[media] em28xx-i2c: rt_mutex_trylock() returns zero on failure
[cascardo/linux.git] / drivers / bluetooth / hci_intel.c
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER        0
44 #define STATE_DOWNLOADING       1
45 #define STATE_FIRMWARE_LOADED   2
46 #define STATE_FIRMWARE_FAILED   3
47 #define STATE_BOOTING           4
48 #define STATE_LPM_ENABLED       5
49 #define STATE_TX_ACTIVE         6
50 #define STATE_SUSPENDED         7
51 #define STATE_LPM_TRANSACTION   8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65         __u8 opcode;
66         __u8 dlen;
67         __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71         struct list_head list;
72         struct platform_device *pdev;
73         struct gpio_desc *reset;
74         struct hci_uart *hu;
75         struct mutex hu_lock;
76         int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83         struct sk_buff *rx_skb;
84         struct sk_buff_head txq;
85         struct work_struct busy_work;
86         struct hci_uart *hu;
87         unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92         switch (speed) {
93         case 9600:
94                 return 0x00;
95         case 19200:
96                 return 0x01;
97         case 38400:
98                 return 0x02;
99         case 57600:
100                 return 0x03;
101         case 115200:
102                 return 0x04;
103         case 230400:
104                 return 0x05;
105         case 460800:
106                 return 0x06;
107         case 921600:
108                 return 0x07;
109         case 1843200:
110                 return 0x08;
111         case 3250000:
112                 return 0x09;
113         case 2000000:
114                 return 0x0a;
115         case 3000000:
116                 return 0x0b;
117         default:
118                 return 0xff;
119         }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124         struct intel_data *intel = hu->priv;
125         int err;
126
127         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128                                   TASK_INTERRUPTIBLE,
129                                   msecs_to_jiffies(1000));
130
131         if (err == 1) {
132                 bt_dev_err(hu->hdev, "Device boot interrupted");
133                 return -EINTR;
134         }
135
136         if (err) {
137                 bt_dev_err(hu->hdev, "Device boot timeout");
138                 return -ETIMEDOUT;
139         }
140
141         return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147         struct intel_data *intel = hu->priv;
148         int err;
149
150         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151                                   TASK_INTERRUPTIBLE,
152                                   msecs_to_jiffies(1000));
153
154         if (err == 1) {
155                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156                 return -EINTR;
157         }
158
159         if (err) {
160                 bt_dev_err(hu->hdev, "LPM transaction timeout");
161                 return -ETIMEDOUT;
162         }
163
164         return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170         struct intel_data *intel = hu->priv;
171         struct sk_buff *skb;
172
173         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174             test_bit(STATE_SUSPENDED, &intel->flags))
175                 return 0;
176
177         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178                 return -EAGAIN;
179
180         bt_dev_dbg(hu->hdev, "Suspending");
181
182         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183         if (!skb) {
184                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185                 return -ENOMEM;
186         }
187
188         memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193         /* LPM flow is a priority, enqueue packet at list head */
194         skb_queue_head(&intel->txq, skb);
195         hci_uart_tx_wakeup(hu);
196
197         intel_wait_lpm_transaction(hu);
198         /* Even in case of failure, continue and test the suspended flag */
199
200         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203                 bt_dev_err(hu->hdev, "Device suspend error");
204                 return -EINVAL;
205         }
206
207         bt_dev_dbg(hu->hdev, "Suspended");
208
209         hci_uart_set_flow_control(hu, true);
210
211         return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216         struct intel_data *intel = hu->priv;
217         struct sk_buff *skb;
218
219         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220             !test_bit(STATE_SUSPENDED, &intel->flags))
221                 return 0;
222
223         bt_dev_dbg(hu->hdev, "Resuming");
224
225         hci_uart_set_flow_control(hu, false);
226
227         skb = bt_skb_alloc(0, GFP_KERNEL);
228         if (!skb) {
229                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230                 return -ENOMEM;
231         }
232
233         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237         /* LPM flow is a priority, enqueue packet at list head */
238         skb_queue_head(&intel->txq, skb);
239         hci_uart_tx_wakeup(hu);
240
241         intel_wait_lpm_transaction(hu);
242         /* Even in case of failure, continue and test the suspended flag */
243
244         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247                 bt_dev_err(hu->hdev, "Device resume error");
248                 return -EINVAL;
249         }
250
251         bt_dev_dbg(hu->hdev, "Resumed");
252
253         return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260         struct intel_data *intel = hu->priv;
