ACPI: fix acpi_debugfs_init prototype
[cascardo/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline int is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline int valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return 0;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return 0;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return 0;
133
134         /* I/O request is valid */
135         return 1;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static int page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return 0;
170         }
171
172         return 1;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 static ssize_t max_comp_streams_show(struct device *dev,
308                 struct device_attribute *attr, char *buf)
309 {
310         int val;
311         struct zram *zram = dev_to_zram(dev);
312
313         down_read(&zram->init_lock);
314         val = zram->max_comp_streams;
315         up_read(&zram->init_lock);
316
317         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319
320 static ssize_t max_comp_streams_store(struct device *dev,
321                 struct device_attribute *attr, const char *buf, size_t len)
322 {
323         int num;
324         struct zram *zram = dev_to_zram(dev);
325         int ret;
326
327         ret = kstrtoint(buf, 0, &num);
328         if (ret < 0)
329                 return ret;
330         if (num < 1)
331                 return -EINVAL;
332
333         down_write(&zram->init_lock);
334         if (init_done(zram)) {
335                 if (!zcomp_set_max_streams(zram->comp, num)) {
336                         pr_info("Cannot change max compression streams\n");
337                         ret = -EINVAL;
338                         goto out;
339                 }
340         }
341
342         zram->max_comp_streams = num;
343         ret = len;
344 out:
345         up_write(&zram->init_lock);
346         return ret;
347 }
348
349 static ssize_t comp_algorithm_show(struct device *dev,
350                 struct device_attribute *attr, char *buf)
351 {
352         size_t sz;
353         struct zram *zram = dev_to_zram(dev);
354
355         down_read(&zram->init_lock);
356         sz = zcomp_available_show(zram->compressor, buf);
357         up_read(&zram->init_lock);
358
359         return sz;
360 }
361
362 static ssize_t comp_algorithm_store(struct device *dev,
363                 struct device_attribute *attr, const char *buf, size_t len)
364 {
365         struct zram *zram = dev_to_zram(dev);
366         size_t sz;
367
368         down_write(&zram->init_lock);
369         if (init_done(zram)) {
370                 up_write(&zram->init_lock);
371                 pr_info("Can't change algorithm for initialized device\n");
372                 return -EBUSY;
373         }
374         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375
376         /* ignore trailing newline */
377         sz = strlen(zram->compressor);
378         if (sz > 0 && zram->compressor[sz - 1] == '\n')
379                 zram->compressor[sz - 1] = 0x00;
380
381         if (!zcomp_available_algorithm(zram->compressor))
382                 len = -EINVAL;
383
384         up_write(&zram->init_lock);
385         return len;
386 }
387
388 static ssize_t compact_store(struct device *dev,
389                 struct device_attribute *attr, const char *buf, size_t len)
390 {
391         unsigned long nr_migrated;
392         struct zram *zram = dev_to_zram(dev);
393         struct zram_meta *meta;
394
395         down_read(&zram->init_lock);
396         if (!init_done(zram)) {
397                 up_read(&zram->init_lock);
398                 return -EINVAL;
399         }
400
401         meta = zram->meta;
402         nr_migrated = zs_compact(meta->mem_pool);
403         atomic64_add(nr_migrated, &zram->stats.num_migrated);
404         up_read(&zram->init_lock);
405
406         return len;
407 }
408
409 static ssize_t io_stat_show(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         struct zram *zram = dev_to_zram(dev);
413         ssize_t ret;
414
415         down_read(&zram->init_lock);
416         ret = scnprintf(buf, PAGE_SIZE,
417                         "%8llu %8llu %8llu %8llu\n",
