Merge tag 'ntb-4.6' of git://github.com/jonmason/ntb
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120         /*
121          * Number of times the driver requested a timer while an operation
122          * was in progress.
123          */
124         SI_STAT_short_timeouts = 0,
125
126         /*
127          * Number of times the driver requested a timer while nothing was in
128          * progress.
129          */
130         SI_STAT_long_timeouts,
131
132         /* Number of times the interface was idle while being polled. */
133         SI_STAT_idles,
134
135         /* Number of interrupts the driver handled. */
136         SI_STAT_interrupts,
137
138         /* Number of time the driver got an ATTN from the hardware. */
139         SI_STAT_attentions,
140
141         /* Number of times the driver requested flags from the hardware. */
142         SI_STAT_flag_fetches,
143
144         /* Number of times the hardware didn't follow the state machine. */
145         SI_STAT_hosed_count,
146
147         /* Number of completed messages. */
148         SI_STAT_complete_transactions,
149
150         /* Number of IPMI events received from the hardware. */
151         SI_STAT_events,
152
153         /* Number of watchdog pretimeouts. */
154         SI_STAT_watchdog_pretimeouts,
155
156         /* Number of asynchronous messages received. */
157         SI_STAT_incoming_messages,
158
159
160         /* This *must* remain last, add new values above this. */
161         SI_NUM_STATS
162 };
163
164 struct smi_info {
165         int                    intf_num;
166         ipmi_smi_t             intf;
167         struct si_sm_data      *si_sm;
168         const struct si_sm_handlers *handlers;
169         enum si_type           si_type;
170         spinlock_t             si_lock;
171         struct ipmi_smi_msg    *waiting_msg;
172         struct ipmi_smi_msg    *curr_msg;
173         enum si_intf_state     si_state;
174
175         /*
176          * Used to handle the various types of I/O that can occur with
177          * IPMI
178          */
179         struct si_sm_io io;
180         int (*io_setup)(struct smi_info *info);
181         void (*io_cleanup)(struct smi_info *info);
182         int (*irq_setup)(struct smi_info *info);
183         void (*irq_cleanup)(struct smi_info *info);
184         unsigned int io_size;
185         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186         void (*addr_source_cleanup)(struct smi_info *info);
187         void *addr_source_data;
188
189         /*
190          * Per-OEM handler, called from handle_flags().  Returns 1
191          * when handle_flags() needs to be re-run or 0 indicating it
192          * set si_state itself.
193          */
194         int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196         /*
197          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198          * is set to hold the flags until we are done handling everything
199          * from the flags.
200          */
201 #define RECEIVE_MSG_AVAIL       0x01
202 #define EVENT_MSG_BUFFER_FULL   0x02
203 #define WDT_PRE_TIMEOUT_INT     0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208                              OEM1_DATA_AVAIL | \
209                              OEM2_DATA_AVAIL)
210         unsigned char       msg_flags;
211
212         /* Does the BMC have an event buffer? */
213         bool                has_event_buffer;
214
215         /*
216          * If set to true, this will request events the next time the
217          * state machine is idle.
218          */
219         atomic_t            req_events;
220
221         /*
222          * If true, run the state machine to completion on every send
223          * call.  Generally used after a panic to make sure stuff goes
224          * out.
225          */
226         bool                run_to_completion;
227
228         /* The I/O port of an SI interface. */
229         int                 port;
230
231         /*
232          * The space between start addresses of the two ports.  For
233          * instance, if the first port is 0xca2 and the spacing is 4, then
234          * the second port is 0xca6.
235          */
236         unsigned int        spacing;
237
238         /* zero if no irq; */
239         int                 irq;
240
241         /* The timer for this si. */
242         struct timer_list   si_timer;
243
244         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245         bool                timer_running;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Are we waiting for the events, pretimeouts, received msgs? */
251         atomic_t            need_watch;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         bool interrupt_disabled;
260
261         /*
262          * Does the BMC support events?
263          */
264         bool supports_event_msg_buff;
265
266         /*
267          * Can we disable interrupts the global enables receive irq
268          * bit?  There are currently two forms of brokenness, some
269          * systems cannot disable the bit (which is technically within
270          * the spec but a bad idea) and some systems have the bit
271          * forced to zero even though interrupts work (which is
272          * clearly outside the spec).  The next bool tells which form
273          * of brokenness is present.
274          */
275         bool cannot_disable_irq;
276
277         /*
278          * Some systems are broken and cannot set the irq enable
279          * bit, even if they support interrupts.
280          */
281         bool irq_enable_broken;
282
283         /*
284          * Did we get an attention that we did not handle?
285          */
286         bool got_attn;
287
288         /* From the get device id response... */
289         struct ipmi_device_id device_id;
290
291         /* Driver model stuff. */
292         struct device *dev;
293         struct platform_device *pdev;
294
295         /*
296          * True if we allocated the device, false if it came from
297          * someplace else (like PCI).
298          */
299         bool dev_registered;
300
301         /* Slave address, could be reported from DMI. */
302         unsigned char slave_addr;
303
304         /* Counters and things for the proc filesystem. */
305         atomic_t stats[SI_NUM_STATS];
306
307         struct task_struct *thread;
308
309         struct list_head link;
310         union ipmi_smi_info_union addr_info;
311 };
312
313 #define smi_inc_stat(smi, stat) \
314         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
318 #define SI_MAX_PARMS 4
319
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331
332 static bool unload_when_empty = true;
333
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342         struct timespec64 t;
343
344         getnstimeofday64(&t);
345         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356
357 static void deliver_recv_msg(struct smi_info *smi_info,
358                              struct ipmi_smi_msg *msg)
359 {
360         /* Deliver the message to the upper layer. */
361         if (smi_info->intf)
362                 ipmi_smi_msg_received(smi_info->intf, msg);
363         else
364                 ipmi_free_smi_msg(msg);
365 }
366
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369         struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
371         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372                 cCode = IPMI_ERR_UNSPECIFIED;
373         /* else use it as is */
374
375         /* Make it a response */
376         msg->rsp[0] = msg->data[0] | 4;
377         msg->rsp[1] = msg->data[1];
378         msg->rsp[2] = cCode;
379         msg->rsp_size = 3;
380
381         smi_info->curr_msg = NULL;
382         deliver_recv_msg(smi_info, msg);
383 }
384
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387         int              rv;
388
389         if (!smi_info->waiting_msg) {
390                 smi_info->curr_msg = NULL;
391                 rv = SI_SM_IDLE;
392         } else {
393                 int err;
394
395                 smi_info->curr_msg = smi_info->waiting_msg;
396                 smi_info->waiting_msg = NULL;
397                 debug_timestamp("Start2");
398                 err = atomic_notifier_call_chain(&xaction_notifier_list,
399                                 0, smi_info);
400                 if (err & NOTIFY_STOP_MASK) {
401                         rv = SI_SM_CALL_WITHOUT_DELAY;
402                         goto out;
403                 }
404                 err = smi_info->handlers->start_transaction(
405                         smi_info->si_sm,
406                         smi_info->curr_msg->data,
407                         smi_info->curr_msg->data_size);
408                 if (err)
409                         return_hosed_msg(smi_info, err);
410
411                 rv = SI_SM_CALL_WITHOUT_DELAY;
412         }
413  out:
414         return rv;
415 }
416
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419         smi_info->last_timeout_jiffies = jiffies;
420         mod_timer(&smi_info->si_timer, new_val);
421         smi_info->timer_running = true;
422 }
423
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428                           unsigned int size)
429 {
430         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432         if (smi_info->thread)
433                 wake_up_process(smi_info->thread);
434
435         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440         unsigned char msg[2];
441
442         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
445         if (start_timer)
446                 start_new_msg(smi_info, msg, 2);
447         else
448                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449         smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454         unsigned char msg[3];
455
456         /* Make sure the watchdog pre-timeout flag is not set at startup. */
457         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459         msg[2] = WDT_PRE_TIMEOUT_INT;
460
461         if (start_timer)
462                 start_new_msg(smi_info, msg, 3);
463         else
464                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465         smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472         smi_info->curr_msg->data_size = 2;
473
474         start_new_msg(smi_info, smi_info->curr_msg->data,
475                       smi_info->curr_msg->data_size);
476         smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483         smi_info->curr_msg->data_size = 2;
484
485         start_new_msg(smi_info, smi_info->curr_msg->data,
486                       smi_info->curr_msg->data_size);
487         smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502                 smi_info->interrupt_disabled = true;
503                 start_check_enables(smi_info, start_timer);
504                 return true;
505         }
506         return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512                 smi_info->interrupt_disabled = false;
513                 start_check_enables(smi_info, true);
514                 return true;
515         }
516         return false;
517 }
518
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528
529         msg = ipmi_alloc_smi_msg();
530         if (!msg) {
531                 if (!disable_si_irq(smi_info, true))
532                         smi_info->si_state = SI_NORMAL;
533         } else if (enable_si_irq(smi_info)) {
534                 ipmi_free_smi_msg(msg);
535                 msg = NULL;
536         }
537         return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542  retry:
543         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544                 /* Watchdog pre-timeout */
545                 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547                 start_clear_flags(smi_info, true);
548                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549                 if (smi_info->intf)
550                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
551         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552                 /* Messages available. */
553                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554                 if (!smi_info->curr_msg)
555                         return;
556
557                 start_getting_msg_queue(smi_info);
558         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559                 /* Events available. */
560                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561                 if (!smi_info->curr_msg)
562                         return;
563
564                 start_getting_events(smi_info);
565         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566                    smi_info->oem_data_avail_handler) {
567                 if (smi_info->oem_data_avail_handler(smi_info))
568                         goto retry;
569         } else
570                 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577                              IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580                                  bool *irq_on)
581 {
582         u8 enables = 0;
583
584         if (smi_info->supports_event_msg_buff)
585                 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588              smi_info->cannot_disable_irq) &&
589             !smi_info->irq_enable_broken)
590                 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592         if (smi_info->supports_event_msg_buff &&
593             smi_info->irq && !smi_info->interrupt_disabled &&
594             !smi_info->irq_enable_broken)
595                 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599         return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608         if ((bool)irqstate == irq_on)
609                 return;
610
611         if (irq_on)
612                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614         else
615                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620         struct ipmi_smi_msg *msg;
621
622         debug_timestamp("Done");
623         switch (smi_info->si_state) {
624         case SI_NORMAL:
625                 if (!smi_info->curr_msg)
626                         break;
627
628                 smi_info->curr_msg->rsp_size
629                         = smi_info->handlers->get_result(
630                                 smi_info->si_sm,
631                                 smi_info->curr_msg->rsp,
632                                 IPMI_MAX_MSG_LENGTH);
633
634                 /*
635                  * Do this here becase deliver_recv_msg() releases the
636                  * lock, and a new message can be put in during the
637                  * time the lock is released.
638                  */
639                 msg = smi_info->curr_msg;
640                 smi_info->curr_msg = NULL;
641                 deliver_recv_msg(smi_info, msg);
642                 break;
643
644         case SI_GETTING_FLAGS:
645         {
646                 unsigned char msg[4];
647                 unsigned int  len;
648
649                 /* We got the flags from the SMI, now handle them. */
650                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651                 if (msg[2] != 0) {
652                         /* Error fetching flags, just give up for now. */
653                         smi_info->si_state = SI_NORMAL;
654                 } else if (len < 4) {
655                         /*
656                          * Hmm, no flags.  That's technically illegal, but
657                          * don't use uninitialized data.
658                          */
659                         smi_info->si_state = SI_NORMAL;
660                 } else {
661                         smi_info->msg_flags = msg[3];
662                         handle_flags(smi_info);
663                 }
664                 break;
665         }
666
667         case SI_CLEARING_FLAGS:
668         {
669                 unsigned char msg[3];
670
671                 /* We cleared the flags. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673                 if (msg[2] != 0) {
674                         /* Error clearing flags */
675                         dev_warn(smi_info->dev,
676                                  "Error clearing flags: %2.2x\n", msg[2]);
677                 }
678                 smi_info->si_state = SI_NORMAL;
679                 break;
680         }
681
682         case SI_GETTING_EVENTS:
683         {
684                 smi_info->curr_msg->rsp_size
685                         = smi_info->handlers->get_result(
686                                 smi_info->si_sm,
687                                 smi_info->curr_msg->rsp,
688                                 IPMI_MAX_MSG_LENGTH);
689
690                 /*
691                  * Do this here becase deliver_recv_msg() releases the
692                  * lock, and a new message can be put in during the
693                  * time the lock is released.
694                  */
695                 msg = smi_info->curr_msg;
696                 smi_info->curr_msg = NULL;
697                 if (msg->rsp[2] != 0) {
698                         /* Error getting event, probably done. */
699                         msg->done(msg);
700
701                         /* Take off the event flag. */
702                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703                         handle_flags(smi_info);
704                 } else {
705                         smi_inc_stat(smi_info, events);
706
707                         /*
708                          * Do this before we deliver the message
709                          * because delivering the message releases the
710                          * lock and something else can mess with the
711                          * state.