261         struct sk_buff *skb;
262
263         hci_uart_set_flow_control(hu, false);
264
265         clear_bit(STATE_SUSPENDED, &intel->flags);
266
267         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268         if (!skb) {
269                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270                 return -ENOMEM;
271         }
272
273         memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274                sizeof(lpm_resume_ack));
275         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277         /* LPM flow is a priority, enqueue packet at list head */
278         skb_queue_head(&intel->txq, skb);
279         hci_uart_tx_wakeup(hu);
280
281         bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283         return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288         struct intel_device *idev = dev_id;
289
290         dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292         mutex_lock(&idev->hu_lock);
293         if (idev->hu)
294                 intel_lpm_host_wake(idev->hu);
295         mutex_unlock(&idev->hu_lock);
296
297         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298         pm_runtime_get(&idev->pdev->dev);
299         pm_runtime_mark_last_busy(&idev->pdev->dev);
300         pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302         return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307         struct list_head *p;
308         int err = -ENODEV;
309
310         mutex_lock(&intel_device_list_lock);
311
312         list_for_each(p, &intel_device_list) {
313                 struct intel_device *idev = list_entry(p, struct intel_device,
314                                                        list);
315
316                 /* tty device and pdev device should share the same parent
317                  * which is the UART port.
318                  */
319                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
320                         continue;
321
322                 if (!idev->reset) {
323                         err = -ENOTSUPP;
324                         break;
325                 }
326
327                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328                         hu, dev_name(&idev->pdev->dev), powered);
329
330                 gpiod_set_value(idev->reset, powered);
331
332                 /* Provide to idev a hu reference which is used to run LPM
333                  * transactions (lpm suspend/resume) from PM callbacks.
334                  * hu needs to be protected against concurrent removing during
335                  * these PM ops.
336                  */
337                 mutex_lock(&idev->hu_lock);
338                 idev->hu = powered ? hu : NULL;
339                 mutex_unlock(&idev->hu_lock);
340
341                 if (idev->irq < 0)
342                         break;
343
344                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
345                         err = devm_request_threaded_irq(&idev->pdev->dev,
346                                                         idev->irq, NULL,
347                                                         intel_irq,
348                                                         IRQF_ONESHOT,
349                                                         "bt-host-wake", idev);
350                         if (err) {
351                                 BT_ERR("hu %p, unable to allocate irq-%d",
352                                        hu, idev->irq);
353                                 break;
354                         }
355
356                         device_wakeup_enable(&idev->pdev->dev);
357
358                         pm_runtime_set_active(&idev->pdev->dev);
359                         pm_runtime_use_autosuspend(&idev->pdev->dev);
360                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361                                                          LPM_SUSPEND_DELAY_MS);
362                         pm_runtime_enable(&idev->pdev->dev);
363                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365                         device_wakeup_disable(&idev->pdev->dev);
366
367                         pm_runtime_disable(&idev->pdev->dev);
368                 }
369         }
370
371         mutex_unlock(&intel_device_list_lock);
372
373         return err;
374 }
375
376 static void intel_busy_work(struct work_struct *work)
377 {
378         struct list_head *p;
379         struct intel_data *intel = container_of(work, struct intel_data,
380                                                 busy_work);
381
382         /* Link is busy, delay the suspend */
383         mutex_lock(&intel_device_list_lock);
384         list_for_each(p, &intel_device_list) {
385                 struct intel_device *idev = list_entry(p, struct intel_device,
386                                                        list);
387
388                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389                         pm_runtime_get(&idev->pdev->dev);
390                         pm_runtime_mark_last_busy(&idev->pdev->dev);
391                         pm_runtime_put_autosuspend(&idev->pdev->dev);
392                         break;
393                 }
394         }
395         mutex_unlock(&intel_device_list_lock);
396 }
397
398 static int intel_open(struct hci_uart *hu)
399 {
400         struct intel_data *intel;
401
402         BT_DBG("hu %p", hu);
403
404         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405         if (!intel)
406                 return -ENOMEM;
407
408         skb_queue_head_init(&intel->txq);