418                         (u64)atomic64_read(&zram->stats.failed_reads),
419                         (u64)atomic64_read(&zram->stats.failed_writes),
420                         (u64)atomic64_read(&zram->stats.invalid_io),
421                         (u64)atomic64_read(&zram->stats.notify_free));
422         up_read(&zram->init_lock);
423
424         return ret;
425 }
426
427 static ssize_t mm_stat_show(struct device *dev,
428                 struct device_attribute *attr, char *buf)
429 {
430         struct zram *zram = dev_to_zram(dev);
431         u64 orig_size, mem_used = 0;
432         long max_used;
433         ssize_t ret;
434
435         down_read(&zram->init_lock);
436         if (init_done(zram))
437                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
438
439         orig_size = atomic64_read(&zram->stats.pages_stored);
440         max_used = atomic_long_read(&zram->stats.max_used_pages);
441
442         ret = scnprintf(buf, PAGE_SIZE,
443                         "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
444                         orig_size << PAGE_SHIFT,
445                         (u64)atomic64_read(&zram->stats.compr_data_size),
446                         mem_used << PAGE_SHIFT,
447                         zram->limit_pages << PAGE_SHIFT,
448                         max_used << PAGE_SHIFT,
449                         (u64)atomic64_read(&zram->stats.zero_pages),
450                         (u64)atomic64_read(&zram->stats.num_migrated));
451         up_read(&zram->init_lock);
452
453         return ret;
454 }
455
456 static DEVICE_ATTR_RO(io_stat);
457 static DEVICE_ATTR_RO(mm_stat);
458 ZRAM_ATTR_RO(num_reads);
459 ZRAM_ATTR_RO(num_writes);
460 ZRAM_ATTR_RO(failed_reads);
461 ZRAM_ATTR_RO(failed_writes);
462 ZRAM_ATTR_RO(invalid_io);
463 ZRAM_ATTR_RO(notify_free);
464 ZRAM_ATTR_RO(zero_pages);
465 ZRAM_ATTR_RO(compr_data_size);
466
467 static inline bool zram_meta_get(struct zram *zram)
468 {
469         if (atomic_inc_not_zero(&zram->refcount))
470                 return true;
471         return false;
472 }
473
474 static inline void zram_meta_put(struct zram *zram)
475 {
476         atomic_dec(&zram->refcount);
477 }
478
479 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
480 {
481         size_t num_pages = disksize >> PAGE_SHIFT;
482         size_t index;
483
484         /* Free all pages that are still in this zram device */
485         for (index = 0; index < num_pages; index++) {
486                 unsigned long handle = meta->table[index].handle;
487
488                 if (!handle)
489                         continue;
490
491                 zs_free(meta->mem_pool, handle);
492         }
493
494         zs_destroy_pool(meta->mem_pool);
495         vfree(meta->table);
496         kfree(meta);
497 }
498
499 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
500 {
501         size_t num_pages;
502         char pool_name[8];
503         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
504
505         if (!meta)
506                 return NULL;
507
508         num_pages = disksize >> PAGE_SHIFT;
509         meta->table = vzalloc(num_pages * sizeof(*meta->table));
510         if (!meta->table) {
511                 pr_err("Error allocating zram address table\n");
512                 goto out_error;
513         }
514
515         snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
516         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
517         if (!meta->mem_pool) {
518                 pr_err("Error creating memory pool\n");
519                 goto out_error;
520         }
521
522         return meta;
523
524 out_error:
525         vfree(meta->table);
526         kfree(meta);
527         return NULL;
528 }
529
530 /*
531  * To protect concurrent access to the same index entry,
532  * caller should hold this table index entry's bit_spinlock to
533  * indicate this index entry is accessing.
534  */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537         struct zram_meta *meta = zram->meta;
538         unsigned long handle = meta->table[index].handle;
539
540         if (unlikely(!handle)) {
541                 /*
542                  * No memory is allocated for zero filled pages.
543                  * Simply clear zero page flag.