712                          */
713                         handle_flags(smi_info);
714
715                         deliver_recv_msg(smi_info, msg);
716                 }
717                 break;
718         }
719
720         case SI_GETTING_MESSAGES:
721         {
722                 smi_info->curr_msg->rsp_size
723                         = smi_info->handlers->get_result(
724                                 smi_info->si_sm,
725                                 smi_info->curr_msg->rsp,
726                                 IPMI_MAX_MSG_LENGTH);
727
728                 /*
729                  * Do this here becase deliver_recv_msg() releases the
730                  * lock, and a new message can be put in during the
731                  * time the lock is released.
732                  */
733                 msg = smi_info->curr_msg;
734                 smi_info->curr_msg = NULL;
735                 if (msg->rsp[2] != 0) {
736                         /* Error getting event, probably done. */
737                         msg->done(msg);
738
739                         /* Take off the msg flag. */
740                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741                         handle_flags(smi_info);
742                 } else {
743                         smi_inc_stat(smi_info, incoming_messages);
744
745                         /*
746                          * Do this before we deliver the message
747                          * because delivering the message releases the
748                          * lock and something else can mess with the
749                          * state.
750                          */
751                         handle_flags(smi_info);
752
753                         deliver_recv_msg(smi_info, msg);
754                 }
755                 break;
756         }
757
758         case SI_CHECKING_ENABLES:
759         {
760                 unsigned char msg[4];
761                 u8 enables;
762                 bool irq_on;
763
764                 /* We got the flags from the SMI, now handle them. */
765                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766                 if (msg[2] != 0) {
767                         dev_warn(smi_info->dev,
768                                  "Couldn't get irq info: %x.\n", msg[2]);
769                         dev_warn(smi_info->dev,
770                                  "Maybe ok, but ipmi might run very slowly.\n");
771                         smi_info->si_state = SI_NORMAL;
772                         break;
773                 }
774                 enables = current_global_enables(smi_info, 0, &irq_on);
775                 if (smi_info->si_type == SI_BT)
776                         /* BT has its own interrupt enable bit. */
777                         check_bt_irq(smi_info, irq_on);
778                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779                         /* Enables are not correct, fix them. */
780                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783                         smi_info->handlers->start_transaction(
784                                 smi_info->si_sm, msg, 3);
785                         smi_info->si_state = SI_SETTING_ENABLES;
786                 } else if (smi_info->supports_event_msg_buff) {
787                         smi_info->curr_msg = ipmi_alloc_smi_msg();
788                         if (!smi_info->curr_msg) {
789                                 smi_info->si_state = SI_NORMAL;
790                                 break;
791                         }
792                         start_getting_msg_queue(smi_info);
793                 } else {
794                         smi_info->si_state = SI_NORMAL;
795                 }
796                 break;
797         }
798
799         case SI_SETTING_ENABLES:
800         {
801                 unsigned char msg[4];
802
803                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804                 if (msg[2] != 0)
805                         dev_warn(smi_info->dev,
806                                  "Could not set the global enables: 0x%x.\n",
807                                  msg[2]);
808
809                 if (smi_info->supports_event_msg_buff) {
810                         smi_info->curr_msg = ipmi_alloc_smi_msg();
811                         if (!smi_info->curr_msg) {
812                                 smi_info->si_state = SI_NORMAL;
813                                 break;
814                         }
815                         start_getting_msg_queue(smi_info);
816                 } else {
817                         smi_info->si_state = SI_NORMAL;
818                 }
819                 break;
820         }
821         }
822 }
823
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830                                            int time)
831 {
832         enum si_sm_result si_sm_result;
833
834  restart:
835         /*
836          * There used to be a loop here that waited a little while
837          * (around 25us) before giving up.  That turned out to be
838          * pointless, the minimum delays I was seeing were in the 300us
839          * range, which is far too long to wait in an interrupt.  So
840          * we just run until the state machine tells us something
841          * happened or it needs a delay.
842          */
843         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844         time = 0;
845         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849                 smi_inc_stat(smi_info, complete_transactions);
850
851                 handle_transaction_done(smi_info);
852                 goto restart;
853         } else if (si_sm_result == SI_SM_HOSED) {
854                 smi_inc_stat(smi_info, hosed_count);
855
856                 /*
857                  * Do the before return_hosed_msg, because that
858                  * releases the lock.
859                  */
860                 smi_info->si_state = SI_NORMAL;
861                 if (smi_info->curr_msg != NULL) {
862                         /*
863                          * If we were handling a user message, format
864                          * a response to send to the upper layer to
865                          * tell it about the error.
866                          */
867                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868                 }
869                 goto restart;
870         }
871
872         /*
873          * We prefer handling attn over new messages.  But don't do
874          * this if there is not yet an upper layer to handle anything.
875          */
876         if (likely(smi_info->intf) &&
877             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878                 unsigned char msg[2];
879
880                 if (smi_info->si_state != SI_NORMAL) {
881                         /*
882                          * We got an ATTN, but we are doing something else.
883                          * Handle the ATTN later.
884                          */
885                         smi_info->got_attn = true;
886                 } else {
887                         smi_info->got_attn = false;
888                         smi_inc_stat(smi_info, attentions);
889
890                         /*
891                          * Got a attn, send down a get message flags to see
892                          * what's causing it.  It would be better to handle
893                          * this in the upper layer, but due to the way
894                          * interrupts work with the SMI, that's not really
895                          * possible.
896                          */
897                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900                         start_new_msg(smi_info, msg, 2);
901                         smi_info->si_state = SI_GETTING_FLAGS;
902                         goto restart;
903                 }
904         }
905
906         /* If we are currently idle, try to start the next message. */
907         if (si_sm_result == SI_SM_IDLE) {
908                 smi_inc_stat(smi_info, idles);
909
910                 si_sm_result = start_next_msg(smi_info);
911                 if (si_sm_result != SI_SM_IDLE)
912                         goto restart;
913         }
914
915         if ((si_sm_result == SI_SM_IDLE)
916             && (atomic_read(&smi_info->req_events))) {
917                 /*
918                  * We are idle and the upper layer requested that I fetch
919                  * events, so do so.
920                  */
921                 atomic_set(&smi_info->req_events, 0);
922
923                 /*
924                  * Take this opportunity to check the interrupt and
925                  * message enable state for the BMC.  The BMC can be
926                  * asynchronously reset, and may thus get interrupts
927                  * disable and messages disabled.
928                  */
929                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930                         start_check_enables(smi_info, true);
931                 } else {
932                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933                         if (!smi_info->curr_msg)
934                                 goto out;
935
936                         start_getting_events(smi_info);
937                 }
938                 goto restart;
939         }
940
941         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942                 /* Ok it if fails, the timer will just go off. */
943                 if (del_timer(&smi_info->si_timer))
944                         smi_info->timer_running = false;
945         }
946
947  out:
948         return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956                 if (smi_info->thread)
957                         wake_up_process(smi_info->thread);
958
959                 start_next_msg(smi_info);
960                 smi_event_handler(smi_info, 0);
961         }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967         enum si_sm_result result;
968
969         /*
970          * Currently, this function is called only in run-to-completion
971          * mode.  This means we are single-threaded, no need for locks.
972          */
973         result = smi_event_handler(smi_info, 0);
974         while (result != SI_SM_IDLE) {
975                 udelay(SI_SHORT_TIMEOUT_USEC);
976                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977         }
978 }
979
980 static void sender(void                *send_info,
981                    struct ipmi_smi_msg *msg)
982 {
983         struct smi_info   *smi_info = send_info;
984         unsigned long     flags;
985
986         debug_timestamp("Enqueue");
987
988         if (smi_info->run_to_completion) {
989                 /*
990                  * If we are running to completion, start it.  Upper
991                  * layer will call flush_messages to clear it out.
992                  */
993                 smi_info->waiting_msg = msg;
994                 return;
995         }
996
997         spin_lock_irqsave(&smi_info->si_lock, flags);
998         /*
999          * The following two lines don't need to be under the lock for
1000          * the lock's sake, but they do need SMP memory barriers to
1001          * avoid getting things out of order.  We are already claiming
1002          * the lock, anyway, so just do it under the lock to avoid the
1003          * ordering problem.
1004          */
1005         BUG_ON(smi_info->waiting_msg);
1006         smi_info->waiting_msg = msg;
1007         check_start_timer_thread(smi_info);
1008         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013         struct smi_info   *smi_info = send_info;
1014
1015         smi_info->run_to_completion = i_run_to_completion;
1016         if (i_run_to_completion)
1017                 flush_messages(smi_info);
1018 }
1019
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027         ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031         return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                         const struct smi_info *smi_info,
1036                                         struct timespec64 *busy_until)
1037 {
1038         unsigned int max_busy_us = 0;
1039
1040         if (smi_info->intf_num < num_max_busy_us)
1041                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                 ipmi_si_set_not_busy(busy_until);
1044         else if (!ipmi_si_is_busy(busy_until)) {
1045                 getnstimeofday64(busy_until);
1046                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047         } else {
1048                 struct timespec64 now;
1049
1050                 getnstimeofday64(&now);
1051                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                         ipmi_si_set_not_busy(busy_until);
1053                         return 0;
1054                 }
1055         }
1056         return 1;
1057 }
1058
1059
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071         struct smi_info *smi_info = data;
1072         unsigned long flags;
1073         enum si_sm_result smi_result;
1074         struct timespec64 busy_until;
1075
1076         ipmi_si_set_not_busy(&busy_until);
1077         set_user_nice(current, MAX_NICE);
1078         while (!kthread_should_stop()) {
1079                 int busy_wait;
1080
1081                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                 smi_result = smi_event_handler(smi_info, 0);
1083
1084                 /*
1085                  * If the driver is doing something, there is a possible
1086                  * race with the timer.  If the timer handler see idle,
1087                  * and the thread here sees something else, the timer
1088                  * handler won't restart the timer even though it is
1089                  * required.  So start it here if necessary.
1090                  */
1091                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                   &busy_until);
1097                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098                         ; /* do nothing */
1099                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100                         schedule();
1101                 else if (smi_result == SI_SM_IDLE) {
1102                         if (atomic_read(&smi_info->need_watch)) {
1103                                 schedule_timeout_interruptible(100);
1104                         } else {
1105                                 /* Wait to be woken up when we are needed. */
1106                                 __set_current_state(TASK_INTERRUPTIBLE);
1107                                 schedule();
1108                         }
1109                 } else
1110                         schedule_timeout_interruptible(1);
1111         }
1112         return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118         struct smi_info *smi_info = send_info;
1119         unsigned long flags = 0;
1120         bool run_to_completion = smi_info->run_to_completion;
1121
1122         /*
1123          * Make sure there is some delay in the poll loop so we can
1124          * drive time forward and timeout things.
1125          */
1126         udelay(10);
1127         if (!run_to_completion)
1128                 spin_lock_irqsave(&smi_info->si_lock, flags);
1129         smi_event_handler(smi_info, 10);
1130         if (!run_to_completion)
1131                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136         struct smi_info *smi_info = send_info;
1137
1138         if (!smi_info->has_event_buffer)
1139                 return;
1140
1141         atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146         struct smi_info *smi_info = send_info;
1147         unsigned long flags;
1148
1149         atomic_set(&smi_info->need_watch, enable);
1150         spin_lock_irqsave(&smi_info->si_lock, flags);
1151         check_start_timer_thread(smi_info);
1152         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159         struct smi_info   *smi_info = (struct smi_info *) data;
1160         enum si_sm_result smi_result;
1161         unsigned long     flags;
1162         unsigned long     jiffies_now;
1163         long              time_diff;
1164         long              timeout;
1165
1166         spin_lock_irqsave(&(smi_info->si_lock), flags);
1167         debug_timestamp("Timer");
1168
1169         jiffies_now = jiffies;
1170         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171                      * SI_USEC_PER_JIFFY);
1172         smi_result = smi_event_handler(smi_info, time_diff);
1173
1174         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175                 /* Running with interrupts, only do long timeouts. */
1176                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177                 smi_inc_stat(smi_info, long_timeouts);
1178                 goto do_mod_timer;
1179         }
1180
1181         /*
1182          * If the state machine asks for a short delay, then shorten
1183          * the timer timeout.
1184          */
1185         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186                 smi_inc_stat(smi_info, short_timeouts);
1187                 timeout = jiffies + 1;
1188         } else {
1189                 smi_inc_stat(smi_info, long_timeouts);
1190                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191         }
1192
1193  do_mod_timer:
1194         if (smi_result != SI_SM_IDLE)
1195                 smi_mod_timer(smi_info, timeout);
1196         else
1197                 smi_info->timer_running = false;
1198         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203         struct smi_info *smi_info = data;
1204         unsigned long   flags;
1205
1206         spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208         smi_inc_stat(smi_info, interrupts);
1209
1210         debug_timestamp("Interrupt");
1211
1212         smi_event_handler(smi_info, 0);
1213         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214         return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219         struct smi_info *smi_info = data;
1220         /* We need to clear the IRQ flag for the BT interface. */
1221         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224         return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void       *send_info,
1228                                 ipmi_smi_t intf)
1229 {
1230         struct smi_info *new_smi = send_info;
1231         int             enable = 0;
1232
1233         new_smi->intf = intf;
1234
1235         /* Set up the timer that drives the interface. */
1236         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239         /* Try to claim any interrupts. */
1240         if (new_smi->irq_setup)
1241                 new_smi->irq_setup(new_smi);
1242
1243         /*
1244          * Check if the user forcefully enabled the daemon.