409         INIT_WORK(&intel->busy_work, intel_busy_work);
410
411         intel->hu = hu;
412
413         hu->priv = intel;
414
415         if (!intel_set_power(hu, true))
416                 set_bit(STATE_BOOTING, &intel->flags);
417
418         return 0;
419 }
420
421 static int intel_close(struct hci_uart *hu)
422 {
423         struct intel_data *intel = hu->priv;
424
425         BT_DBG("hu %p", hu);
426
427         cancel_work_sync(&intel->busy_work);
428
429         intel_set_power(hu, false);
430
431         skb_queue_purge(&intel->txq);
432         kfree_skb(intel->rx_skb);
433         kfree(intel);
434
435         hu->priv = NULL;
436         return 0;
437 }
438
439 static int intel_flush(struct hci_uart *hu)
440 {
441         struct intel_data *intel = hu->priv;
442
443         BT_DBG("hu %p", hu);
444
445         skb_queue_purge(&intel->txq);
446
447         return 0;
448 }
449
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452         struct sk_buff *skb;
453         struct hci_event_hdr *hdr;
454         struct hci_ev_cmd_complete *evt;
455
456         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457         if (!skb)
458                 return -ENOMEM;
459
460         hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461         hdr->evt = HCI_EV_CMD_COMPLETE;
462         hdr->plen = sizeof(*evt) + 1;
463
464         evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465         evt->ncmd = 0x01;
466         evt->opcode = cpu_to_le16(opcode);
467
468         *skb_put(skb, 1) = 0x00;
469
470         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471
472         return hci_recv_frame(hdev, skb);
473 }
474
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477         struct intel_data *intel = hu->priv;
478         struct hci_dev *hdev = hu->hdev;
479         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480         struct sk_buff *skb;
481         int err;
482
483         /* This can be the first command sent to the chip, check
484          * that the controller is ready.
485          */
486         err = intel_wait_booting(hu);
487
488         clear_bit(STATE_BOOTING, &intel->flags);
489
490         /* In case of timeout, try to continue anyway */
491         if (err && err != -ETIMEDOUT)
492                 return err;
493
494         bt_dev_info(hdev, "Change controller speed to %d", speed);
495
496         speed_cmd[3] = intel_convert_speed(speed);
497         if (speed_cmd[3] == 0xff) {
498                 bt_dev_err(hdev, "Unsupported speed");
499                 return -EINVAL;
500         }
501
502         /* Device will not accept speed change if Intel version has not been
503          * previously requested.
504          */
505         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506         if (IS_ERR(skb)) {
507                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508                            PTR_ERR(skb));
509                 return PTR_ERR(skb);
510         }
511         kfree_skb(skb);
512
513         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514         if (!skb) {
515                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516                 return -ENOMEM;
517         }
518
519         memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521
522         hci_uart_set_flow_control(hu, true);
523
524         skb_queue_tail(&intel->txq, skb);
525         hci_uart_tx_wakeup(hu);
526
527         /* wait 100ms to change baudrate on controller side */
528         msleep(100);
529
530         hci_uart_set_baudrate(hu, speed);
531         hci_uart_set_flow_control(hu, false);
532
533         return 0;
534 }
535
536 static int intel_setup(struct hci_uart *hu)
537 {
538         static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539                                           0x00, 0x08, 0x04, 0x00 };
540         static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541         struct intel_data *intel = hu->priv;
542         struct intel_device *idev = NULL;
543         struct hci_dev *hdev = hu->hdev;
544         struct sk_buff *skb;
545         struct intel_version ver;
546         struct intel_boot_params *params;
547         struct list_head *p;
548         const struct firmware *fw;
549         const u8 *fw_ptr;
550         char fwname[64];
551         u32 frag_len;
552         ktime_t calltime, delta, rettime;
553         unsigned long long duration;
554         unsigned int init_speed, oper_speed;
555         int speed_change = 0;
556         int err;
557
558         bt_dev_dbg(hdev, "start intel_setup");
559
560         hu->hdev->set_diag = btintel_set_diag;
561         hu->hdev->set_bdaddr = btintel_set_bdaddr;
562
563         calltime = ktime_get();
564
565         if (hu->init_speed)
566                 init_speed = hu->init_speed;
567         else
568                 init_speed = hu->proto->init_speed;
569
570         if (hu->oper_speed)
571                 oper_speed = hu->oper_speed;
572         else
573                 oper_speed = hu->proto->oper_speed;
574
575         if (oper_speed && init_speed && oper_speed != init_speed)
576                 speed_change = 1;
577
578         /* Check that the controller is ready */
579         err = intel_wait_booting(hu);
580
581         clear_bit(STATE_BOOTING, &intel->flags);
582
583         /* In case of timeout, try to continue anyway */
584         if (err && err != -ETIMEDOUT)
585                 return err;
586
587         set_bit(STATE_BOOTLOADER, &intel->flags);
588
589         /* Read the Intel version information to determine if the device
590          * is in bootloader mode or if it already has operational firmware
591          * loaded.
