk(zram->disk, 0);
820
821         if (!bdev)
822                 return -ENOMEM;
823
824         /* Do not reset an active device! */
825         if (bdev->bd_holders) {
826                 ret = -EBUSY;
827                 goto out;
828         }
829
830         ret = kstrtou16(buf, 10, &do_reset);
831         if (ret)
832                 goto out;
833
834         if (!do_reset) {
835                 ret = -EINVAL;
836                 goto out;
837         }
838
839         /* Make sure all pending I/O is finished */
840         fsync_bdev(bdev);
841         bdput(bdev);
842
843         zram_reset_device(zram, true);
844         return len;
845
846 out:
847         bdput(bdev);
848         return ret;
849 }
850
851 static void __zram_make_request(struct zram *zram, struct bio *bio)
852 {
853         int offset;
854         u32 index;
855         struct bio_vec bvec;
856         struct bvec_iter iter;
857
858         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
859         offset = (bio->bi_iter.bi_sector &
860                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
861
862         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
863                 zram_bio_discard(zram, index, offset, bio);
864                 bio_endio(bio, 0);
865                 return;
866         }
867
868         bio_for_each_segment(bvec, bio, iter) {
869                 int max_transfer_size = PAGE_SIZE - offset;
870
871                 if (bvec.bv_len > max_transfer_size) {
872                         /*
873                          * zram_bvec_rw() can only make operation on a single
874                          * zram page. Split the bio vector.
875                          */
876                         struct bio_vec bv;
877
878                         bv.bv_page = bvec.bv_page;
879                         bv.bv_len = max_transfer_size;
880                         bv.bv_offset = bvec.bv_offset;
881
882                         if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
883                                 goto out;
884
885                         bv.bv_len = bvec.bv_len - max_transfer_size;
886                         bv.bv_offset += max_transfer_size;
887                         if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
888                                 goto out;
889                 } else
890                         if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
891                                 goto out;
892
893                 update_position(&index, &offset, &bvec);
894         }
895
896         set_bit(BIO_UPTODATE, &bio->bi_flags);
897         bio_endio(bio, 0);
898         return;
899
900 out:
901         bio_io_error(bio);
902 }
903
904 /*
905  * Handler function for all zram I/O requests.
906  */
907 static void zram_make_request(struct request_queue *queue, struct bio *bio)
908 {
909         struct zram *zram = queue->queuedata;
910
911         down_read(&zram->init_lock);
912         if (unlikely(!init_done(zram)))
913                 goto error;
914
915         if (!valid_io_request(zram, bio)) {
916                 atomic64_inc(&zram->stats.invalid_io);
917                 goto error;
918         }
919
920         __zram_make_request(zram, bio);
921         up_read(&zram->init_lock);
922
923         return;
924
925 error:
926         up_read(&zram->init_lock);
927         bio_io_error(bio);
928 }
929
930 static void zram_slot_free_notify(struct block_device *bdev,
931                                 unsigned long index)
932 {
933         struct zram *zram;
934         struct zram_meta *meta;
935
936         zram = bdev->bd_disk->private_data;
937         meta = zram->meta;
938
939         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
940         zram_free_page(zram, index);
941         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
942         atomic64_inc(&zram->stats.notify_free);
943 }
944
945 static const struct block_device_operations zram_devops = {
946         .swap_slot_free_notify = zram_slot_free_notify,
947         .owner = THIS_MODULE
948 };
949
950 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
951                 disksize_show, disksize_store);
952 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
953 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
954 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
955 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
956 static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show,
957                 mem_limit_store);
958 static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show,
959                 mem_used_max_store);
960 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
961                 max_comp_streams_show, max_comp_streams_store);
962 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
963                 comp_algorithm_show, comp_algorithm_store);
964
965 ZRAM_ATTR_RO(num_reads);
966 ZRAM_ATTR_RO(num_writes);
967 ZRAM_ATTR_RO(failed_reads);
968 ZRAM_ATTR_RO(failed_writes);
969 ZRAM_ATTR_RO(invalid_io);
970 ZRAM_ATTR_RO(notify_free);
971 ZRAM_ATTR_RO(zero_pages);
972 ZRAM_ATTR_RO(compr_data_size);
973
974 static struct attribute *zram_disk_attrs[] = {
975         &dev_attr_disksize.attr,
976         &dev_attr_initstate.attr,
977         &dev_attr_reset.attr,
978         &dev_attr_num_reads.attr,
979         &dev_attr_num_writes.attr,
980         &dev_attr_failed_reads.attr,
981         &dev_attr_failed_writes.attr,
982         &dev_attr_invalid_io.attr,
983         &dev_attr_notify_free.attr,
984         &dev_attr_zero_pages.attr,
985         &dev_attr_orig_data_size.attr,
986         &dev_attr_compr_data_size.attr,
987         &dev_attr_mem_used_total.attr,
988         &dev_attr_mem_limit.attr,
989         &dev_attr_mem_used_max.attr,
990         &dev_attr_max_comp_streams.attr,
991         &dev_attr_comp_algorithm.attr,
992         NULL,
993 };
994
995 static struct attribute_group zram_disk_attr_group = {
996         .attrs = zram_disk_attrs,
997 };
998
999 static int create_device(struct zram *zram, int device_id)
1000 {
1001         int ret = -ENOMEM;
1002
1003         init_rwsem(&zram->init_lock);
1004
1005         zram->queue = blk_alloc_queue(GFP_KERNEL);
1006         if (!zram->queue) {
1007                 pr_err("Error allocating disk queue for device %d\n",
1008                         device_id);
1009                 goto out;
1010         }
1011
1012         blk_queue_make_request(zram->queue, zram_make_request);
1013         zram->queue->queuedata = zram;
1014
1015          /* gendisk structure */
1016         zram->disk = alloc_disk(1);
1017         if (!zram->disk) {
1018                 pr_warn("Error allocating disk structure for device %d\n",
1019                         device_id);
1020                 goto out_free_queue;
1021         }
1022
1023         zram->disk->major = zram_major;
1024         zram->disk->first_minor = device_id;
1025         zram->disk->fops = &zram_devops;
1026         zram->disk->queue = zram->queue;
1027         zram->disk->private_data = zram;
1028         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1029
1030         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1031         set_capacity(zram->disk, 0);
1032         /* zram devices sort of resembles non-rotational disks */
1033         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1034         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1035         /*
1036          * To ensure that we always get PAGE_SIZE aligned
1037          * and n*PAGE_SIZED sized I/O requests.