1245          */
1246         if (new_smi->intf_num < num_force_kipmid)
1247                 enable = force_kipmid[new_smi->intf_num];
1248         /*
1249          * The BT interface is efficient enough to not need a thread,
1250          * and there is no need for a thread if we have interrupts.
1251          */
1252         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253                 enable = 1;
1254
1255         if (enable) {
1256                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257                                               "kipmi%d", new_smi->intf_num);
1258                 if (IS_ERR(new_smi->thread)) {
1259                         dev_notice(new_smi->dev, "Could not start"
1260                                    " kernel thread due to error %ld, only using"
1261                                    " timers to drive the interface\n",
1262                                    PTR_ERR(new_smi->thread));
1263                         new_smi->thread = NULL;
1264                 }
1265         }
1266
1267         return 0;
1268 }
1269
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272         struct smi_info *smi = send_info;
1273
1274         data->addr_src = smi->addr_source;
1275         data->dev = smi->dev;
1276         data->addr_info = smi->addr_info;
1277         get_device(smi->dev);
1278
1279         return 0;
1280 }
1281
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284         struct smi_info   *smi_info = send_info;
1285
1286         if (!enable)
1287                 atomic_set(&smi_info->req_events, 0);
1288 }
1289
1290 static const struct ipmi_smi_handlers handlers = {
1291         .owner                  = THIS_MODULE,
1292         .start_processing       = smi_start_processing,
1293         .get_smi_info           = get_smi_info,
1294         .sender                 = sender,
1295         .request_events         = request_events,
1296         .set_need_watch         = set_need_watch,
1297         .set_maintenance_mode   = set_maintenance_mode,
1298         .set_run_to_completion  = set_run_to_completion,
1299         .flush_messages         = flush_messages,
1300         .poll                   = poll,
1301 };
1302
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311
1312 #define DEFAULT_REGSPACING      1
1313 #define DEFAULT_REGSIZE         1
1314
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352                  " Documentation/IPMI.txt in the kernel sources for the"
1353                  " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358                  " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363                  " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367                  " default scan of the interfaces identified via platform"
1368                  " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372                  " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_named(trydefaults, si_trydefaults, bool, 0);
1375 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376                  " default scan of the KCS and SMIC interface at the standard"
1377                  " address");
1378 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380                  " interface separated by commas.  The types are 'kcs',"
1381                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1382                  " the first interface to kcs and the second to bt");
1383 module_param_array(addrs, ulong, &num_addrs, 0);
1384 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385                  " addresses separated by commas.  Only use if an interface"
1386                  " is in memory.  Otherwise, set it to zero or leave"
1387                  " it blank.");
1388 module_param_array(ports, uint, &num_ports, 0);
1389 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390                  " addresses separated by commas.  Only use if an interface"
1391                  " is a port.  Otherwise, set it to zero or leave"
1392                  " it blank.");
1393 module_param_array(irqs, int, &num_irqs, 0);
1394 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395                  " addresses separated by commas.  Only use if an interface"
1396                  " has an interrupt.  Otherwise, set it to zero or leave"
1397                  " it blank.");
1398 module_param_array(regspacings, int, &num_regspacings, 0);
1399 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400                  " and each successive register used by the interface.  For"
1401                  " instance, if the start address is 0xca2 and the spacing"
1402                  " is 2, then the second address is at 0xca4.  Defaults"
1403                  " to 1.");
1404 module_param_array(regsizes, int, &num_regsizes, 0);
1405 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1408                  " the 8-bit IPMI register has to be read from a larger"
1409                  " register.");
1410 module_param_array(regshifts, int, &num_regshifts, 0);
1411 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412                  " IPMI register, in bits.  For instance, if the data"
1413                  " is read from a 32-bit word and the IPMI data is in"
1414                  " bit 8-15, then the shift would be 8");
1415 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417                  " the controller.  Normally this is 0x20, but can be"
1418                  " overridden by this parm.  This is an array indexed"
1419                  " by interface number.");
1420 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422                  " disabled(0).  Normally the IPMI driver auto-detects"
1423                  " this, but the value may be overridden by this parm.");
1424 module_param(unload_when_empty, bool, 0);
1425 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426                  " specified or found, default is 1.  Setting to 0"
1427                  " is useful for hot add of devices using hotmod.");
1428 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429 MODULE_PARM_DESC(kipmid_max_busy_us,
1430                  "Max time (in microseconds) to busy-wait for IPMI data before"
1431                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432                  " if kipmid is using up a lot of CPU time.");
1433
1434
1435 static void std_irq_cleanup(struct smi_info *info)
1436 {
1437         if (info->si_type == SI_BT)
1438                 /* Disable the interrupt in the BT interface. */
1439                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440         free_irq(info->irq, info);
1441 }
1442
1443 static int std_irq_setup(struct smi_info *info)
1444 {
1445         int rv;
1446
1447         if (!info->irq)
1448                 return 0;
1449
1450         if (info->si_type == SI_BT) {
1451                 rv = request_irq(info->irq,
1452                                  si_bt_irq_handler,
1453                                  IRQF_SHARED,
1454                                  DEVICE_NAME,
1455                                  info);
1456                 if (!rv)
1457                         /* Enable the interrupt in the BT interface. */
1458                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460         } else
1461                 rv = request_irq(info->irq,
1462                                  si_irq_handler,
1463                                  IRQF_SHARED,
1464                                  DEVICE_NAME,
1465                                  info);
1466         if (rv) {
1467                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468                          " running polled\n",
1469                          DEVICE_NAME, info->irq);
1470                 info->irq = 0;
1471         } else {
1472                 info->irq_cleanup = std_irq_cleanup;
1473                 dev_info(info->dev, "Using irq %d\n", info->irq);
1474         }
1475
1476         return rv;
1477 }
1478
1479 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480 {
1481         unsigned int addr = io->addr_data;
1482
1483         return inb(addr + (offset * io->regspacing));
1484 }
1485
1486 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487                       unsigned char b)
1488 {
1489         unsigned int addr = io->addr_data;
1490
1491         outb(b, addr + (offset * io->regspacing));
1492 }
1493
1494 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495 {
1496         unsigned int addr = io->addr_data;
1497
1498         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500
1501 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502                       unsigned char b)
1503 {
1504         unsigned int addr = io->addr_data;
1505
1506         outw(b << io->regshift, addr + (offset * io->regspacing));
1507 }
1508
1509 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510 {
1511         unsigned int addr = io->addr_data;
1512
1513         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514 }
1515
1516 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517                       unsigned char b)
1518 {
1519         unsigned int addr = io->addr_data;
1520
1521         outl(b << io->regshift, addr+(offset * io->regspacing));
1522 }
1523
1524 static void port_cleanup(struct smi_info *info)
1525 {
1526         unsigned int addr = info->io.addr_data;
1527         int          idx;
1528
1529         if (addr) {
1530                 for (idx = 0; idx < info->io_size; idx++)
1531                         release_region(addr + idx * info->io.regspacing,
1532                                        info->io.regsize);
1533         }
1534 }
1535
1536 static int port_setup(struct smi_info *info)
1537 {
1538         unsigned int addr = info->io.addr_data;
1539         int          idx;
1540
1541         if (!addr)
1542                 return -ENODEV;
1543
1544         info->io_cleanup = port_cleanup;
1545
1546         /*
1547          * Figure out the actual inb/inw/inl/etc routine to use based
1548          * upon the register size.
1549          */
1550         switch (info->io.regsize) {
1551         case 1:
1552                 info->io.inputb = port_inb;
1553                 info->io.outputb = port_outb;
1554                 break;
1555         case 2:
1556                 info->io.inputb = port_inw;
1557                 info->io.outputb = port_outw;
1558                 break;
1559         case 4:
1560                 info->io.inputb = port_inl;
1561                 info->io.outputb = port_outl;
1562                 break;
1563         default:
1564                 dev_warn(info->dev, "Invalid register size: %d\n",
1565                          info->io.regsize);
1566                 return -EINVAL;
1567         }
1568
1569         /*
1570          * Some BIOSes reserve disjoint I/O regions in their ACPI
1571          * tables.  This causes problems when trying to register the
1572          * entire I/O region.  Therefore we must register each I/O
1573          * port separately.
1574          */
1575         for (idx = 0; idx < info->io_size; idx++) {
1576                 if (request_region(addr + idx * info->io.regspacing,
1577                                    info->io.regsize, DEVICE_NAME) == NULL) {
1578                         /* Undo allocations */
1579                         while (idx--) {
1580                                 release_region(addr + idx * info->io.regspacing,
1581                                                info->io.regsize);
1582                         }
1583                         return -EIO;
1584                 }
1585         }
1586         return 0;
1587 }
1588
1589 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1590                                   unsigned int offset)
1591 {
1592         return readb((io->addr)+(offset * io->regspacing));
1593 }
1594
1595 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1596                           unsigned char b)
1597 {
1598         writeb(b, (io->addr)+(offset * io->regspacing));
1599 }
1600
1601 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1602                                   unsigned int offset)
1603 {
1604         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1605                 & 0xff;
1606 }
1607
1608 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1609                           unsigned char b)
1610 {
1611         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1612 }
1613
1614 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1615                                   unsigned int offset)
1616 {
1617         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1618                 & 0xff;
1619 }
1620
1621 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1622                           unsigned char b)
1623 {
1624         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1625 }
1626
1627 #ifdef readq
1628 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1629 {
1630         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1631                 & 0xff;
1632 }
1633
1634 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1635                      unsigned char b)
1636 {
1637         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1638 }
1639 #endif
1640
1641 static void mem_cleanup(struct smi_info *info)
1642 {
1643         unsigned long addr = info->io.addr_data;
1644         int           mapsize;
1645
1646         if (info->io.addr) {
1647                 iounmap(info->io.addr);
1648
1649                 mapsize = ((info->io_size * info->io.regspacing)
1650                            - (info->io.regspacing - info->io.regsize));
1651
1652                 release_mem_region(addr, mapsize);
1653         }
1654 }
1655
1656 static int mem_setup(struct smi_info *info)
1657 {
1658         unsigned long addr = info->io.addr_data;
1659         int           mapsize;
1660
1661         if (!addr)
1662                 return -ENODEV;
1663
1664         info->io_cleanup = mem_cleanup;
1665
1666         /*
1667          * Figure out the actual readb/readw/readl/etc routine to use based
1668          * upon the register size.
1669          */
1670         switch (info->io.regsize) {
1671         case 1:
1672                 info->io.inputb = intf_mem_inb;
1673                 info->io.outputb = intf_mem_outb;
1674                 break;
1675         case 2:
1676                 info->io.inputb = intf_mem_inw;
1677                 info->io.outputb = intf_mem_outw;
1678                 break;
1679         case 4:
1680                 info->io.inputb = intf_mem_inl;
1681                 info->io.outputb = intf_mem_outl;
1682                 break;
1683 #ifdef readq
1684         case 8:
1685                 info->io.inputb = mem_inq;
1686                 info->io.outputb = mem_outq;
1687                 break;
1688 #endif
1689         default:
1690                 dev_warn(info->dev, "Invalid register size: %d\n",
1691                          info->io.regsize);
1692                 return -EINVAL;
1693         }
1694
1695         /*
1696          * Calculate the total amount of memory to claim.  This is an
1697          * unusual looking calculation, but it avoids claiming any
1698          * more memory than it has to.  It will claim everything
1699          * between the first address to the end of the last full
1700          * register.