592          */
593          err = btintel_read_version(hdev, &ver);
594          if (err)
595                 return err;
596
597         /* The hardware platform number has a fixed value of 0x37 and
598          * for now only accept this single value.
599          */
600         if (ver.hw_platform != 0x37) {
601                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
602                            ver.hw_platform);
603                 return -EINVAL;
604         }
605
606         /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
607          * supported by this firmware loading method. This check has been
608          * put in place to ensure correct forward compatibility options
609          * when newer hardware variants come along.
610          */
611         if (ver.hw_variant != 0x0b) {
612                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
613                            ver.hw_variant);
614                 return -EINVAL;
615         }
616
617         btintel_version_info(hdev, &ver);
618
619         /* The firmware variant determines if the device is in bootloader
620          * mode or is running operational firmware. The value 0x06 identifies
621          * the bootloader and the value 0x23 identifies the operational
622          * firmware.
623          *
624          * When the operational firmware is already present, then only
625          * the check for valid Bluetooth device address is needed. This
626          * determines if the device will be added as configured or
627          * unconfigured controller.
628          *
629          * It is not possible to use the Secure Boot Parameters in this
630          * case since that command is only available in bootloader mode.
631          */
632         if (ver.fw_variant == 0x23) {
633                 clear_bit(STATE_BOOTLOADER, &intel->flags);
634                 btintel_check_bdaddr(hdev);
635                 return 0;
636         }
637
638         /* If the device is not in bootloader mode, then the only possible
639          * choice is to return an error and abort the device initialization.
640          */
641         if (ver.fw_variant != 0x06) {
642                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
643                            ver.fw_variant);
644                 return -ENODEV;
645         }
646
647         /* Read the secure boot parameters to identify the operating
648          * details of the bootloader.
649          */
650         skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
651         if (IS_ERR(skb)) {
652                 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
653                            PTR_ERR(skb));
654                 return PTR_ERR(skb);
655         }
656
657         if (skb->len != sizeof(*params)) {
658                 bt_dev_err(hdev, "Intel boot parameters size mismatch");
659                 kfree_skb(skb);
660                 return -EILSEQ;
661         }
662
663         params = (struct intel_boot_params *)skb->data;
664         if (params->status) {
665                 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
666                            params->status);
667                 err = -bt_to_errno(params->status);
668                 kfree_skb(skb);
669                 return err;
670         }
671
672         bt_dev_info(hdev, "Device revision is %u",
673                     le16_to_cpu(params->dev_revid));
674
675         bt_dev_info(hdev, "Secure boot is %s",
676                     params->secure_boot ? "enabled" : "disabled");
677
678         bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
679                 params->min_fw_build_nn, params->min_fw_build_cw,
680                 2000 + params->min_fw_build_yy);
681
682         /* It is required that every single firmware fragment is acknowledged
683          * with a command complete event. If the boot parameters indicate
684          * that this bootloader does not send them, then abort the setup.
685          */
686         if (params->limited_cce != 0x00) {
687                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
688                            params->limited_cce);
689                 kfree_skb(skb);
690                 return -EINVAL;
691         }
692
693         /* If the OTP has no valid Bluetooth device address, then there will
694          * also be no valid address for the operational firmware.
695          */
696         if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
697                 bt_dev_info(hdev, "No device address configured");
698                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
699         }
700
701         /* With this Intel bootloader only the hardware variant and device
702          * revision information are used to select the right firmware.