1038          */
1039         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1040         blk_queue_logical_block_size(zram->disk->queue,
1041                                         ZRAM_LOGICAL_BLOCK_SIZE);
1042         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1043         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1044         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1045         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1046         /*
1047          * zram_bio_discard() will clear all logical blocks if logical block
1048          * size is identical with physical block size(PAGE_SIZE). But if it is
1049          * different, we will skip discarding some parts of logical blocks in
1050          * the part of the request range which isn't aligned to physical block
1051          * size.  So we can't ensure that all discarded logical blocks are
1052          * zeroed.
1053          */
1054         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1055                 zram->disk->queue->limits.discard_zeroes_data = 1;
1056         else
1057                 zram->disk->queue->limits.discard_zeroes_data = 0;
1058         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1059
1060         add_disk(zram->disk);
1061
1062         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1063                                 &zram_disk_attr_group);
1064         if (ret < 0) {
1065                 pr_warn("Error creating sysfs group");
1066                 goto out_free_disk;
1067         }
1068         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1069         zram->meta = NULL;
1070         zram->max_comp_streams = 1;
1071         return 0;
1072
1073 out_free_disk:
1074         del_gendisk(zram->disk);
1075         put_disk(zram->disk);
1076 out_free_queue:
1077         blk_cleanup_queue(zram->queue);
1078 out:
1079         return ret;
1080 }
1081
1082 static void destroy_device(struct zram *zram)
1083 {
1084         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1085                         &zram_disk_attr_group);
1086
1087         del_gendisk(zram->disk);
1088         put_disk(zram->disk);
1089
1090         blk_cleanup_queue(zram->queue);
1091 }
1092
1093 static int __init zram_init(void)
1094 {
1095         int ret, dev_id;
1096
1097         if (num_devices > max_num_devices) {
1098                 pr_warn("Invalid value for num_devices: %u\n",
1099                                 num_devices);
1100                 ret = -EINVAL;
1101                 goto out;
1102         }
1103
1104         zram_major = register_blkdev(0, "zram");
1105         if (zram_major <= 0) {
1106                 pr_warn("Unable to get major number\n");
1107                 ret = -EBUSY;
1108                 goto out;
1109         }
1110
1111         /* Allocate the device array and initialize each one */
1112         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1113         if (!zram_devices) {
1114                 ret = -ENOMEM;
1115                 goto unregister;
1116         }
1117
1118         for (dev_id = 0; dev_id < num_devices; dev_id++) {
1119                 ret = create_device(&zram_devices[dev_id], dev_id);
1120                 if (ret)
1121                         goto free_devices;
1122         }
1123
1124         pr_info("Created %u device(s) ...\n", num_devices);
1125
1126         return 0;
1127
1128 free_devices:
1129         while (dev_id)
1130                 destroy_device(&zram_devices[--dev_id]);
1131         kfree(zram_devices);
1132 unregister:
1133         unregister_blkdev(zram_major, "zram");
1134 out:
1135         return ret;
1136 }
1137
1138 static void __exit zram_exit(void)
1139 {
1140         int i;
1141         struct zram *zram;
1142
1143         for (i = 0; i < num_devices; i++) {
1144                 zram = &zram_devices[i];
1145
1146                 destroy_device(zram);
1147                 /*
1148                  * Shouldn't access zram->disk after destroy_device
1149                  * because destroy_device already released zram->disk.
1150                  */
1151                 zram_reset_device(zram, false);
1152         }
1153
1154         unregister_blkdev(zram_major, "zram");
1155
1156         kfree(zram_devices);
1157         pr_debug("Cleanup done!\n");
1158 }
1159
1160 module_init(zram_init);
1161 module_exit(zram_exit);
1162
1163 module_param(num_devices, uint, 0);
1164 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1165
1166 MODULE_LICENSE("Dual BSD/GPL");
1167 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1168 MODULE_DESCRIPTION("Compressed RAM Block Device");