1701          */
1702         mapsize = ((info->io_size * info->io.regspacing)
1703                    - (info->io.regspacing - info->io.regsize));
1704
1705         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1706                 return -EIO;
1707
1708         info->io.addr = ioremap(addr, mapsize);
1709         if (info->io.addr == NULL) {
1710                 release_mem_region(addr, mapsize);
1711                 return -EIO;
1712         }
1713         return 0;
1714 }
1715
1716 /*
1717  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1718  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1719  * Options are:
1720  *   rsp=<regspacing>
1721  *   rsi=<regsize>
1722  *   rsh=<regshift>
1723  *   irq=<irq>
1724  *   ipmb=<ipmb addr>
1725  */
1726 enum hotmod_op { HM_ADD, HM_REMOVE };
1727 struct hotmod_vals {
1728         const char *name;
1729         const int  val;
1730 };
1731
1732 static const struct hotmod_vals hotmod_ops[] = {
1733         { "add",        HM_ADD },
1734         { "remove",     HM_REMOVE },
1735         { NULL }
1736 };
1737
1738 static const struct hotmod_vals hotmod_si[] = {
1739         { "kcs",        SI_KCS },
1740         { "smic",       SI_SMIC },
1741         { "bt",         SI_BT },
1742         { NULL }
1743 };
1744
1745 static const struct hotmod_vals hotmod_as[] = {
1746         { "mem",        IPMI_MEM_ADDR_SPACE },
1747         { "i/o",        IPMI_IO_ADDR_SPACE },
1748         { NULL }
1749 };
1750
1751 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1752                      char **curr)
1753 {
1754         char *s;
1755         int  i;
1756
1757         s = strchr(*curr, ',');
1758         if (!s) {
1759                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1760                 return -EINVAL;
1761         }
1762         *s = '\0';
1763         s++;
1764         for (i = 0; v[i].name; i++) {
1765                 if (strcmp(*curr, v[i].name) == 0) {
1766                         *val = v[i].val;
1767                         *curr = s;
1768                         return 0;
1769                 }
1770         }
1771
1772         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1773         return -EINVAL;
1774 }
1775
1776 static int check_hotmod_int_op(const char *curr, const char *option,
1777                                const char *name, int *val)
1778 {
1779         char *n;
1780
1781         if (strcmp(curr, name) == 0) {
1782                 if (!option) {
1783                         printk(KERN_WARNING PFX
1784                                "No option given for '%s'\n",
1785                                curr);
1786                         return -EINVAL;
1787                 }
1788                 *val = simple_strtoul(option, &n, 0);
1789                 if ((*n != '\0') || (*option == '\0')) {
1790                         printk(KERN_WARNING PFX
1791                                "Bad option given for '%s'\n",
1792                                curr);
1793                         return -EINVAL;
1794                 }
1795                 return 1;
1796         }
1797         return 0;
1798 }
1799
1800 static struct smi_info *smi_info_alloc(void)
1801 {
1802         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1803
1804         if (info)
1805                 spin_lock_init(&info->si_lock);
1806         return info;
1807 }
1808
1809 static int hotmod_handler(const char *val, struct kernel_param *kp)
1810 {
1811         char *str = kstrdup(val, GFP_KERNEL);
1812         int  rv;
1813         char *next, *curr, *s, *n, *o;
1814         enum hotmod_op op;
1815         enum si_type si_type;
1816         int  addr_space;
1817         unsigned long addr;
1818         int regspacing;
1819         int regsize;
1820         int regshift;
1821         int irq;
1822         int ipmb;
1823         int ival;
1824         int len;
1825         struct smi_info *info;
1826
1827         if (!str)
1828                 return -ENOMEM;
1829
1830         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1831         len = strlen(str);
1832         ival = len - 1;
1833         while ((ival >= 0) && isspace(str[ival])) {
1834                 str[ival] = '\0';
1835                 ival--;
1836         }
1837
1838         for (curr = str; curr; curr = next) {
1839                 regspacing = 1;
1840                 regsize = 1;
1841                 regshift = 0;
1842                 irq = 0;
1843                 ipmb = 0; /* Choose the default if not specified */
1844
1845                 next = strchr(curr, ':');
1846                 if (next) {
1847                         *next = '\0';
1848                         next++;
1849                 }
1850
1851                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1852                 if (rv)
1853                         break;
1854                 op = ival;
1855
1856                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1857                 if (rv)
1858                         break;
1859                 si_type = ival;
1860
1861                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1862                 if (rv)
1863                         break;
1864
1865                 s = strchr(curr, ',');
1866                 if (s) {
1867                         *s = '\0';
1868                         s++;
1869                 }
1870                 addr = simple_strtoul(curr, &n, 0);
1871                 if ((*n != '\0') || (*curr == '\0')) {
1872                         printk(KERN_WARNING PFX "Invalid hotmod address"
1873                                " '%s'\n", curr);
1874                         break;
1875                 }
1876
1877                 while (s) {
1878                         curr = s;
1879                         s = strchr(curr, ',');
1880                         if (s) {
1881                                 *s = '\0';
1882                                 s++;
1883                         }
1884                         o = strchr(curr, '=');
1885                         if (o) {
1886                                 *o = '\0';
1887                                 o++;
1888                         }
1889                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1890                         if (rv < 0)
1891                                 goto out;
1892                         else if (rv)
1893                                 continue;
1894                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1895                         if (rv < 0)
1896                                 goto out;
1897                         else if (rv)
1898                                 continue;
1899                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1900                         if (rv < 0)
1901                                 goto out;
1902                         else if (rv)
1903                                 continue;
1904                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1905                         if (rv < 0)
1906                                 goto out;
1907                         else if (rv)
1908                                 continue;
1909                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1910                         if (rv < 0)
1911                                 goto out;
1912                         else if (rv)
1913                                 continue;
1914
1915                         rv = -EINVAL;
1916                         printk(KERN_WARNING PFX
1917                                "Invalid hotmod option '%s'\n",
1918                                curr);
1919                         goto out;
1920                 }
1921
1922                 if (op == HM_ADD) {
1923                         info = smi_info_alloc();
1924                         if (!info) {
1925                                 rv = -ENOMEM;
1926                                 goto out;
1927                         }
1928
1929                         info->addr_source = SI_HOTMOD;
1930                         info->si_type = si_type;
1931                         info->io.addr_data = addr;
1932                         info->io.addr_type = addr_space;
1933                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1934                                 info->io_setup = mem_setup;
1935                         else
1936                                 info->io_setup = port_setup;
1937
1938                         info->io.addr = NULL;
1939                         info->io.regspacing = regspacing;
1940                         if (!info->io.regspacing)
1941                                 info->io.regspacing = DEFAULT_REGSPACING;
1942                         info->io.regsize = regsize;
1943                         if (!info->io.regsize)
1944                                 info->io.regsize = DEFAULT_REGSPACING;
1945                         info->io.regshift = regshift;
1946                         info->irq = irq;
1947                         if (info->irq)
1948                                 info->irq_setup = std_irq_setup;
1949                         info->slave_addr = ipmb;
1950
1951                         rv = add_smi(info);
1952                         if (rv) {
1953                                 kfree(info);
1954                                 goto out;
1955                         }
1956                         rv = try_smi_init(info);
1957                         if (rv) {
1958                                 cleanup_one_si(info);
1959                                 goto out;
1960                         }
1961                 } else {
1962                         /* remove */
1963                         struct smi_info *e, *tmp_e;
1964
1965                         mutex_lock(&smi_infos_lock);
1966                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1967                                 if (e->io.addr_type != addr_space)
1968                                         continue;
1969                                 if (e->si_type != si_type)
1970                                         continue;
1971                                 if (e->io.addr_data == addr)
1972                                         cleanup_one_si(e);
1973                         }
1974                         mutex_unlock(&smi_infos_lock);
1975                 }
1976         }
1977         rv = len;
1978  out:
1979         kfree(str);
1980         return rv;
1981 }
1982
1983 static int hardcode_find_bmc(void)
1984 {
1985         int ret = -ENODEV;
1986         int             i;
1987         struct smi_info *info;
1988
1989         for (i = 0; i < SI_MAX_PARMS; i++) {
1990                 if (!ports[i] && !addrs[i])
1991                         continue;
1992
1993                 info = smi_info_alloc();
1994                 if (!info)
1995                         return -ENOMEM;
1996
1997                 info->addr_source = SI_HARDCODED;
1998                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1999
2000                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2001                         info->si_type = SI_KCS;
2002                 } else if (strcmp(si_type[i], "smic") == 0) {
2003                         info->si_type = SI_SMIC;
2004                 } else if (strcmp(si_type[i], "bt") == 0) {
2005                         info->si_type = SI_BT;
2006                 } else {
2007                         printk(KERN_WARNING PFX "Interface type specified "
2008                                "for interface %d, was invalid: %s\n",
2009                                i, si_type[i]);
2010                         kfree(info);
2011                         continue;
2012                 }
2013
2014                 if (ports[i]) {
2015                         /* An I/O port */
2016                         info->io_setup = port_setup;
2017                         info->io.addr_data = ports[i];
2018                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019                 } else if (addrs[i]) {
2020                         /* A memory port */
2021                         info->io_setup = mem_setup;
2022                         info->io.addr_data = addrs[i];
2023                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024                 } else {
2025                         printk(KERN_WARNING PFX "Interface type specified "
2026                                "for interface %d, but port and address were "
2027                                "not set or set to zero.\n", i);
2028                         kfree(info);
2029                         continue;
2030                 }
2031
2032                 info->io.addr = NULL;
2033                 info->io.regspacing = regspacings[i];
2034                 if (!info->io.regspacing)
2035                         info->io.regspacing = DEFAULT_REGSPACING;
2036                 info->io.regsize = regsizes[i];
2037                 if (!info->io.regsize)
2038                         info->io.regsize = DEFAULT_REGSPACING;
2039                 info->io.regshift = regshifts[i];
2040                 info->irq = irqs[i];
2041                 if (info->irq)
2042                         info->irq_setup = std_irq_setup;
2043                 info->slave_addr = slave_addrs[i];
2044
2045                 if (!add_smi(info)) {
2046                         if (try_smi_init(info))
2047                                 cleanup_one_si(info);
2048                         ret = 0;
2049                 } else {
2050                         kfree(info);
2051                 }
2052         }
2053         return ret;
2054 }
2055
2056 #ifdef CONFIG_ACPI
2057
2058 /*
2059  * Once we get an ACPI failure, we don't try any more, because we go
2060  * through the tables sequentially.  Once we don't find a table, there
2061  * are no more.
2062  */
2063 static int acpi_failure;
2064
2065 /* For GPE-type interrupts. */
2066 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2067         u32 gpe_number, void *context)
2068 {
2069         struct smi_info *smi_info = context;
2070         unsigned long   flags;
2071
2072         spin_lock_irqsave(&(smi_info->si_lock), flags);
2073
2074         smi_inc_stat(smi_info, interrupts);
2075
2076         debug_timestamp("ACPI_GPE");
2077
2078         smi_event_handler(smi_info, 0);
2079         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2080
2081         return ACPI_INTERRUPT_HANDLED;
2082 }
2083
2084 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2085 {
2086         if (!info->irq)
2087                 return;
2088
2089         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2090 }
2091
2092 static int acpi_gpe_irq_setup(struct smi_info *info)
2093 {
2094         acpi_status status;
2095
2096         if (!info->irq)
2097                 return 0;
2098
2099         status = acpi_install_gpe_handler(NULL,
2100                                           info->irq,
2101                                           ACPI_GPE_LEVEL_TRIGGERED,
2102                                           &ipmi_acpi_gpe,
2103                                           info);
2104         if (status != AE_OK) {
2105                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2106                          " running polled\n", DEVICE_NAME, info->irq);
2107                 info->irq = 0;
2108                 return -EINVAL;
2109         } else {
2110                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2111                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2112                 return 0;
2113         }
2114 }
2115
2116 /*
2117  * Defined at
2118  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2119  */
2120 struct SPMITable {
2121         s8      Signature[4];
2122         u32     Length;
2123         u8      Revision;
2124         u8      Checksum;
2125         s8      OEMID[6];
2126         s8      OEMTableID[8];
2127         s8      OEMRevision[4];
2128         s8      CreatorID[4];
2129         s8      CreatorRevision[4];
2130         u8      InterfaceType;
2131         u8      IPMIlegacy;
2132         s16     SpecificationRevision;
2133
2134         /*
2135          * Bit 0 - SCI interrupt supported
2136          * Bit 1 - I/O APIC/SAPIC
2137          */
2138         u8      InterruptType;
2139
2140         /*
2141          * If bit 0 of InterruptType is set, then this is the SCI
2142          * interrupt in the GPEx_STS register.
2143          */
2144         u8      GPE;
2145
2146         s16     Reserved;
2147
2148         /*
2149          * If bit 1 of InterruptType is set, then this is the I/O
2150          * APIC/SAPIC interrupt.