544                  */
545                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546                         zram_clear_flag(meta, index, ZRAM_ZERO);
547                         atomic64_dec(&zram->stats.zero_pages);
548                 }
549                 return;
550         }
551
552         zs_free(meta->mem_pool, handle);
553
554         atomic64_sub(zram_get_obj_size(meta, index),
555                         &zram->stats.compr_data_size);
556         atomic64_dec(&zram->stats.pages_stored);
557
558         meta->table[index].handle = 0;
559         zram_set_obj_size(meta, index, 0);
560 }
561
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564         int ret = 0;
565         unsigned char *cmem;
566         struct zram_meta *meta = zram->meta;
567         unsigned long handle;
568         size_t size;
569
570         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571         handle = meta->table[index].handle;
572         size = zram_get_obj_size(meta, index);
573
574         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576                 clear_page(mem);
577                 return 0;
578         }
579
580         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581         if (size == PAGE_SIZE)
582                 copy_page(mem, cmem);
583         else
584                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
585         zs_unmap_object(meta->mem_pool, handle);
586         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
587
588         /* Should NEVER happen. Return bio error if it does. */
589         if (unlikely(ret)) {
590                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
591                 return ret;
592         }
593
594         return 0;
595 }
596
597 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
598                           u32 index, int offset)
599 {
600         int ret;
601         struct page *page;
602         unsigned char *user_mem, *uncmem = NULL;
603         struct zram_meta *meta = zram->meta;
604         page = bvec->bv_page;
605
606         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
607         if (unlikely(!meta->table[index].handle) ||
608                         zram_test_flag(meta, index, ZRAM_ZERO)) {
609                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
610                 handle_zero_page(bvec);
611                 return 0;
612         }
613         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614
615         if (is_partial_io(bvec))
616                 /* Use  a temporary buffer to decompress the page */
617                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
618
619         user_mem = kmap_atomic(page);
620         if (!is_partial_io(bvec))
621                 uncmem = user_mem;
622
623         if (!uncmem) {
624                 pr_info("Unable to allocate temp memory\n");
625                 ret = -ENOMEM;
626                 goto out_cleanup;
627         }
628
629         ret = zram_decompress_page(zram, uncmem, index);
630         /* Should NEVER happen. Return bio error if it does. */
631         if (unlikely(ret))
632                 goto out_cleanup;
633
634         if (is_partial_io(bvec))
635                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
636                                 bvec->bv_len);
637
638         flush_dcache_page(page);
639         ret = 0;
640 out_cleanup:
641         kunmap_atomic(user_mem);
642         if (is_partial_io(bvec))
643                 kfree(uncmem);
644         return ret;
645 }
646
647 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
648                            int offset)
649 {
650         int ret = 0;
651         size_t clen;
652         unsigned long handle;
653         struct page *page;
654         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
655         struct zram_meta *meta = zram->meta;
656         struct zcomp_strm *zstrm = NULL;
657         unsigned long alloced_pages;
658
659         page = bvec->bv_page;
660         if (is_partial_io(bvec)) {
661                 /*
662                  * This is a partial IO. We need to read the full page
663                  * before to write the changes.
664                  */
665                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
666                 if (!uncmem) {
667                         ret = -ENOMEM;
668                         goto out;
669                 }
670                 ret = zram_decompress_page(zram, uncmem, index);
671                 if (ret)
672                         goto out;
673         }
674
675         zstrm = zcomp_strm_find(zram->comp);
676         user_mem = kmap_atomic(page);
677
678         if (is_partial_io(bvec)) {
679                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
680                        bvec->bv_len);
681                 kunmap_atomic(user_mem);
682                 user_mem = NULL;
683         } else {
684                 uncmem = user_mem;
685         }
686
687         if (page_zero_filled(uncmem)) {
688                 if (user_mem)
689                         kunmap_atomic(user_mem);
690                 /* Free memory associated with this sector now. */
691                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
692                 zram_free_page(zram, index);
693                 zram_set_flag(meta, index, ZRAM_ZERO);
694                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
695
696                 atomic64_inc(&zram->stats.zero_pages);
697                 ret = 0;
698                 goto out;
699         }
700
701         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
702         if (!is_partial_io(bvec)) {
703                 kunmap_atomic(user_mem);
704                 user_mem = NULL;
705                 uncmem = NULL;
706         }
707
708         if (unlikely(ret)) {
709                 pr_err("Compression failed! err=%d\n", ret);
710                 goto out;
711         }
712         src = zstrm->buffer;
713         if (unlikely(clen > max_zpage_size)) {
714                 clen = PAGE_SIZE;
715                 if (is_partial_io(bvec))
716                         src = uncmem;
717         }
718
719         handle = zs_malloc(meta->mem_pool, clen);
720         if (!handle) {
721                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
722                         index, clen);
723                 ret = -ENOMEM;
724                 goto out;
725         }
726
727         alloced_pages = zs_get_total_pages(meta->mem_pool);
728         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
729                 zs_free(meta->mem_pool, handle);
730                 ret = -ENOMEM;
731                 goto out;
732         }
733
734         update_used_max(zram, alloced_pages);
735
736         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
737
738         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
739                 src = kmap_atomic(page);
740                 copy_page(cmem, src);
741                 kunmap_atomic(src);
742         } else {
743                 memcpy(cmem, src, clen);
744         }
745
746         zcomp_strm_release(zram->comp, zstrm);
747         zstrm = NULL;
748         zs_unmap_object(meta->mem_pool, handle);
749
750         /*
751          * Free memory associated with this sector
752          * before overwriting unused sectors.