703          *
704          * Currently this bootloader support is limited to hardware variant
705          * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
706          */
707         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
708                  le16_to_cpu(params->dev_revid));
709
710         err = request_firmware(&fw, fwname, &hdev->dev);
711         if (err < 0) {
712                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
713                            err);
714                 kfree_skb(skb);
715                 return err;
716         }
717
718         bt_dev_info(hdev, "Found device firmware: %s", fwname);
719
720         /* Save the DDC file name for later */
721         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
722                  le16_to_cpu(params->dev_revid));
723
724         kfree_skb(skb);
725
726         if (fw->size < 644) {
727                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
728                            fw->size);
729                 err = -EBADF;
730                 goto done;
731         }
732
733         set_bit(STATE_DOWNLOADING, &intel->flags);
734
735         /* Start the firmware download transaction with the Init fragment
736          * represented by the 128 bytes of CSS header.
737          */
738         err = btintel_secure_send(hdev, 0x00, 128, fw->data);
739         if (err < 0) {
740                 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
741                 goto done;
742         }
743
744         /* Send the 256 bytes of public key information from the firmware
745          * as the PKey fragment.
746          */
747         err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
748         if (err < 0) {
749                 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
750                            err);
751                 goto done;
752         }
753
754         /* Send the 256 bytes of signature information from the firmware
755          * as the Sign fragment.
756          */
757         err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
758         if (err < 0) {
759                 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
760                            err);
761                 goto done;
762         }
763
764         fw_ptr = fw->data + 644;
765         frag_len = 0;
766
767         while (fw_ptr - fw->data < fw->size) {
768                 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
769
770                 frag_len += sizeof(*cmd) + cmd->plen;
771
772                 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
773                            fw->size);
774
775                 /* The parameter length of the secure send command requires
776                  * a 4 byte alignment. It happens so that the firmware file
777                  * contains proper Intel_NOP commands to align the fragments
778                  * as needed.
779                  *
780                  * Send set of commands with 4 byte alignment from the
781                  * firmware data buffer as a single Data fragement.
782                  */
783                 if (frag_len % 4)
784                         continue;
785
786                 /* Send each command from the firmware data buffer as
787                  * a single Data fragment.
788                  */
789                 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
790                 if (err < 0) {
791                         bt_dev_err(hdev, "Failed to send firmware data (%d)",
792                                    err);
793                         goto done;
794                 }
795
796                 fw_ptr += frag_len;
797                 frag_len = 0;
798         }
799
800         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
801
802         bt_dev_info(hdev, "Waiting for firmware download to complete");
803
804         /* Before switching the device into operational mode and with that
805          * booting the loaded firmware, wait for the bootloader notification
806          * that all fragments have been successfully received.
807          *
808          * When the event processing receives the notification, then the
809          * STATE_DOWNLOADING flag will be cleared.
810          *
811          * The firmware loading should not take longer than 5 seconds
812          * and thus just timeout if that happens and fail the setup
813          * of this device.
814          */
815         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
816                                   TASK_INTERRUPTIBLE,
817                                   msecs_to_jiffies(5000));
818         if (err == 1) {
819                 bt_dev_err(hdev, "Firmware loading interrupted");
820                 err = -EINTR;
821                 goto done;
822         }
823
824         if (err) {
825                 bt_dev_err(hdev, "Firmware loading timeout");
826                 err = -ETIMEDOUT;
827                 goto done;
828         }
829
830         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
831                 bt_dev_err(hdev, "Firmware loading failed");
832                 err = -ENOEXEC;
833                 goto done;
834         }
835
836         rettime = ktime_get();
837         delta = ktime_sub(rettime, calltime);
838         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
839
840         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
841
842 done:
843         release_firmware(fw);
844
845         if (err < 0)
846                 return err;
847
848         /* We need to restore the default speed before Intel reset */
849         if (speed_change) {
850                 err = intel_set_baudrate(hu, init_speed);
851                 if (err)
852                         return err;
853         }
854
855         calltime = ktime_get();
856
857         set_bit(STATE_BOOTING, &intel->flags);
858
859         skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
860                              HCI_CMD_TIMEOUT);
861         if (IS_ERR(skb))
862                 return PTR_ERR(skb);
863
864         kfree_skb(skb);
865
866         /* The bootloader will not indicate when the device is ready. This
867          * is done by the operational firmware sending bootup notification.