2151          */
2152         u32     GlobalSystemInterrupt;
2153
2154         /* The actual register address. */
2155         struct acpi_generic_address addr;
2156
2157         u8      UID[4];
2158
2159         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2160 };
2161
2162 static int try_init_spmi(struct SPMITable *spmi)
2163 {
2164         struct smi_info  *info;
2165         int rv;
2166
2167         if (spmi->IPMIlegacy != 1) {
2168                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2169                 return -ENODEV;
2170         }
2171
2172         info = smi_info_alloc();
2173         if (!info) {
2174                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2175                 return -ENOMEM;
2176         }
2177
2178         info->addr_source = SI_SPMI;
2179         printk(KERN_INFO PFX "probing via SPMI\n");
2180
2181         /* Figure out the interface type. */
2182         switch (spmi->InterfaceType) {
2183         case 1: /* KCS */
2184                 info->si_type = SI_KCS;
2185                 break;
2186         case 2: /* SMIC */
2187                 info->si_type = SI_SMIC;
2188                 break;
2189         case 3: /* BT */
2190                 info->si_type = SI_BT;
2191                 break;
2192         case 4: /* SSIF, just ignore */
2193                 kfree(info);
2194                 return -EIO;
2195         default:
2196                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2197                        spmi->InterfaceType);
2198                 kfree(info);
2199                 return -EIO;
2200         }
2201
2202         if (spmi->InterruptType & 1) {
2203                 /* We've got a GPE interrupt. */
2204                 info->irq = spmi->GPE;
2205                 info->irq_setup = acpi_gpe_irq_setup;
2206         } else if (spmi->InterruptType & 2) {
2207                 /* We've got an APIC/SAPIC interrupt. */
2208                 info->irq = spmi->GlobalSystemInterrupt;
2209                 info->irq_setup = std_irq_setup;
2210         } else {
2211                 /* Use the default interrupt setting. */
2212                 info->irq = 0;
2213                 info->irq_setup = NULL;
2214         }
2215
2216         if (spmi->addr.bit_width) {
2217                 /* A (hopefully) properly formed register bit width. */
2218                 info->io.regspacing = spmi->addr.bit_width / 8;
2219         } else {
2220                 info->io.regspacing = DEFAULT_REGSPACING;
2221         }
2222         info->io.regsize = info->io.regspacing;
2223         info->io.regshift = spmi->addr.bit_offset;
2224
2225         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2226                 info->io_setup = mem_setup;
2227                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2228         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2229                 info->io_setup = port_setup;
2230                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2231         } else {
2232                 kfree(info);
2233                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2234                 return -EIO;
2235         }
2236         info->io.addr_data = spmi->addr.address;
2237
2238         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2239                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2240                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2241                  info->irq);
2242
2243         rv = add_smi(info);
2244         if (rv)
2245                 kfree(info);
2246
2247         return rv;
2248 }
2249
2250 static void spmi_find_bmc(void)
2251 {
2252         acpi_status      status;
2253         struct SPMITable *spmi;
2254         int              i;
2255
2256         if (acpi_disabled)
2257                 return;
2258
2259         if (acpi_failure)
2260                 return;
2261
2262         for (i = 0; ; i++) {
2263                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2264                                         (struct acpi_table_header **)&spmi);
2265                 if (status != AE_OK)
2266                         return;
2267
2268                 try_init_spmi(spmi);
2269         }
2270 }
2271 #endif
2272
2273 #ifdef CONFIG_DMI
2274 struct dmi_ipmi_data {
2275         u8              type;
2276         u8              addr_space;
2277         unsigned long   base_addr;
2278         u8              irq;
2279         u8              offset;
2280         u8              slave_addr;
2281 };
2282
2283 static int decode_dmi(const struct dmi_header *dm,
2284                                 struct dmi_ipmi_data *dmi)
2285 {
2286         const u8        *data = (const u8 *)dm;
2287         unsigned long   base_addr;
2288         u8              reg_spacing;
2289         u8              len = dm->length;
2290
2291         dmi->type = data[4];
2292
2293         memcpy(&base_addr, data+8, sizeof(unsigned long));
2294         if (len >= 0x11) {
2295                 if (base_addr & 1) {
2296                         /* I/O */
2297                         base_addr &= 0xFFFE;
2298                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2299                 } else
2300                         /* Memory */
2301                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2302
2303                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304                    is odd. */
2305                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2306
2307                 dmi->irq = data[0x11];
2308
2309                 /* The top two bits of byte 0x10 hold the register spacing. */
2310                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2311                 switch (reg_spacing) {
2312                 case 0x00: /* Byte boundaries */
2313                     dmi->offset = 1;
2314                     break;
2315                 case 0x01: /* 32-bit boundaries */
2316                     dmi->offset = 4;
2317                     break;
2318                 case 0x02: /* 16-byte boundaries */
2319                     dmi->offset = 16;
2320                     break;
2321                 default:
2322                     /* Some other interface, just ignore it. */
2323                     return -EIO;
2324                 }
2325         } else {
2326                 /* Old DMI spec. */
2327                 /*
2328                  * Note that technically, the lower bit of the base
2329                  * address should be 1 if the address is I/O and 0 if
2330                  * the address is in memory.  So many systems get that
2331                  * wrong (and all that I have seen are I/O) so we just
2332                  * ignore that bit and assume I/O.  Systems that use
2333                  * memory should use the newer spec, anyway.
2334                  */
2335                 dmi->base_addr = base_addr & 0xfffe;
2336                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2337                 dmi->offset = 1;
2338         }
2339
2340         dmi->slave_addr = data[6];
2341
2342         return 0;
2343 }
2344
2345 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2346 {
2347         struct smi_info *info;
2348
2349         info = smi_info_alloc();
2350         if (!info) {
2351                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2352                 return;
2353         }
2354
2355         info->addr_source = SI_SMBIOS;
2356         printk(KERN_INFO PFX "probing via SMBIOS\n");
2357
2358         switch (ipmi_data->type) {
2359         case 0x01: /* KCS */
2360                 info->si_type = SI_KCS;
2361                 break;
2362         case 0x02: /* SMIC */
2363                 info->si_type = SI_SMIC;
2364                 break;
2365         case 0x03: /* BT */
2366                 info->si_type = SI_BT;
2367                 break;
2368         default:
2369                 kfree(info);
2370                 return;
2371         }
2372
2373         switch (ipmi_data->addr_space) {
2374         case IPMI_MEM_ADDR_SPACE:
2375                 info->io_setup = mem_setup;
2376                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2377                 break;
2378
2379         case IPMI_IO_ADDR_SPACE:
2380                 info->io_setup = port_setup;
2381                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2382                 break;
2383
2384         default:
2385                 kfree(info);
2386                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2387                        ipmi_data->addr_space);
2388                 return;
2389         }
2390         info->io.addr_data = ipmi_data->base_addr;
2391
2392         info->io.regspacing = ipmi_data->offset;
2393         if (!info->io.regspacing)
2394                 info->io.regspacing = DEFAULT_REGSPACING;
2395         info->io.regsize = DEFAULT_REGSPACING;
2396         info->io.regshift = 0;
2397
2398         info->slave_addr = ipmi_data->slave_addr;
2399
2400         info->irq = ipmi_data->irq;
2401         if (info->irq)
2402                 info->irq_setup = std_irq_setup;
2403
2404         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2405                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2406                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2407                  info->irq);
2408
2409         if (add_smi(info))
2410                 kfree(info);
2411 }
2412
2413 static void dmi_find_bmc(void)
2414 {
2415         const struct dmi_device *dev = NULL;
2416         struct dmi_ipmi_data data;
2417         int                  rv;
2418
2419         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2420                 memset(&data, 0, sizeof(data));
2421                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2422                                 &data);
2423                 if (!rv)
2424                         try_init_dmi(&data);
2425         }
2426 }
2427 #endif /* CONFIG_DMI */
2428
2429 #ifdef CONFIG_PCI
2430
2431 #define PCI_ERMC_CLASSCODE              0x0C0700
2432 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2433 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2434 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2435 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2436 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2437
2438 #define PCI_HP_VENDOR_ID    0x103C
2439 #define PCI_MMC_DEVICE_ID   0x121A
2440 #define PCI_MMC_ADDR_CW     0x10
2441
2442 static void ipmi_pci_cleanup(struct smi_info *info)
2443 {
2444         struct pci_dev *pdev = info->addr_source_data;
2445
2446         pci_disable_device(pdev);
2447 }
2448
2449 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2450 {
2451         if (info->si_type == SI_KCS) {
2452                 unsigned char   status;
2453                 int             regspacing;
2454
2455                 info->io.regsize = DEFAULT_REGSIZE;
2456                 info->io.regshift = 0;
2457                 info->io_size = 2;
2458                 info->handlers = &kcs_smi_handlers;
2459
2460                 /* detect 1, 4, 16byte spacing */
2461                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2462                         info->io.regspacing = regspacing;
2463                         if (info->io_setup(info)) {
2464                                 dev_err(info->dev,
2465                                         "Could not setup I/O space\n");
2466                                 return DEFAULT_REGSPACING;
2467                         }
2468                         /* write invalid cmd */
2469                         info->io.outputb(&info->io, 1, 0x10);
2470                         /* read status back */
2471                         status = info->io.inputb(&info->io, 1);
2472                         info->io_cleanup(info);
2473                         if (status)
2474                                 return regspacing;
2475                         regspacing *= 4;
2476                 }
2477         }
2478         return DEFAULT_REGSPACING;
2479 }
2480
2481 static int ipmi_pci_probe(struct pci_dev *pdev,
2482                                     const struct pci_device_id *ent)
2483 {
2484         int rv;
2485         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2486         struct smi_info *info;
2487
2488         info = smi_info_alloc();
2489         if (!info)
2490                 return -ENOMEM;
2491
2492         info->addr_source = SI_PCI;
2493         dev_info(&pdev->dev, "probing via PCI");
2494
2495         switch (class_type) {
2496         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2497                 info->si_type = SI_SMIC;
2498                 break;
2499
2500         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2501                 info->si_type = SI_KCS;
2502                 break;
2503
2504         case PCI_ERMC_CLASSCODE_TYPE_BT:
2505                 info->si_type = SI_BT;
2506                 break;
2507
2508         default:
2509                 kfree(info);
2510                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2511                 return -ENOMEM;
2512         }
2513
2514         rv = pci_enable_device(pdev);
2515         if (rv) {
2516                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2517                 kfree(info);
2518                 return rv;
2519         }
2520
2521         info->addr_source_cleanup = ipmi_pci_cleanup;
2522         info->addr_source_data = pdev;
2523
2524         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2525                 info->io_setup = port_setup;
2526                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2527         } else {
2528                 info->io_setup = mem_setup;
2529                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2530         }
2531         info->io.addr_data = pci_resource_start(pdev, 0);
2532
2533         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2534         info->io.regsize = DEFAULT_REGSIZE;
2535         info->io.regshift = 0;
2536
2537         info->irq = pdev->irq;
2538         if (info->irq)
2539                 info->irq_setup = std_irq_setup;
2540
2541         info->dev = &pdev->dev;
2542         pci_set_drvdata(pdev, info);
2543
2544         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2545                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2546                 info->irq);
2547
2548         rv = add_smi(info);
2549         if (rv) {
2550                 kfree(info);
2551                 pci_disable_device(pdev);
2552         }
2553
2554         return rv;
2555 }
2556
2557 static void ipmi_pci_remove(struct pci_dev *pdev)
2558 {
2559         struct smi_info *info = pci_get_drvdata(pdev);
2560         cleanup_one_si(info);
2561 }
2562
2563 static const struct pci_device_id ipmi_pci_devices[] = {
2564         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2565         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2566         { 0, }
2567 };
2568 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2569
2570 static struct pci_driver ipmi_pci_driver = {
2571         .name =         DEVICE_NAME,
2572         .id_table =     ipmi_pci_devices,
2573         .probe =        ipmi_pci_probe,
2574         .remove =       ipmi_pci_remove,
2575 };
2576 #endif /* CONFIG_PCI */
2577
2578 #ifdef CONFIG_OF
2579 static const struct of_device_id of_ipmi_match[] = {
2580         { .type = "ipmi", .compatible = "ipmi-kcs",
2581           .data = (void *)(unsigned long) SI_KCS },
2582         { .type = "ipmi", .compatible = "ipmi-smic",
2583           .data = (void *)(unsigned long) SI_SMIC },
2584         { .type = "ipmi", .compatible = "ipmi-bt",
2585           .data = (void *)(unsigned long) SI_BT },
2586         {},
2587 };
2588 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2589
2590 static int of_ipmi_probe(struct platform_device *dev)
2591 {
2592         const struct of_device_id *match;
2593         struct smi_info *info;
2594         struct resource resource;
2595         const __be32 *regsize, *regspacing, *regshift;
2596         struct device_node *np = dev->dev.of_node;
2597         int ret;
2598         int proplen;
2599
2600         dev_info(&dev->dev, "probing via device tree\n");
2601
2602         match = of_match_device(of_ipmi_match, &dev->dev);
2603         if (!match)
2604                 return -ENODEV;
2605
2606         if (!of_device_is_available(np))
2607                 return -EINVAL;
2608
2609         ret = of_address_to_resource(np, 0, &resource);
2610         if (ret) {
2611                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2612                 return ret;
2613         }
2614
2615         regsize = of_get_property(np, "reg-size", &proplen);
2616         if (regsize && proplen != 4) {
2617                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2618                 return -EINVAL;
2619         }
2620
2621         regspacing = of_get_property(np, "reg-spacing", &proplen);
2622         if (regspacing && proplen != 4) {
2623                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2624                 return -EINVAL;
2625         }
2626
2627         regshift = of_get_property(np, "reg-shift", &proplen);
2628         if (regshift && proplen != 4) {
2629                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2630                 return -EINVAL;
2631         }
2632
2633         info = smi_info_alloc();
2634
2635         if (!info) {
2636                 dev_err(&dev->dev,
2637                         "could not allocate memory for OF probe\n");
2638                 return -ENOMEM;
2639         }
2640
2641         info->si_type           = (enum si_type) match->data;
2642         info->addr_source       = SI_DEVICETREE;
2643         info->irq_setup         = std_irq_setup;
2644
2645         if (resource.flags & IORESOURCE_IO) {
2646                 info->io_setup          = port_setup;
2647                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2648         } else {
2649                 info->io_setup          = mem_setup;
2650                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2651         }
2652
2653         info->io.addr_data      = resource.start;
2654
2655         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2656         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2657         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2658
2659         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2660         info->dev               = &dev->dev;
2661
2662         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2663                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2664                 info->irq);