753          */
754         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
755         zram_free_page(zram, index);
756
757         meta->table[index].handle = handle;
758         zram_set_obj_size(meta, index, clen);
759         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
760
761         /* Update stats */
762         atomic64_add(clen, &zram->stats.compr_data_size);
763         atomic64_inc(&zram->stats.pages_stored);
764 out:
765         if (zstrm)
766                 zcomp_strm_release(zram->comp, zstrm);
767         if (is_partial_io(bvec))
768                 kfree(uncmem);
769         return ret;
770 }
771
772 /*
773  * zram_bio_discard - handler on discard request
774  * @index: physical block index in PAGE_SIZE units
775  * @offset: byte offset within physical block
776  */
777 static void zram_bio_discard(struct zram *zram, u32 index,
778                              int offset, struct bio *bio)
779 {
780         size_t n = bio->bi_iter.bi_size;
781         struct zram_meta *meta = zram->meta;
782
783         /*
784          * zram manages data in physical block size units. Because logical block
785          * size isn't identical with physical block size on some arch, we
786          * could get a discard request pointing to a specific offset within a
787          * certain physical block.  Although we can handle this request by
788          * reading that physiclal block and decompressing and partially zeroing
789          * and re-compressing and then re-storing it, this isn't reasonable
790          * because our intent with a discard request is to save memory.  So
791          * skipping this logical block is appropriate here.
792          */
793         if (offset) {
794                 if (n <= (PAGE_SIZE - offset))
795                         return;
796
797                 n -= (PAGE_SIZE - offset);
798                 index++;
799         }
800
801         while (n >= PAGE_SIZE) {
802                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
803                 zram_free_page(zram, index);
804                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
805                 atomic64_inc(&zram->stats.notify_free);
806                 index++;
807                 n -= PAGE_SIZE;
808         }
809 }
810
811 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
812                         int offset, int rw)
813 {
814         unsigned long start_time = jiffies;
815         int ret;
816
817         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
818                         &zram->disk->part0);
819
820         if (rw == READ) {
821                 atomic64_inc(&zram->stats.num_reads);
822                 ret = zram_bvec_read(zram, bvec, index, offset);
823         } else {
824                 atomic64_inc(&zram->stats.num_writes);
825                 ret = zram_bvec_write(zram, bvec, index, offset);
826         }
827
828         generic_end_io_acct(rw, &zram->disk->part0, start_time);
829
830         if (unlikely(ret)) {
831                 if (rw == READ)
832                         atomic64_inc(&zram->stats.failed_reads);
833                 else
834                         atomic64_inc(&zram->stats.failed_writes);
835         }
836
837         return ret;
838 }
839
840 static void __zram_make_request(struct zram *zram, struct bio *bio)
841 {
842         int offset, rw;
843         u32 index;
844         struct bio_vec bvec;
845         struct bvec_iter iter;
846
847         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
848         offset = (bio->bi_iter.bi_sector &
849                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
850
851         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
852                 zram_bio_discard(zram, index, offset, bio);
853                 bio_endio(bio, 0);
854                 return;
855         }
856
857         rw = bio_data_dir(bio);
858         bio_for_each_segment(bvec, bio, iter) {
859                 int max_transfer_size = PAGE_SIZE - offset;
860
861                 if (bvec.bv_len > max_transfer_size) {
862                         /*
863                          * zram_bvec_rw() can only make operation on a single
864                          * zram page. Split the bio vector.
865                          */
866                         struct bio_vec bv;
867
868                         bv.bv_page = bvec.bv_page;
869                         bv.bv_len = max_transfer_size;
870                         bv.bv_offset = bvec.bv_offset;
871
872                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
873                                 goto out;
874
875                         bv.bv_len = bvec.bv_len - max_transfer_size;
876                         bv.bv_offset += max_transfer_size;
877                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
878                                 goto out;
879                 } else
880                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
881                                 goto out;
882
883                 update_position(&index, &offset, &bvec);
884         }
885
886         set_bit(BIO_UPTODATE, &bio->bi_flags);
887         bio_endio(bio, 0);
888         return;
889
890 out:
891         bio_io_error(bio);
892 }
893
894 /*
895  * Handler function for all zram I/O requests.