868          *
869          * Booting into operational firmware should not take longer than
870          * 1 second. However if that happens, then just fail the setup
871          * since something went wrong.
872          */
873         bt_dev_info(hdev, "Waiting for device to boot");
874
875         err = intel_wait_booting(hu);
876         if (err)
877                 return err;
878
879         clear_bit(STATE_BOOTING, &intel->flags);
880
881         rettime = ktime_get();
882         delta = ktime_sub(rettime, calltime);
883         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
884
885         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
886
887         /* Enable LPM if matching pdev with wakeup enabled */
888         mutex_lock(&intel_device_list_lock);
889         list_for_each(p, &intel_device_list) {
890                 struct intel_device *dev = list_entry(p, struct intel_device,
891                                                       list);
892                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893                         if (device_may_wakeup(&dev->pdev->dev))
894                                 idev = dev;
895                         break;
896                 }
897         }
898         mutex_unlock(&intel_device_list_lock);
899
900         if (!idev)
901                 goto no_lpm;
902
903         bt_dev_info(hdev, "Enabling LPM");
904
905         skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
906                              HCI_CMD_TIMEOUT);
907         if (IS_ERR(skb)) {
908                 bt_dev_err(hdev, "Failed to enable LPM");
909                 goto no_lpm;
910         }
911         kfree_skb(skb);
912
913         set_bit(STATE_LPM_ENABLED, &intel->flags);
914
915 no_lpm:
916         /* Ignore errors, device can work without DDC parameters */
917         btintel_load_ddc_config(hdev, fwname);
918
919         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
920         if (IS_ERR(skb))
921                 return PTR_ERR(skb);
922         kfree_skb(skb);
923
924         if (speed_change) {
925                 err = intel_set_baudrate(hu, oper_speed);
926                 if (err)
927                         return err;
928         }
929
930         bt_dev_info(hdev, "Setup complete");
931
932         clear_bit(STATE_BOOTLOADER, &intel->flags);
933
934         return 0;
935 }
936
937 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
938 {
939         struct hci_uart *hu = hci_get_drvdata(hdev);
940         struct intel_data *intel = hu->priv;
941         struct hci_event_hdr *hdr;
942
943         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
944             !test_bit(STATE_BOOTING, &intel->flags))
945                 goto recv;
946
947         hdr = (void *)skb->data;
948
949         /* When the firmware loading completes the device sends
950          * out a vendor specific event indicating the result of
951          * the firmware loading.
952          */
953         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
954             skb->data[2] == 0x06) {
955                 if (skb->data[3] != 0x00)
956                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
957
958                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
959                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
960                         smp_mb__after_atomic();
961                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
962                 }
963
964         /* When switching to the operational firmware the device
965          * sends a vendor specific event indicating that the bootup
966          * completed.