2665
2666         dev_set_drvdata(&dev->dev, info);
2667
2668         ret = add_smi(info);
2669         if (ret) {
2670                 kfree(info);
2671                 return ret;
2672         }
2673         return 0;
2674 }
2675 #else
2676 #define of_ipmi_match NULL
2677 static int of_ipmi_probe(struct platform_device *dev)
2678 {
2679         return -ENODEV;
2680 }
2681 #endif
2682
2683 #ifdef CONFIG_ACPI
2684 static int acpi_ipmi_probe(struct platform_device *dev)
2685 {
2686         struct smi_info *info;
2687         struct resource *res, *res_second;
2688         acpi_handle handle;
2689         acpi_status status;
2690         unsigned long long tmp;
2691         int rv = -EINVAL;
2692
2693         if (!si_tryacpi)
2694                return 0;
2695
2696         handle = ACPI_HANDLE(&dev->dev);
2697         if (!handle)
2698                 return -ENODEV;
2699
2700         info = smi_info_alloc();
2701         if (!info)
2702                 return -ENOMEM;
2703
2704         info->addr_source = SI_ACPI;
2705         dev_info(&dev->dev, PFX "probing via ACPI\n");
2706
2707         info->addr_info.acpi_info.acpi_handle = handle;
2708
2709         /* _IFT tells us the interface type: KCS, BT, etc */
2710         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2711         if (ACPI_FAILURE(status)) {
2712                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2713                 goto err_free;
2714         }
2715
2716         switch (tmp) {
2717         case 1:
2718                 info->si_type = SI_KCS;
2719                 break;
2720         case 2:
2721                 info->si_type = SI_SMIC;
2722                 break;
2723         case 3:
2724                 info->si_type = SI_BT;
2725                 break;
2726         case 4: /* SSIF, just ignore */
2727                 rv = -ENODEV;
2728                 goto err_free;
2729         default:
2730                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2731                 goto err_free;
2732         }
2733
2734         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2735         if (res) {
2736                 info->io_setup = port_setup;
2737                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2738         } else {
2739                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2740                 if (res) {
2741                         info->io_setup = mem_setup;
2742                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2743                 }
2744         }
2745         if (!res) {
2746                 dev_err(&dev->dev, "no I/O or memory address\n");
2747                 goto err_free;
2748         }
2749         info->io.addr_data = res->start;
2750
2751         info->io.regspacing = DEFAULT_REGSPACING;
2752         res_second = platform_get_resource(dev,
2753                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2754                                         IORESOURCE_IO : IORESOURCE_MEM,
2755                                1);
2756         if (res_second) {
2757                 if (res_second->start > info->io.addr_data)
2758                         info->io.regspacing =
2759                                 res_second->start - info->io.addr_data;
2760         }
2761         info->io.regsize = DEFAULT_REGSPACING;
2762         info->io.regshift = 0;
2763
2764         /* If _GPE exists, use it; otherwise use standard interrupts */
2765         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2766         if (ACPI_SUCCESS(status)) {
2767                 info->irq = tmp;
2768                 info->irq_setup = acpi_gpe_irq_setup;
2769         } else {
2770                 int irq = platform_get_irq(dev, 0);
2771
2772                 if (irq > 0) {
2773                         info->irq = irq;
2774                         info->irq_setup = std_irq_setup;
2775                 }
2776         }
2777
2778         info->dev = &dev->dev;
2779         platform_set_drvdata(dev, info);
2780
2781         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2782                  res, info->io.regsize, info->io.regspacing,
2783                  info->irq);
2784
2785         rv = add_smi(info);
2786         if (rv)
2787                 kfree(info);
2788
2789         return rv;
2790
2791 err_free:
2792         kfree(info);
2793         return rv;
2794 }
2795
2796 static const struct acpi_device_id acpi_ipmi_match[] = {
2797         { "IPI0001", 0 },
2798         { },
2799 };
2800 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2801 #else
2802 static int acpi_ipmi_probe(struct platform_device *dev)
2803 {
2804         return -ENODEV;
2805 }
2806 #endif
2807
2808 static int ipmi_probe(struct platform_device *dev)
2809 {
2810         if (of_ipmi_probe(dev) == 0)
2811                 return 0;
2812
2813         return acpi_ipmi_probe(dev);
2814 }
2815
2816 static int ipmi_remove(struct platform_device *dev)
2817 {
2818         struct smi_info *info = dev_get_drvdata(&dev->dev);
2819
2820         cleanup_one_si(info);
2821         return 0;
2822 }
2823
2824 static struct platform_driver ipmi_driver = {
2825         .driver = {
2826                 .name = DEVICE_NAME,
2827                 .of_match_table = of_ipmi_match,
2828                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2829         },
2830         .probe          = ipmi_probe,
2831         .remove         = ipmi_remove,
2832 };
2833
2834 #ifdef CONFIG_PARISC
2835 static int ipmi_parisc_probe(struct parisc_device *dev)
2836 {
2837         struct smi_info *info;
2838         int rv;
2839
2840         info = smi_info_alloc();
2841
2842         if (!info) {
2843                 dev_err(&dev->dev,
2844                         "could not allocate memory for PARISC probe\n");
2845                 return -ENOMEM;
2846         }
2847
2848         info->si_type           = SI_KCS;
2849         info->addr_source       = SI_DEVICETREE;
2850         info->io_setup          = mem_setup;
2851         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2852         info->io.addr_data      = dev->hpa.start;
2853         info->io.regsize        = 1;
2854         info->io.regspacing     = 1;
2855         info->io.regshift       = 0;
2856         info->irq               = 0; /* no interrupt */
2857         info->irq_setup         = NULL;
2858         info->dev               = &dev->dev;
2859
2860         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2861
2862         dev_set_drvdata(&dev->dev, info);
2863
2864         rv = add_smi(info);
2865         if (rv) {
2866                 kfree(info);
2867                 return rv;
2868         }
2869
2870         return 0;
2871 }
2872
2873 static int ipmi_parisc_remove(struct parisc_device *dev)
2874 {
2875         cleanup_one_si(dev_get_drvdata(&dev->dev));
2876         return 0;
2877 }
2878
2879 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2880         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2881         { 0, }
2882 };
2883
2884 static struct parisc_driver ipmi_parisc_driver = {
2885         .name =         "ipmi",
2886         .id_table =     ipmi_parisc_tbl,
2887         .probe =        ipmi_parisc_probe,
2888         .remove =       ipmi_parisc_remove,
2889 };
2890 #endif /* CONFIG_PARISC */
2891
2892 static int wait_for_msg_done(struct smi_info *smi_info)
2893 {
2894         enum si_sm_result     smi_result;
2895
2896         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2897         for (;;) {
2898                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2899                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2900                         schedule_timeout_uninterruptible(1);
2901                         smi_result = smi_info->handlers->event(
2902                                 smi_info->si_sm, jiffies_to_usecs(1));
2903                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2904                         smi_result = smi_info->handlers->event(
2905                                 smi_info->si_sm, 0);
2906                 } else
2907                         break;
2908         }
2909         if (smi_result == SI_SM_HOSED)
2910                 /*
2911                  * We couldn't get the state machine to run, so whatever's at
2912                  * the port is probably not an IPMI SMI interface.
2913                  */
2914                 return -ENODEV;
2915
2916         return 0;
2917 }
2918
2919 static int try_get_dev_id(struct smi_info *smi_info)
2920 {
2921         unsigned char         msg[2];
2922         unsigned char         *resp;
2923         unsigned long         resp_len;
2924         int                   rv = 0;
2925
2926         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2927         if (!resp)
2928                 return -ENOMEM;
2929
2930         /*
2931          * Do a Get Device ID command, since it comes back with some
2932          * useful info.
2933          */
2934         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2935         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2936         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2937
2938         rv = wait_for_msg_done(smi_info);
2939         if (rv)
2940                 goto out;
2941
2942         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2943                                                   resp, IPMI_MAX_MSG_LENGTH);
2944
2945         /* Check and record info from the get device id, in case we need it. */
2946         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2947
2948  out:
2949         kfree(resp);
2950         return rv;
2951 }
2952
2953 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2954 {
2955         unsigned char         msg[3];
2956         unsigned char         *resp;
2957         unsigned long         resp_len;
2958         int                   rv;
2959
2960         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2961         if (!resp)
2962                 return -ENOMEM;
2963
2964         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2965         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2966         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2967
2968         rv = wait_for_msg_done(smi_info);
2969         if (rv) {
2970                 dev_warn(smi_info->dev,
2971                          "Error getting response from get global enables command: %d\n",
2972                          rv);
2973                 goto out;
2974         }
2975
2976         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2977                                                   resp, IPMI_MAX_MSG_LENGTH);
2978
2979         if (resp_len < 4 ||
2980                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2981                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2982                         resp[2] != 0) {
2983                 dev_warn(smi_info->dev,
2984                          "Invalid return from get global enables command: %ld %x %x %x\n",
2985                          resp_len, resp[0], resp[1], resp[2]);
2986                 rv = -EINVAL;
2987                 goto out;
2988         } else {
2989                 *enables = resp[3];
2990         }
2991
2992 out:
2993         kfree(resp);
2994         return rv;
2995 }
2996
2997 /*
2998  * Returns 1 if it gets an error from the command.
2999  */
3000 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3001 {
3002         unsigned char         msg[3];
3003         unsigned char         *resp;
3004         unsigned long         resp_len;
3005         int                   rv;
3006
3007         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3008         if (!resp)
3009                 return -ENOMEM;
3010
3011         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3012         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3013         msg[2] = enables;
3014         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3015
3016         rv = wait_for_msg_done(smi_info);
3017         if (rv) {
3018                 dev_warn(smi_info->dev,
3019                          "Error getting response from set global enables command: %d\n",
3020                          rv);
3021                 goto out;
3022         }
3023
3024         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3025                                                   resp, IPMI_MAX_MSG_LENGTH);
3026
3027         if (resp_len < 3 ||
3028                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3029                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3030                 dev_warn(smi_info->dev,
3031                          "Invalid return from set global enables command: %ld %x %x\n",
3032                          resp_len, resp[0], resp[1]);
3033                 rv = -EINVAL;
3034                 goto out;
3035         }
3036
3037         if (resp[2] != 0)
3038                 rv = 1;
3039
3040 out:
3041         kfree(resp);
3042         return rv;
3043 }
3044
3045 /*
3046  * Some BMCs do not support clearing the receive irq bit in the global
3047  * enables (even if they don't support interrupts on the BMC).  Check
3048  * for this and handle it properly.
3049  */
3050 static void check_clr_rcv_irq(struct smi_info *smi_info)
3051 {
3052         u8 enables = 0;
3053         int rv;
3054
3055         rv = get_global_enables(smi_info, &enables);
3056         if (!rv) {
3057                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3058                         /* Already clear, should work ok. */
3059                         return;
3060
3061                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3062                 rv = set_global_enables(smi_info, enables);
3063         }
3064
3065         if (rv < 0) {
3066                 dev_err(smi_info->dev,
3067                         "Cannot check clearing the rcv irq: %d\n", rv);
3068                 return;
3069         }
3070
3071         if (rv) {
3072                 /*
3073                  * An error when setting the event buffer bit means
3074                  * clearing the bit is not supported.
3075                  */
3076                 dev_warn(smi_info->dev,
3077                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3078                 smi_info->cannot_disable_irq = true;
3079         }
3080 }
3081
3082 /*
3083  * Some BMCs do not support setting the interrupt bits in the global
3084  * enables even if they support interrupts.  Clearly bad, but we can
3085  * compensate.
3086  */
3087 static void check_set_rcv_irq(struct smi_info *smi_info)
3088 {
3089         u8 enables = 0;
3090         int rv;
3091
3092         if (!smi_info->irq)
3093                 return;
3094
3095         rv = get_global_enables(smi_info, &enables);
3096         if (!rv) {
3097                 enables |= IPMI_BMC_RCV_MSG_INTR;
3098                 rv = set_global_enables(smi_info, enables);
3099         }
3100
3101         if (rv < 0) {
3102                 dev_err(smi_info->dev,
3103                         "Cannot check setting the rcv irq: %d\n", rv);
3104                 return;
3105         }
3106
3107         if (rv) {
3108                 /*
3109                  * An error when setting the event buffer bit means
3110                  * setting the bit is not supported.
3111                  */
3112                 dev_warn(smi_info->dev,
3113                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3114                 smi_info->cannot_disable_irq = true;
3115                 smi_info->irq_enable_broken = true;
3116         }
3117 }
3118
3119 static int try_enable_event_buffer(struct smi_info *smi_info)
3120 {
3121         unsigned char         msg[3];
3122         unsigned char         *resp;
3123         unsigned long         resp_len;
3124         int                   rv = 0;
3125
3126         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3127         if (!resp)
3128                 return -ENOMEM;
3129
3130         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3131         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3132         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3133
3134         rv = wait_for_msg_done(smi_info);
3135         if (rv) {
3136                 printk(KERN_WARNING PFX "Error getting response from get"
3137                        " global enables command, the event buffer is not"
3138                        " enabled.\n");
3139                 goto out;
3140         }
3141
3142         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3143                                                   resp, IPMI_MAX_MSG_LENGTH);
3144
3145         if (resp_len < 4 ||
3146                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3147                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3148                         resp[2] != 0) {
3149                 printk(KERN_WARNING PFX "Invalid return from get global"
3150                        " enables command, cannot enable the event buffer.\n");
3151                 rv = -EINVAL;
3152                 goto out;
3153         }
3154
3155         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3156                 /* buffer is already enabled, nothing to do. */
3157                 smi_info->supports_event_msg_buff = true;
3158                 goto out;
3159         }
3160
3161         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3162         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3163         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3164         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3165
3166         rv = wait_for_msg_done(smi_info);
3167         if (rv) {
3168                 printk(KERN_WARNING PFX "Error getting response from set"
3169                        " global, enables command, the event buffer is not"
3170                        " enabled.\n");
3171                 goto out;
3172         }
3173
3174         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3175                                                   resp, IPMI_MAX_MSG_LENGTH);
3176
3177         if (resp_len < 3 ||
3178                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3179                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3180                 printk(KERN_WARNING PFX "Invalid return from get global,"
3181                        "enables command, not enable the event buffer.\n");
3182                 rv = -EINVAL;
3183                 goto out;
3184         }
3185
3186         if (resp[2] != 0)
3187                 /*
3188                  * An error when setting the event buffer bit means
3189                  * that the event buffer is not supported.