896  */
897 static void zram_make_request(struct request_queue *queue, struct bio *bio)
898 {
899         struct zram *zram = queue->queuedata;
900
901         if (unlikely(!zram_meta_get(zram)))
902                 goto error;
903
904         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
905                                         bio->bi_iter.bi_size)) {
906                 atomic64_inc(&zram->stats.invalid_io);
907                 goto put_zram;
908         }
909
910         __zram_make_request(zram, bio);
911         zram_meta_put(zram);
912         return;
913 put_zram:
914         zram_meta_put(zram);
915 error:
916         bio_io_error(bio);
917 }
918
919 static void zram_slot_free_notify(struct block_device *bdev,
920                                 unsigned long index)
921 {
922         struct zram *zram;
923         struct zram_meta *meta;
924
925         zram = bdev->bd_disk->private_data;
926         meta = zram->meta;
927
928         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
929         zram_free_page(zram, index);
930         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
931         atomic64_inc(&zram->stats.notify_free);
932 }
933
934 static int zram_rw_page(struct block_device *bdev, sector_t sector,
935                        struct page *page, int rw)
936 {
937         int offset, err = -EIO;
938         u32 index;
939         struct zram *zram;
940         struct bio_vec bv;
941
942         zram = bdev->bd_disk->private_data;
943         if (unlikely(!zram_meta_get(zram)))
944                 goto out;
945
946         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
947                 atomic64_inc(&zram->stats.invalid_io);
948                 err = -EINVAL;
949                 goto put_zram;
950         }
951
952         index = sector >> SECTORS_PER_PAGE_SHIFT;
953         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
954
955         bv.bv_page = page;
956         bv.bv_len = PAGE_SIZE;
957         bv.bv_offset = 0;
958
959         err = zram_bvec_rw(zram, &bv, index, offset, rw);
960 put_zram:
961         zram_meta_put(zram);
962 out:
963         /*
964          * If I/O fails, just return error(ie, non-zero) without
965          * calling page_endio.
966          * It causes resubmit the I/O with bio request by upper functions
967          * of rw_page(e.g., swap_readpage, __swap_writepage) and
968          * bio->bi_end_io does things to handle the error
969          * (e.g., SetPageError, set_page_dirty and extra works).
970          */
971         if (err == 0)
972                 page_endio(page, rw, 0);
973         return err;
974 }
975
976 static void zram_reset_device(struct zram *zram)
977 {
978         struct zram_meta *meta;
979         struct zcomp *comp;
980         u64 disksize;
981
982         down_write(&zram->init_lock);
983
984         zram->limit_pages = 0;
985
986         if (!init_done(zram)) {
987                 up_write(&zram->init_lock);
988                 return;
989         }
990
991         meta = zram->meta;
992         comp = zram->comp;
993         disksize = zram->disksize;
994         /*
995          * Refcount will go down to 0 eventually and r/w handler
996          * cannot handle further I/O so it will bail out by
997          * check zram_meta_get.
998          */
999         zram_meta_put(zram);
1000         /*
1001          * We want to free zram_meta in process context to avoid
1002          * deadlock between reclaim path and any other locks.
1003          */
1004         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1005
1006         /* Reset stats */
1007         memset(&zram->stats, 0, sizeof(zram->stats));
1008         zram->disksize = 0;
1009         zram->max_comp_streams = 1;
1010
1011         set_capacity(zram->disk, 0);
1012         part_stat_set_all(&zram->disk->part0, 0);
1013
1014         up_write(&zram->init_lock);
1015         /* I/O operation under all of CPU are done so let's free */
1016         zram_meta_free(meta, disksize);
1017         zcomp_destroy(comp);
1018 }
1019
1020 static ssize_t disksize_store(struct device *dev,
1021                 struct device_attribute *attr, const char *buf, size_t len)
1022 {
1023         u64 disksize;
1024         struct zcomp *comp;
1025         struct zram_meta *meta;
1026         struct zram *zram = dev_to_zram(dev);
1027         int err;
1028
1029         disksize = memparse(buf, NULL);
1030         if (!disksize)
1031                 return -EINVAL;
1032
1033         disksize = PAGE_ALIGN(disksize);
1034         meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1035         if (!meta)
1036                 return -ENOMEM;
1037
1038         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1039         if (IS_ERR(comp)) {
1040                 pr_info("Cannot initialise %s compressing backend\n",
1041                                 zram->compressor);
1042                 err = PTR_ERR(comp);
1043                 goto out_free_meta;
1044         }
1045
1046         down_write(&zram->init_lock);
1047         if (init_done(zram)) {
1048                 pr_info("Cannot change disksize for initialized device\n");
1049                 err = -EBUSY;
1050                 goto out_destroy_comp;
1051         }
1052
1053         init_waitqueue_head(&zram->io_done);
1054         atomic_set(&zram->refcount, 1);
1055         zram->meta = meta;
1056         zram->comp = comp;
1057         zram->disksize = disksize;
1058         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1059         up_write(&zram->init_lock);
1060
1061         /*
1062          * Revalidate disk out of the init_lock to avoid lockdep splat.