967          */
968         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
969                    skb->data[2] == 0x02) {
970                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
971                         smp_mb__after_atomic();
972                         wake_up_bit(&intel->flags, STATE_BOOTING);
973                 }
974         }
975 recv:
976         return hci_recv_frame(hdev, skb);
977 }
978
979 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
980 {
981         struct hci_uart *hu = hci_get_drvdata(hdev);
982         struct intel_data *intel = hu->priv;
983
984         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
985
986         if (value) {
987                 set_bit(STATE_TX_ACTIVE, &intel->flags);
988                 schedule_work(&intel->busy_work);
989         } else {
990                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
991         }
992 }
993
994 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
995 {
996         struct hci_lpm_pkt *lpm = (void *)skb->data;
997         struct hci_uart *hu = hci_get_drvdata(hdev);
998         struct intel_data *intel = hu->priv;
999
1000         switch (lpm->opcode) {
1001         case LPM_OP_TX_NOTIFY:
1002                 if (lpm->dlen < 1) {
1003                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1004                         break;
1005                 }
1006                 intel_recv_lpm_notify(hdev, lpm->data[0]);
1007                 break;
1008         case LPM_OP_SUSPEND_ACK:
1009                 set_bit(STATE_SUSPENDED, &intel->flags);
1010                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1011                         smp_mb__after_atomic();
1012                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1013                 }
1014                 break;
1015         case LPM_OP_RESUME_ACK:
1016                 clear_bit(STATE_SUSPENDED, &intel->flags);
1017                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1018                         smp_mb__after_atomic();
1019                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1020                 }
1021                 break;
1022         default:
1023                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1024                 break;
1025         }
1026
1027         kfree_skb(skb);
1028
1029         return 0;
1030 }
1031
1032 #define INTEL_RECV_LPM \
1033         .type = HCI_LPM_PKT, \
1034         .hlen = HCI_LPM_HDR_SIZE, \
1035         .loff = 1, \
1036         .lsize = 1, \
1037         .maxlen = HCI_LPM_MAX_SIZE
1038
1039 static const struct h4_recv_pkt intel_recv_pkts[] = {
1040         { H4_RECV_ACL,    .recv = hci_recv_frame   },
1041         { H4_RECV_SCO,    .recv = hci_recv_frame   },
1042         { H4_RECV_EVENT,  .recv = intel_recv_event },
1043         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1044 };
1045
1046 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1047 {
1048         struct intel_data *intel = hu->priv;
1049
1050         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1051                 return -EUNATCH;
1052
1053         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1054                                     intel_recv_pkts,
1055                                     ARRAY_SIZE(intel_recv_pkts));
1056         if (IS_ERR(intel->rx_skb)) {
1057                 int err = PTR_ERR(intel->rx_skb);
1058                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1059                 intel->rx_skb = NULL;
1060                 return err;
1061         }
1062
1063         return count;
1064 }
1065
1066 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1067 {
1068         struct intel_data *intel = hu->priv;
1069         struct list_head *p;
1070
1071         BT_DBG("hu %p skb %p", hu, skb);
1072
1073         /* Be sure our controller is resumed and potential LPM transaction
1074          * completed before enqueuing any packet.
1075          */
1076         mutex_lock(&intel_device_list_lock);
1077         list_for_each(p, &intel_device_list) {
1078                 struct intel_device *idev = list_entry(p, struct intel_device,
1079                                                        list);
1080
1081                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1082                         pm_runtime_get_sync(&idev->pdev->dev);
1083                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1084                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1085                         break;
1086                 }
1087         }
1088         mutex_unlock(&intel_device_list_lock);
1089
1090         skb_queue_tail(&intel->txq, skb);
1091
1092         return 0;
1093 }
1094
1095 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1096 {
1097         struct intel_data *intel = hu->priv;
1098         struct sk_buff *skb;
1099
1100         skb = skb_dequeue(&intel->txq);
1101         if (!skb)
1102                 return skb;
1103
1104         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1105             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1106                 struct hci_command_hdr *cmd = (void *)skb->data;
1107                 __u16 opcode = le16_to_cpu(cmd->opcode);
1108
1109                 /* When the 0xfc01 command is issued to boot into
1110                  * the operational firmware, it will actually not
1111                  * send a command complete event. To keep the flow
1112                  * control working inject that event here.