3190                  */
3191                 rv = -ENOENT;
3192         else
3193                 smi_info->supports_event_msg_buff = true;
3194
3195  out:
3196         kfree(resp);
3197         return rv;
3198 }
3199
3200 static int smi_type_proc_show(struct seq_file *m, void *v)
3201 {
3202         struct smi_info *smi = m->private;
3203
3204         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3205
3206         return 0;
3207 }
3208
3209 static int smi_type_proc_open(struct inode *inode, struct file *file)
3210 {
3211         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3212 }
3213
3214 static const struct file_operations smi_type_proc_ops = {
3215         .open           = smi_type_proc_open,
3216         .read           = seq_read,
3217         .llseek         = seq_lseek,
3218         .release        = single_release,
3219 };
3220
3221 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3222 {
3223         struct smi_info *smi = m->private;
3224
3225         seq_printf(m, "interrupts_enabled:    %d\n",
3226                        smi->irq && !smi->interrupt_disabled);
3227         seq_printf(m, "short_timeouts:        %u\n",
3228                        smi_get_stat(smi, short_timeouts));
3229         seq_printf(m, "long_timeouts:         %u\n",
3230                        smi_get_stat(smi, long_timeouts));
3231         seq_printf(m, "idles:                 %u\n",
3232                        smi_get_stat(smi, idles));
3233         seq_printf(m, "interrupts:            %u\n",
3234                        smi_get_stat(smi, interrupts));
3235         seq_printf(m, "attentions:            %u\n",
3236                        smi_get_stat(smi, attentions));
3237         seq_printf(m, "flag_fetches:          %u\n",
3238                        smi_get_stat(smi, flag_fetches));
3239         seq_printf(m, "hosed_count:           %u\n",
3240                        smi_get_stat(smi, hosed_count));
3241         seq_printf(m, "complete_transactions: %u\n",
3242                        smi_get_stat(smi, complete_transactions));
3243         seq_printf(m, "events:                %u\n",
3244                        smi_get_stat(smi, events));
3245         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3246                        smi_get_stat(smi, watchdog_pretimeouts));
3247         seq_printf(m, "incoming_messages:     %u\n",
3248                        smi_get_stat(smi, incoming_messages));
3249         return 0;
3250 }
3251
3252 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3253 {
3254         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3255 }
3256
3257 static const struct file_operations smi_si_stats_proc_ops = {
3258         .open           = smi_si_stats_proc_open,
3259         .read           = seq_read,
3260         .llseek         = seq_lseek,
3261         .release        = single_release,
3262 };
3263
3264 static int smi_params_proc_show(struct seq_file *m, void *v)
3265 {
3266         struct smi_info *smi = m->private;
3267
3268         seq_printf(m,
3269                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3270                    si_to_str[smi->si_type],
3271                    addr_space_to_str[smi->io.addr_type],
3272                    smi->io.addr_data,
3273                    smi->io.regspacing,
3274                    smi->io.regsize,
3275                    smi->io.regshift,
3276                    smi->irq,
3277                    smi->slave_addr);
3278
3279         return 0;
3280 }
3281
3282 static int smi_params_proc_open(struct inode *inode, struct file *file)
3283 {
3284         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3285 }
3286
3287 static const struct file_operations smi_params_proc_ops = {
3288         .open           = smi_params_proc_open,
3289         .read           = seq_read,
3290         .llseek         = seq_lseek,
3291         .release        = single_release,
3292 };
3293
3294 /*
3295  * oem_data_avail_to_receive_msg_avail
3296  * @info - smi_info structure with msg_flags set
3297  *
3298  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3299  * Returns 1 indicating need to re-run handle_flags().
3300  */
3301 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3302 {
3303         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3304                                RECEIVE_MSG_AVAIL);
3305         return 1;
3306 }
3307
3308 /*
3309  * setup_dell_poweredge_oem_data_handler
3310  * @info - smi_info.device_id must be populated
3311  *
3312  * Systems that match, but have firmware version < 1.40 may assert
3313  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3314  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3315  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3316  * as RECEIVE_MSG_AVAIL instead.
3317  *
3318  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3319  * assert the OEM[012] bits, and if it did, the driver would have to
3320  * change to handle that properly, we don't actually check for the
3321  * firmware version.
3322  * Device ID = 0x20                BMC on PowerEdge 8G servers
3323  * Device Revision = 0x80
3324  * Firmware Revision1 = 0x01       BMC version 1.40
3325  * Firmware Revision2 = 0x40       BCD encoded
3326  * IPMI Version = 0x51             IPMI 1.5
3327  * Manufacturer ID = A2 02 00      Dell IANA
3328  *
3329  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3330  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3331  *
3332  */
3333 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3334 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3335 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3336 #define DELL_IANA_MFR_ID 0x0002a2
3337 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3338 {
3339         struct ipmi_device_id *id = &smi_info->device_id;
3340         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3341                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3342                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3343                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3344                         smi_info->oem_data_avail_handler =
3345                                 oem_data_avail_to_receive_msg_avail;
3346                 } else if (ipmi_version_major(id) < 1 ||
3347                            (ipmi_version_major(id) == 1 &&
3348                             ipmi_version_minor(id) < 5)) {
3349                         smi_info->oem_data_avail_handler =
3350                                 oem_data_avail_to_receive_msg_avail;
3351                 }
3352         }
3353 }
3354
3355 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3356 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3357 {
3358         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3359
3360         /* Make it a response */
3361         msg->rsp[0] = msg->data[0] | 4;
3362         msg->rsp[1] = msg->data[1];
3363         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3364         msg->rsp_size = 3;
3365         smi_info->curr_msg = NULL;
3366         deliver_recv_msg(smi_info, msg);
3367 }
3368
3369 /*
3370  * dell_poweredge_bt_xaction_handler
3371  * @info - smi_info.device_id must be populated
3372  *
3373  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3374  * not respond to a Get SDR command if the length of the data
3375  * requested is exactly 0x3A, which leads to command timeouts and no
3376  * data returned.  This intercepts such commands, and causes userspace
3377  * callers to try again with a different-sized buffer, which succeeds.
3378  */
3379
3380 #define STORAGE_NETFN 0x0A
3381 #define STORAGE_CMD_GET_SDR 0x23
3382 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3383                                              unsigned long unused,
3384                                              void *in)
3385 {
3386         struct smi_info *smi_info = in;
3387         unsigned char *data = smi_info->curr_msg->data;
3388         unsigned int size   = smi_info->curr_msg->data_size;
3389         if (size >= 8 &&
3390             (data[0]>>2) == STORAGE_NETFN &&
3391             data[1] == STORAGE_CMD_GET_SDR &&
3392             data[7] == 0x3A) {
3393                 return_hosed_msg_badsize(smi_info);
3394                 return NOTIFY_STOP;
3395         }
3396         return NOTIFY_DONE;
3397 }
3398
3399 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3400         .notifier_call  = dell_poweredge_bt_xaction_handler,
3401 };
3402
3403 /*
3404  * setup_dell_poweredge_bt_xaction_handler
3405  * @info - smi_info.device_id must be filled in already
3406  *
3407  * Fills in smi_info.device_id.start_transaction_pre_hook
3408  * when we know what function to use there.
3409  */
3410 static void
3411 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3412 {
3413         struct ipmi_device_id *id = &smi_info->device_id;
3414         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3415             smi_info->si_type == SI_BT)
3416                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3417 }
3418
3419 /*
3420  * setup_oem_data_handler
3421  * @info - smi_info.device_id must be filled in already
3422  *
3423  * Fills in smi_info.device_id.oem_data_available_handler
3424  * when we know what function to use there.
3425  */
3426
3427 static void setup_oem_data_handler(struct smi_info *smi_info)
3428 {
3429         setup_dell_poweredge_oem_data_handler(smi_info);
3430 }
3431
3432 static void setup_xaction_handlers(struct smi_info *smi_info)
3433 {
3434         setup_dell_poweredge_bt_xaction_handler(smi_info);
3435 }
3436
3437 static void check_for_broken_irqs(struct smi_info *smi_info)
3438 {
3439         check_clr_rcv_irq(smi_info);
3440         check_set_rcv_irq(smi_info);
3441 }
3442
3443 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3444 {
3445         if (smi_info->thread != NULL)
3446                 kthread_stop(smi_info->thread);
3447         if (smi_info->timer_running)
3448                 del_timer_sync(&smi_info->si_timer);
3449 }
3450
3451 static const struct ipmi_default_vals
3452 {
3453         const int type;
3454         const int port;
3455 } ipmi_defaults[] =
3456 {
3457         { .type = SI_KCS, .port = 0xca2 },
3458         { .type = SI_SMIC, .port = 0xca9 },
3459         { .type = SI_BT, .port = 0xe4 },
3460         { .port = 0 }
3461 };
3462
3463 static void default_find_bmc(void)
3464 {
3465         struct smi_info *info;
3466         int             i;
3467
3468         for (i = 0; ; i++) {
3469                 if (!ipmi_defaults[i].port)
3470                         break;
3471 #ifdef CONFIG_PPC
3472                 if (check_legacy_ioport(ipmi_defaults[i].port))
3473                         continue;
3474 #endif
3475                 info = smi_info_alloc();
3476                 if (!info)
3477                         return;
3478
3479                 info->addr_source = SI_DEFAULT;
3480
3481                 info->si_type = ipmi_defaults[i].type;
3482                 info->io_setup = port_setup;
3483                 info->io.addr_data = ipmi_defaults[i].port;
3484                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3485
3486                 info->io.addr = NULL;
3487                 info->io.regspacing = DEFAULT_REGSPACING;
3488                 info->io.regsize = DEFAULT_REGSPACING;
3489                 info->io.regshift = 0;
3490
3491                 if (add_smi(info) == 0) {
3492                         if ((try_smi_init(info)) == 0) {
3493                                 /* Found one... */
3494                                 printk(KERN_INFO PFX "Found default %s"
3495                                 " state machine at %s address 0x%lx\n",
3496                                 si_to_str[info->si_type],
3497                                 addr_space_to_str[info->io.addr_type],
3498                                 info->io.addr_data);
3499                         } else
3500                                 cleanup_one_si(info);
3501                 } else {
3502                         kfree(info);
3503                 }
3504         }
3505 }
3506
3507 static int is_new_interface(struct smi_info *info)
3508 {
3509         struct smi_info *e;
3510
3511         list_for_each_entry(e, &smi_infos, link) {
3512                 if (e->io.addr_type != info->io.addr_type)
3513                         continue;
3514                 if (e->io.addr_data == info->io.addr_data)
3515                         return 0;
3516         }
3517
3518         return 1;
3519 }
3520
3521 static int add_smi(struct smi_info *new_smi)
3522 {
3523         int rv = 0;
3524
3525         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3526                ipmi_addr_src_to_str(new_smi->addr_source),
3527                si_to_str[new_smi->si_type]);
3528         mutex_lock(&smi_infos_lock);
3529         if (!is_new_interface(new_smi)) {
3530                 printk(KERN_CONT " duplicate interface\n");
3531                 rv = -EBUSY;
3532                 goto out_err;
3533         }
3534
3535         printk(KERN_CONT "\n");
3536
3537         /* So we know not to free it unless we have allocated one. */
3538         new_smi->intf = NULL;
3539         new_smi->si_sm = NULL;
3540         new_smi->handlers = NULL;
3541
3542         list_add_tail(&new_smi->link, &smi_infos);
3543
3544 out_err:
3545         mutex_unlock(&smi_infos_lock);
3546         return rv;
3547 }
3548
3549 static int try_smi_init(struct smi_info *new_smi)
3550 {
3551         int rv = 0;
3552         int i;
3553
3554         printk(KERN_INFO PFX "Trying %s-specified %s state"
3555                " machine at %s address 0x%lx, slave address 0x%x,"
3556                " irq %d\n",
3557                ipmi_addr_src_to_str(new_smi->addr_source),
3558                si_to_str[new_smi->si_type],
3559                addr_space_to_str[new_smi->io.addr_type],
3560                new_smi->io.addr_data,
3561                new_smi->slave_addr, new_smi->irq);
3562
3563         switch (new_smi->si_type) {
3564         case SI_KCS:
3565                 new_smi->handlers = &kcs_smi_handlers;
3566                 break;
3567
3568         case SI_SMIC:
3569                 new_smi->handlers = &smic_smi_handlers;
3570                 break;
3571
3572         case SI_BT:
3573                 new_smi->handlers = &bt_smi_handlers;
3574                 break;
3575
3576         default:
3577                 /* No support for anything else yet. */
3578                 rv = -EIO;
3579                 goto out_err;
3580         }
3581
3582         /* Allocate the state machine's data and initialize it. */
3583         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3584         if (!new_smi->si_sm) {
3585                 printk(KERN_ERR PFX
3586                        "Could not allocate state machine memory\n");
3587                 rv = -ENOMEM;
3588                 goto out_err;
3589         }
3590         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3591                                                         &new_smi->io);
3592
3593         /* Now that we know the I/O size, we can set up the I/O. */
3594         rv = new_smi->io_setup(new_smi);
3595         if (rv) {
3596                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3597                 goto out_err;
3598         }
3599
3600         /* Do low-level detection first. */
3601         if (new_smi->handlers->detect(new_smi->si_sm)) {
3602                 if (new_smi->addr_source)
3603                         printk(KERN_INFO PFX "Interface detection failed\n");
3604                 rv = -ENODEV;
3605                 goto out_err;
3606         }
3607
3608         /*
3609          * Attempt a get device id command.  If it fails, we probably
3610          * don't have a BMC here.