1063          * It's okay because disk's capacity is protected by init_lock
1064          * so that revalidate_disk always sees up-to-date capacity.
1065          */
1066         revalidate_disk(zram->disk);
1067
1068         return len;
1069
1070 out_destroy_comp:
1071         up_write(&zram->init_lock);
1072         zcomp_destroy(comp);
1073 out_free_meta:
1074         zram_meta_free(meta, disksize);
1075         return err;
1076 }
1077
1078 static ssize_t reset_store(struct device *dev,
1079                 struct device_attribute *attr, const char *buf, size_t len)
1080 {
1081         int ret;
1082         unsigned short do_reset;
1083         struct zram *zram;
1084         struct block_device *bdev;
1085
1086         ret = kstrtou16(buf, 10, &do_reset);
1087         if (ret)
1088                 return ret;
1089
1090         if (!do_reset)
1091                 return -EINVAL;
1092
1093         zram = dev_to_zram(dev);
1094         bdev = bdget_disk(zram->disk, 0);
1095         if (!bdev)
1096                 return -ENOMEM;
1097
1098         mutex_lock(&bdev->bd_mutex);
1099         /* Do not reset an active device or claimed device */
1100         if (bdev->bd_openers || zram->claim) {
1101                 mutex_unlock(&bdev->bd_mutex);
1102                 bdput(bdev);
1103                 return -EBUSY;
1104         }
1105
1106         /* From now on, anyone can't open /dev/zram[0-9] */
1107         zram->claim = true;
1108         mutex_unlock(&bdev->bd_mutex);
1109
1110         /* Make sure all the pending I/O are finished */
1111         fsync_bdev(bdev);
1112         zram_reset_device(zram);
1113         revalidate_disk(zram->disk);
1114         bdput(bdev);
1115
1116         mutex_lock(&bdev->bd_mutex);
1117         zram->claim = false;
1118         mutex_unlock(&bdev->bd_mutex);
1119
1120         return len;
1121 }
1122
1123 static int zram_open(struct block_device *bdev, fmode_t mode)
1124 {
1125         int ret = 0;
1126         struct zram *zram;
1127
1128         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1129
1130         zram = bdev->bd_disk->private_data;
1131         /* zram was claimed to reset so open request fails */
1132         if (zram->claim)
1133                 ret = -EBUSY;
1134
1135         return ret;
1136 }
1137
1138 static const struct block_device_operations zram_devops = {
1139         .open = zram_open,
1140         .swap_slot_free_notify = zram_slot_free_notify,
1141         .rw_page = zram_rw_page,
1142         .owner = THIS_MODULE
1143 };
1144
1145 static DEVICE_ATTR_WO(compact);
1146 static DEVICE_ATTR_RW(disksize);
1147 static DEVICE_ATTR_RO(initstate);
1148 static DEVICE_ATTR_WO(reset);
1149 static DEVICE_ATTR_RO(orig_data_size);
1150 static DEVICE_ATTR_RO(mem_used_total);
1151 static DEVICE_ATTR_RW(mem_limit);
1152 static DEVICE_ATTR_RW(mem_used_max);
1153 static DEVICE_ATTR_RW(max_comp_streams);
1154 static DEVICE_ATTR_RW(comp_algorithm);
1155
1156 static struct attribute *zram_disk_attrs[] = {
1157         &dev_attr_disksize.attr,
1158         &dev_attr_initstate.attr,
1159         &dev_attr_reset.attr,
1160         &dev_attr_num_reads.attr,
1161         &dev_attr_num_writes.attr,
1162         &dev_attr_failed_reads.attr,
1163         &dev_attr_failed_writes.attr,
1164         &dev_attr_compact.attr,
1165         &dev_attr_invalid_io.attr,
1166         &dev_attr_notify_free.attr,
1167         &dev_attr_zero_pages.attr,
1168         &dev_attr_orig_data_size.attr,
1169         &dev_attr_compr_data_size.attr,
1170         &dev_attr_mem_used_total.attr,
1171         &dev_attr_mem_limit.attr,
1172         &dev_attr_mem_used_max.attr,
1173         &dev_attr_max_comp_streams.attr,
1174         &dev_attr_comp_algorithm.attr,
1175         &dev_attr_io_stat.attr,
1176         &dev_attr_mm_stat.attr,
1177         NULL,
1178 };
1179
1180 static struct attribute_group zram_disk_attr_group = {
1181         .attrs = zram_disk_attrs,
1182 };
1183
1184 /*
1185  * Allocate and initialize new zram device. the function returns
1186  * '>= 0' device_id upon success, and negative value otherwise.