1113                  */
1114                 if (opcode == 0xfc01)
1115                         inject_cmd_complete(hu->hdev, opcode);
1116         }
1117
1118         /* Prepend skb with frame type */
1119         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1120
1121         return skb;
1122 }
1123
1124 static const struct hci_uart_proto intel_proto = {
1125         .id             = HCI_UART_INTEL,
1126         .name           = "Intel",
1127         .manufacturer   = 2,
1128         .init_speed     = 115200,
1129         .oper_speed     = 3000000,
1130         .open           = intel_open,
1131         .close          = intel_close,
1132         .flush          = intel_flush,
1133         .setup          = intel_setup,
1134         .set_baudrate   = intel_set_baudrate,
1135         .recv           = intel_recv,
1136         .enqueue        = intel_enqueue,
1137         .dequeue        = intel_dequeue,
1138 };
1139
1140 #ifdef CONFIG_ACPI
1141 static const struct acpi_device_id intel_acpi_match[] = {
1142         { "INT33E1", 0 },
1143         { },
1144 };
1145 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1146 #endif
1147
1148 #ifdef CONFIG_PM
1149 static int intel_suspend_device(struct device *dev)
1150 {
1151         struct intel_device *idev = dev_get_drvdata(dev);
1152
1153         mutex_lock(&idev->hu_lock);
1154         if (idev->hu)
1155                 intel_lpm_suspend(idev->hu);
1156         mutex_unlock(&idev->hu_lock);
1157
1158         return 0;
1159 }
1160
1161 static int intel_resume_device(struct device *dev)
1162 {
1163         struct intel_device *idev = dev_get_drvdata(dev);
1164
1165         mutex_lock(&idev->hu_lock);
1166         if (idev->hu)
1167                 intel_lpm_resume(idev->hu);
1168         mutex_unlock(&idev->hu_lock);
1169
1170         return 0;
1171 }
1172 #endif
1173
1174 #ifdef CONFIG_PM_SLEEP
1175 static int intel_suspend(struct device *dev)
1176 {
1177         struct intel_device *idev = dev_get_drvdata(dev);
1178
1179         if (device_may_wakeup(dev))
1180                 enable_irq_wake(idev->irq);
1181
1182         return intel_suspend_device(dev);
1183 }
1184
1185 static int intel_resume(struct device *dev)
1186 {
1187         struct intel_device *idev = dev_get_drvdata(dev);
1188
1189         if (device_may_wakeup(dev))
1190                 disable_irq_wake(idev->irq);
1191
1192         return intel_resume_device(dev);
1193 }
1194 #endif
1195
1196 static const struct dev_pm_ops intel_pm_ops = {
1197         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1198         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1199 };
1200
1201 static int intel_probe(struct platform_device *pdev)
1202 {
1203         struct intel_device *idev;
1204
1205         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1206         if (!idev)
1207                 return -ENOMEM;
1208
1209         mutex_init(&idev->hu_lock);
1210
1211         idev->pdev = pdev;
1212
1213         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1214         if (IS_ERR(idev->reset)) {
1215                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1216                 return PTR_ERR(idev->reset);
1217         }
1218
1219         idev->irq = platform_get_irq(pdev, 0);
1220         if (idev->irq < 0) {
1221                 struct gpio_desc *host_wake;
1222
1223                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1224
1225                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1226                 if (IS_ERR(host_wake)) {
1227                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1228                         goto no_irq;
1229                 }
1230
1231                 idev->irq = gpiod_to_irq(host_wake);
1232                 if (idev->irq < 0) {
1233                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1234                         goto no_irq;
1235                 }
1236         }
1237
1238         /* Only enable wake-up/irq when controller is powered */
1239         device_set_wakeup_capable(&pdev->dev, true);
1240         device_wakeup_disable(&pdev->dev);
1241
1242 no_irq:
1243         platform_set_drvdata(pdev, idev);
1244
1245         /* Place this instance on the device list */
1246         mutex_lock(&intel_device_list_lock);
1247         list_add_tail(&idev->list, &intel_device_list);
1248         mutex_unlock(&intel_device_list_lock);
1249
1250         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1251                  desc_to_gpio(idev->reset), idev->irq);
1252
1253         return 0;
1254 }
1255
1256 static int intel_remove(struct platform_device *pdev)
1257 {
1258         struct intel_device *idev = platform_get_drvdata(pdev);
1259
1260         device_wakeup_disable(&pdev->dev);
1261
1262         mutex_lock(&intel_device_list_lock);
1263         list_del(&idev->list);
1264         mutex_unlock(&intel_device_list_lock);
1265
1266         dev_info(&pdev->dev, "unregistered.\n");
1267
1268         return 0;
1269 }
1270
1271 static struct platform_driver intel_driver = {
1272         .probe = intel_probe,
1273         .remove = intel_remove,
1274         .driver = {
1275                 .name = "hci_intel",
1276                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1277                 .pm = &intel_pm_ops,
1278         },
1279 };
1280
1281 int __init intel_init(void)
1282 {
1283         platform_driver_register(&intel_driver);
1284
1285         return hci_uart_register_proto(&intel_proto);
1286 }
1287
1288 int __exit intel_deinit(void)
1289 {
1290         platform_driver_unregister(&intel_driver);
1291
1292         return hci_uart_unregister_proto(&intel_proto);
1293 }