3611          */
3612         rv = try_get_dev_id(new_smi);
3613         if (rv) {
3614                 if (new_smi->addr_source)
3615                         printk(KERN_INFO PFX "There appears to be no BMC"
3616                                " at this location\n");
3617                 goto out_err;
3618         }
3619
3620         setup_oem_data_handler(new_smi);
3621         setup_xaction_handlers(new_smi);
3622         check_for_broken_irqs(new_smi);
3623
3624         new_smi->waiting_msg = NULL;
3625         new_smi->curr_msg = NULL;
3626         atomic_set(&new_smi->req_events, 0);
3627         new_smi->run_to_completion = false;
3628         for (i = 0; i < SI_NUM_STATS; i++)
3629                 atomic_set(&new_smi->stats[i], 0);
3630
3631         new_smi->interrupt_disabled = true;
3632         atomic_set(&new_smi->need_watch, 0);
3633         new_smi->intf_num = smi_num;
3634         smi_num++;
3635
3636         rv = try_enable_event_buffer(new_smi);
3637         if (rv == 0)
3638                 new_smi->has_event_buffer = true;
3639
3640         /*
3641          * Start clearing the flags before we enable interrupts or the
3642          * timer to avoid racing with the timer.
3643          */
3644         start_clear_flags(new_smi, false);
3645
3646         /*
3647          * IRQ is defined to be set when non-zero.  req_events will
3648          * cause a global flags check that will enable interrupts.
3649          */
3650         if (new_smi->irq) {
3651                 new_smi->interrupt_disabled = false;
3652                 atomic_set(&new_smi->req_events, 1);
3653         }
3654
3655         if (!new_smi->dev) {
3656                 /*
3657                  * If we don't already have a device from something
3658                  * else (like PCI), then register a new one.
3659                  */
3660                 new_smi->pdev = platform_device_alloc("ipmi_si",
3661                                                       new_smi->intf_num);
3662                 if (!new_smi->pdev) {
3663                         printk(KERN_ERR PFX
3664                                "Unable to allocate platform device\n");
3665                         goto out_err;
3666                 }
3667                 new_smi->dev = &new_smi->pdev->dev;
3668                 new_smi->dev->driver = &ipmi_driver.driver;
3669
3670                 rv = platform_device_add(new_smi->pdev);
3671                 if (rv) {
3672                         printk(KERN_ERR PFX
3673                                "Unable to register system interface device:"
3674                                " %d\n",
3675                                rv);
3676                         goto out_err;
3677                 }
3678                 new_smi->dev_registered = true;
3679         }
3680
3681         rv = ipmi_register_smi(&handlers,
3682                                new_smi,
3683                                &new_smi->device_id,
3684                                new_smi->dev,
3685                                new_smi->slave_addr);
3686         if (rv) {
3687                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3688                         rv);
3689                 goto out_err_stop_timer;
3690         }
3691
3692         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3693                                      &smi_type_proc_ops,
3694                                      new_smi);
3695         if (rv) {
3696                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3697                 goto out_err_stop_timer;
3698         }
3699
3700         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3701                                      &smi_si_stats_proc_ops,
3702                                      new_smi);
3703         if (rv) {
3704                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3705                 goto out_err_stop_timer;
3706         }
3707
3708         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3709                                      &smi_params_proc_ops,
3710                                      new_smi);
3711         if (rv) {
3712                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3713                 goto out_err_stop_timer;
3714         }
3715
3716         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3717                  si_to_str[new_smi->si_type]);
3718
3719         return 0;
3720
3721  out_err_stop_timer:
3722         wait_for_timer_and_thread(new_smi);
3723
3724  out_err:
3725         new_smi->interrupt_disabled = true;
3726
3727         if (new_smi->intf) {
3728                 ipmi_smi_t intf = new_smi->intf;
3729                 new_smi->intf = NULL;
3730                 ipmi_unregister_smi(intf);
3731         }
3732
3733         if (new_smi->irq_cleanup) {
3734                 new_smi->irq_cleanup(new_smi);
3735                 new_smi->irq_cleanup = NULL;
3736         }
3737
3738         /*
3739          * Wait until we know that we are out of any interrupt
3740          * handlers might have been running before we freed the
3741          * interrupt.
3742          */
3743         synchronize_sched();
3744
3745         if (new_smi->si_sm) {
3746                 if (new_smi->handlers)
3747                         new_smi->handlers->cleanup(new_smi->si_sm);
3748                 kfree(new_smi->si_sm);
3749                 new_smi->si_sm = NULL;
3750         }
3751         if (new_smi->addr_source_cleanup) {
3752                 new_smi->addr_source_cleanup(new_smi);
3753                 new_smi->addr_source_cleanup = NULL;
3754         }
3755         if (new_smi->io_cleanup) {
3756                 new_smi->io_cleanup(new_smi);
3757                 new_smi->io_cleanup = NULL;
3758         }
3759
3760         if (new_smi->dev_registered) {
3761                 platform_device_unregister(new_smi->pdev);
3762                 new_smi->dev_registered = false;
3763         }
3764
3765         return rv;
3766 }
3767
3768 static int init_ipmi_si(void)
3769 {
3770         int  i;
3771         char *str;
3772         int  rv;
3773         struct smi_info *e;
3774         enum ipmi_addr_src type = SI_INVALID;
3775
3776         if (initialized)
3777                 return 0;
3778         initialized = 1;
3779
3780         if (si_tryplatform) {
3781                 rv = platform_driver_register(&ipmi_driver);
3782                 if (rv) {
3783                         printk(KERN_ERR PFX "Unable to register "
3784                                "driver: %d\n", rv);
3785                         return rv;
3786                 }
3787         }
3788
3789         /* Parse out the si_type string into its components. */
3790         str = si_type_str;
3791         if (*str != '\0') {
3792                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3793                         si_type[i] = str;
3794                         str = strchr(str, ',');
3795                         if (str) {
3796                                 *str = '\0';
3797                                 str++;
3798                         } else {
3799                                 break;
3800                         }
3801                 }
3802         }
3803
3804         printk(KERN_INFO "IPMI System Interface driver.\n");
3805
3806         /* If the user gave us a device, they presumably want us to use it */
3807         if (!hardcode_find_bmc())
3808                 return 0;
3809
3810 #ifdef CONFIG_PCI
3811         if (si_trypci) {
3812                 rv = pci_register_driver(&ipmi_pci_driver);
3813                 if (rv)
3814                         printk(KERN_ERR PFX "Unable to register "
3815                                "PCI driver: %d\n", rv);
3816                 else
3817                         pci_registered = true;
3818         }
3819 #endif
3820
3821 #ifdef CONFIG_DMI
3822         if (si_trydmi)
3823                 dmi_find_bmc();
3824 #endif
3825
3826 #ifdef CONFIG_ACPI
3827         if (si_tryacpi)
3828                 spmi_find_bmc();
3829 #endif
3830
3831 #ifdef CONFIG_PARISC
3832         register_parisc_driver(&ipmi_parisc_driver);
3833         parisc_registered = true;
3834         /* poking PC IO addresses will crash machine, don't do it */
3835         si_trydefaults = 0;
3836 #endif
3837
3838         /* We prefer devices with interrupts, but in the case of a machine
3839            with multiple BMCs we assume that there will be several instances
3840            of a given type so if we succeed in registering a type then also
3841            try to register everything else of the same type */
3842
3843         mutex_lock(&smi_infos_lock);
3844         list_for_each_entry(e, &smi_infos, link) {
3845                 /* Try to register a device if it has an IRQ and we either
3846                    haven't successfully registered a device yet or this
3847                    device has the same type as one we successfully registered */
3848                 if (e->irq && (!type || e->addr_source == type)) {
3849                         if (!try_smi_init(e)) {
3850                                 type = e->addr_source;
3851                         }
3852                 }
3853         }
3854
3855         /* type will only have been set if we successfully registered an si */
3856         if (type) {
3857                 mutex_unlock(&smi_infos_lock);
3858                 return 0;
3859         }
3860
3861         /* Fall back to the preferred device */
3862
3863         list_for_each_entry(e, &smi_infos, link) {
3864                 if (!e->irq && (!type || e->addr_source == type)) {
3865                         if (!try_smi_init(e)) {
3866                                 type = e->addr_source;
3867                         }
3868                 }
3869         }
3870         mutex_unlock(&smi_infos_lock);
3871
3872         if (type)
3873                 return 0;
3874
3875         if (si_trydefaults) {
3876                 mutex_lock(&smi_infos_lock);
3877                 if (list_empty(&smi_infos)) {
3878                         /* No BMC was found, try defaults. */
3879                         mutex_unlock(&smi_infos_lock);
3880                         default_find_bmc();
3881                 } else
3882                         mutex_unlock(&smi_infos_lock);
3883         }
3884
3885         mutex_lock(&smi_infos_lock);
3886         if (unload_when_empty && list_empty(&smi_infos)) {
3887                 mutex_unlock(&smi_infos_lock);
3888                 cleanup_ipmi_si();
3889                 printk(KERN_WARNING PFX
3890                        "Unable to find any System Interface(s)\n");
3891                 return -ENODEV;
3892         } else {
3893                 mutex_unlock(&smi_infos_lock);
3894                 return 0;
3895         }
3896 }
3897 module_init(init_ipmi_si);
3898
3899 static void cleanup_one_si(struct smi_info *to_clean)
3900 {
3901         int           rv = 0;
3902
3903         if (!to_clean)
3904                 return;
3905
3906         if (to_clean->intf) {
3907                 ipmi_smi_t intf = to_clean->intf;
3908
3909                 to_clean->intf = NULL;
3910                 rv = ipmi_unregister_smi(intf);
3911                 if (rv) {
3912                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3913                                rv);
3914                 }
3915         }
3916
3917         if (to_clean->dev)
3918                 dev_set_drvdata(to_clean->dev, NULL);
3919
3920         list_del(&to_clean->link);
3921
3922         /*
3923          * Make sure that interrupts, the timer and the thread are
3924          * stopped and will not run again.
3925          */
3926         if (to_clean->irq_cleanup)
3927                 to_clean->irq_cleanup(to_clean);
3928         wait_for_timer_and_thread(to_clean);
3929
3930         /*
3931          * Timeouts are stopped, now make sure the interrupts are off
3932          * in the BMC.  Note that timers and CPU interrupts are off,
3933          * so no need for locks.
3934          */
3935         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3936                 poll(to_clean);
3937                 schedule_timeout_uninterruptible(1);
3938         }
3939         disable_si_irq(to_clean, false);
3940         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3941                 poll(to_clean);
3942                 schedule_timeout_uninterruptible(1);
3943         }
3944
3945         if (to_clean->handlers)
3946                 to_clean->handlers->cleanup(to_clean->si_sm);
3947
3948         kfree(to_clean->si_sm);
3949
3950         if (to_clean->addr_source_cleanup)
3951                 to_clean->addr_source_cleanup(to_clean);
3952         if (to_clean->io_cleanup)
3953                 to_clean->io_cleanup(to_clean);
3954
3955         if (to_clean->dev_registered)
3956                 platform_device_unregister(to_clean->pdev);
3957
3958         kfree(to_clean);
3959 }
3960
3961 static void cleanup_ipmi_si(void)
3962 {
3963         struct smi_info *e, *tmp_e;
3964
3965         if (!initialized)
3966                 return;
3967
3968 #ifdef CONFIG_PCI
3969         if (pci_registered)
3970                 pci_unregister_driver(&ipmi_pci_driver);
3971 #endif
3972 #ifdef CONFIG_PARISC
3973         if (parisc_registered)
3974                 unregister_parisc_driver(&ipmi_parisc_driver);
3975 #endif
3976
3977         platform_driver_unregister(&ipmi_driver);
3978
3979         mutex_lock(&smi_infos_lock);
3980         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3981                 cleanup_one_si(e);
3982         mutex_unlock(&smi_infos_lock);
3983 }
3984 module_exit(cleanup_ipmi_si);
3985
3986 MODULE_LICENSE("GPL");
3987 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3988 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3989                    " system interfaces.");