1187  */
1188 static int zram_add(void)
1189 {
1190         struct zram *zram;
1191         struct request_queue *queue;
1192         int ret, device_id;
1193
1194         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1195         if (!zram)
1196                 return -ENOMEM;
1197
1198         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1199         if (ret < 0)
1200                 goto out_free_dev;
1201         device_id = ret;
1202
1203         init_rwsem(&zram->init_lock);
1204
1205         queue = blk_alloc_queue(GFP_KERNEL);
1206         if (!queue) {
1207                 pr_err("Error allocating disk queue for device %d\n",
1208                         device_id);
1209                 ret = -ENOMEM;
1210                 goto out_free_idr;
1211         }
1212
1213         blk_queue_make_request(queue, zram_make_request);
1214
1215         /* gendisk structure */
1216         zram->disk = alloc_disk(1);
1217         if (!zram->disk) {
1218                 pr_warn("Error allocating disk structure for device %d\n",
1219                         device_id);
1220                 ret = -ENOMEM;
1221                 goto out_free_queue;
1222         }
1223
1224         zram->disk->major = zram_major;
1225         zram->disk->first_minor = device_id;
1226         zram->disk->fops = &zram_devops;
1227         zram->disk->queue = queue;
1228         zram->disk->queue->queuedata = zram;
1229         zram->disk->private_data = zram;
1230         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1231
1232         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1233         set_capacity(zram->disk, 0);
1234         /* zram devices sort of resembles non-rotational disks */
1235         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1236         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1237         /*
1238          * To ensure that we always get PAGE_SIZE aligned
1239          * and n*PAGE_SIZED sized I/O requests.
1240          */
1241         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1242         blk_queue_logical_block_size(zram->disk->queue,
1243                                         ZRAM_LOGICAL_BLOCK_SIZE);
1244         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1245         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1246         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1247         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1248         /*
1249          * zram_bio_discard() will clear all logical blocks if logical block
1250          * size is identical with physical block size(PAGE_SIZE). But if it is
1251          * different, we will skip discarding some parts of logical blocks in
1252          * the part of the request range which isn't aligned to physical block
1253          * size.  So we can't ensure that all discarded logical blocks are
1254          * zeroed.
1255          */
1256         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1257                 zram->disk->queue->limits.discard_zeroes_data = 1;
1258         else
1259                 zram->disk->queue->limits.discard_zeroes_data = 0;
1260         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1261
1262         add_disk(zram->disk);
1263
1264         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1265                                 &zram_disk_attr_group);
1266         if (ret < 0) {
1267                 pr_warn("Error creating sysfs group");
1268                 goto out_free_disk;
1269         }
1270         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1271         zram->meta = NULL;
1272         zram->max_comp_streams = 1;
1273
1274         pr_info("Added device: %s\n", zram->disk->disk_name);
1275         return device_id;
1276
1277 out_free_disk:
1278         del_gendisk(zram->disk);
1279         put_disk(zram->disk);
1280 out_free_queue:
1281         blk_cleanup_queue(queue);
1282 out_free_idr:
1283         idr_remove(&zram_index_idr, device_id);
1284 out_free_dev:
1285         kfree(zram);
1286         return ret;
1287 }
1288
1289 static int zram_remove(struct zram *zram)
1290 {
1291         struct block_device *bdev;
1292
1293         bdev = bdget_disk(zram->disk, 0);
1294         if (!bdev)
1295                 return -ENOMEM;
1296
1297         mutex_lock(&bdev->bd_mutex);
1298         if (bdev->bd_openers || zram->claim) {
1299                 mutex_unlock(&bdev->bd_mutex);
1300                 bdput(bdev);
1301                 return -EBUSY;
1302         }
1303
1304         zram->claim = true;
1305         mutex_unlock(&bdev->bd_mutex);
1306
1307         /*
1308          * Remove sysfs first, so no one will perform a disksize
1309          * store while we destroy the devices. This also helps during
1310          * hot_remove -- zram_reset_device() is the last holder of
1311          * ->init_lock, no later/concurrent disksize_store() or any
1312          * other sysfs handlers are possible.
1313          */
1314         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1315                         &zram_disk_attr_group);
1316
1317         /* Make sure all the pending I/O are finished */
1318         fsync_bdev(bdev);
1319         zram_reset_device(zram);
1320         bdput(bdev);
1321
1322         pr_info("Removed device: %s\n", zram->disk->disk_name);
1323
1324         idr_remove(&zram_index_idr, zram->disk->first_minor);
1325         blk_cleanup_queue(zram->disk->queue);
1326         del_gendisk(zram->disk);
1327         put_disk(zram->disk);
1328         kfree(zram);
1329         return 0;
1330 }
1331
1332 /* zram-control sysfs attributes */
1333 static ssize_t hot_add_show(struct class *class,
1334                         struct class_attribute *attr,
1335                         char *buf)
1336 {
1337         int ret;
1338
1339         mutex_lock(&zram_index_mutex);
1340         ret = zram_add();
1341         mutex_unlock(&zram_index_mutex);
1342
1343         if (ret < 0)
1344                 return ret;
1345         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1346 }
1347
1348 static ssize_t hot_remove_store(struct class *class,
1349                         struct class_attribute *attr,
1350                         const char *buf,
1351                         size_t count)
1352 {
1353         struct zram *zram;
1354         int ret, dev_id;
1355
1356         /* dev_id is gendisk->first_minor, which is `int' */
1357         ret = kstrtoint(buf, 10, &dev_id);
1358         if (ret)
1359                 return ret;
1360         if (dev_id < 0)
1361                 return -EINVAL;
1362
1363         mutex_lock(&zram_index_mutex);
1364
1365         zram = idr_find(&zram_index_idr, dev_id);
1366         if (zram)
1367                 ret = zram_remove(zram);
1368         else
1369                 ret = -ENODEV;
1370
1371         mutex_unlock(&zram_index_mutex);
1372         return ret ? ret : count;
1373 }
1374
1375 static struct class_attribute zram_control_class_attrs[] = {
1376         __ATTR_RO(hot_add),
1377         __ATTR_WO(hot_remove),
1378         __ATTR_NULL,
1379 };
1380
1381 static struct class zram_control_class = {
1382         .name           = "zram-control",
1383         .owner          = THIS_MODULE,
1384         .class_attrs    = zram_control_class_attrs,
1385 };
1386
1387 static int zram_remove_cb(int id, void *ptr, void *data)
1388 {
1389         zram_remove(ptr);
1390         return 0;
1391 }
1392
1393 static void destroy_devices(void)
1394 {
1395         class_unregister(&zram_control_class);
1396         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1397         idr_destroy(&zram_index_idr);
1398         unregister_blkdev(zram_major, "zram");
1399 }
1400
1401 static int __init zram_init(void)
1402 {
1403         int ret;
1404
1405         ret = class_register(&zram_control_class);
1406         if (ret) {
1407                 pr_warn("Unable to register zram-control class\n");
1408                 return ret;
1409         }
1410
1411         zram_major = register_blkdev(0, "zram");
1412         if (zram_major <= 0) {
1413                 pr_warn("Unable to get major number\n");
1414                 class_unregister(&zram_control_class);
1415                 return -EBUSY;
1416         }
1417
1418         while (num_devices != 0) {
1419                 mutex_lock(&zram_index_mutex);
1420                 ret = zram_add();
1421                 mutex_unlock(&zram_index_mutex);
1422                 if (ret < 0)
1423                         goto out_error;
1424                 num_devices--;
1425         }
1426
1427         return 0;
1428
1429 out_error:
1430         destroy_devices();
1431         return ret;
1432 }
1433
1434 static void __exit zram_exit(void)
1435 {
1436         destroy_devices();
1437 }
1438
1439 module_init(zram_init);
1440 module_exit(zram_exit);
1441
1442 module_param(num_devices, uint, 0);
1443 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1444
1445 MODULE_LICENSE("Dual BSD/GPL");
1446 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1447 MODULE_DESCRIPTION("Compressed RAM Block Device");