Merge ath-next from ath.git.
[cascardo/linux.git] / drivers / clk / clk-cdce925.c
1 /*
2  * Driver for TI Dual PLL CDCE925 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5  * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/gcd.h>
20
21 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
22  * Model this as 2 PLL clocks which are parents to the outputs.
23  */
24 #define NUMBER_OF_PLLS  2
25 #define NUMBER_OF_OUTPUTS       5
26
27 #define CDCE925_REG_GLOBAL1     0x01
28 #define CDCE925_REG_Y1SPIPDIVH  0x02
29 #define CDCE925_REG_PDIVL       0x03
30 #define CDCE925_REG_XCSEL       0x05
31 /* PLL parameters start at 0x10, steps of 0x10 */
32 #define CDCE925_OFFSET_PLL      0x10
33 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
34 #define CDCE925_PLL_MUX_OUTPUTS 0x14
35 #define CDCE925_PLL_MULDIV      0x18
36
37 #define CDCE925_PLL_FREQUENCY_MIN        80000000ul
38 #define CDCE925_PLL_FREQUENCY_MAX       230000000ul
39 struct clk_cdce925_chip;
40
41 struct clk_cdce925_output {
42         struct clk_hw hw;
43         struct clk_cdce925_chip *chip;
44         u8 index;
45         u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
46 };
47 #define to_clk_cdce925_output(_hw) \
48         container_of(_hw, struct clk_cdce925_output, hw)
49
50 struct clk_cdce925_pll {
51         struct clk_hw hw;
52         struct clk_cdce925_chip *chip;
53         u8 index;
54         u16 m;   /* 1..511 */
55         u16 n;   /* 1..4095 */
56 };
57 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
58
59 struct clk_cdce925_chip {
60         struct regmap *regmap;
61         struct i2c_client *i2c_client;
62         struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
63         struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
64         struct clk *dt_clk[NUMBER_OF_OUTPUTS];
65         struct clk_onecell_data onecell;
66 };
67
68 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
69
70 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
71         u16 n, u16 m)
72 {
73         if ((!m || !n) || (m == n))
74                 return parent_rate; /* In bypass mode runs at same frequency */
75         return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
76 }
77
78 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
79                 unsigned long parent_rate)
80 {
81         /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
82         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
83
84         return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
85 }
86
87 static void cdce925_pll_find_rate(unsigned long rate,
88                 unsigned long parent_rate, u16 *n, u16 *m)
89 {
90         unsigned long un;
91         unsigned long um;
92         unsigned long g;
93
94         if (rate <= parent_rate) {
95                 /* Can always deliver parent_rate in bypass mode */
96                 rate = parent_rate;
97                 *n = 0;
98                 *m = 0;
99         } else {
100                 /* In PLL mode, need to apply min/max range */
101                 if (rate < CDCE925_PLL_FREQUENCY_MIN)
102                         rate = CDCE925_PLL_FREQUENCY_MIN;
103                 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
104                         rate = CDCE925_PLL_FREQUENCY_MAX;
105
106                 g = gcd(rate, parent_rate);
107                 um = parent_rate / g;
108                 un = rate / g;
109                 /* When outside hw range, reduce to fit (rounding errors) */
110                 while ((un > 4095) || (um > 511)) {
111                         un >>= 1;
112                         um >>= 1;
113                 }
114                 if (un == 0)
115                         un = 1;
116                 if (um == 0)
117                         um = 1;
118
119                 *n = un;
120                 *m = um;
121         }
122 }
123
124 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
125                 unsigned long *parent_rate)
126 {
127         u16 n, m;
128
129         cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
130         return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
131 }
132
133 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
134                 unsigned long parent_rate)
135 {
136         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
137
138         if (!rate || (rate == parent_rate)) {
139                 data->m = 0; /* Bypass mode */
140                 data->n = 0;
141                 return 0;
142         }
143
144         if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
145                 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
146                 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
147                 return -EINVAL;
148         }
149
150         if (rate < parent_rate) {
151                 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
152                         rate, parent_rate);
153                 return -EINVAL;
154         }
155
156         cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
157         return 0;
158 }
159
160
161 /* calculate p = max(0, 4 - int(log2 (n/m))) */
162 static u8 cdce925_pll_calc_p(u16 n, u16 m)
163 {
164         u8 p;
165         u16 r = n / m;
166
167         if (r >= 16)
168                 return 0;
169         p = 4;
170         while (r > 1) {
171                 r >>= 1;
172                 --p;
173         }
174         return p;
175 }
176
177 /* Returns VCO range bits for VCO1_0_RANGE */
178 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
179 {
180         struct clk *parent = clk_get_parent(hw->clk);
181         unsigned long rate = clk_get_rate(parent);
182
183         rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
184         if (rate >= 175000000)
185                 return 0x3;
186         if (rate >= 150000000)
187                 return 0x02;
188         if (rate >= 125000000)
189                 return 0x01;
190         return 0x00;
191 }
192
193 /* I2C clock, hence everything must happen in (un)prepare because this
194  * may sleep */
195 static int cdce925_pll_prepare(struct clk_hw *hw)
196 {
197         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
198         u16 n = data->n;
199         u16 m = data->m;
200         u16 r;
201         u8 q;
202         u8 p;
203         u16 nn;
204         u8 pll[4]; /* Bits are spread out over 4 byte registers */
205         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
206         unsigned i;
207
208         if ((!m || !n) || (m == n)) {
209                 /* Set PLL mux to bypass mode, leave the rest as is */
210                 regmap_update_bits(data->chip->regmap,
211                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
212         } else {
213                 /* According to data sheet: */
214                 /* p = max(0, 4 - int(log2 (n/m))) */
215                 p = cdce925_pll_calc_p(n, m);
216                 /* nn = n * 2^p */
217                 nn = n * BIT(p);
218                 /* q = int(nn/m) */
219                 q = nn / m;
220                 if ((q < 16) || (1 > 64)) {
221                         pr_debug("%s invalid q=%d\n", __func__, q);
222                         return -EINVAL;
223                 }
224                 r = nn - (m*q);
225                 if (r > 511) {
226                         pr_debug("%s invalid r=%d\n", __func__, r);
227                         return -EINVAL;
228                 }
229                 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
230                         n, m, p, q, r);
231                 /* encode into register bits */
232                 pll[0] = n >> 4;
233                 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
234                 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
235                 pll[3] = ((q & 0x07) << 5) | (p << 2) |
236                                 cdce925_pll_calc_range_bits(hw, n, m);
237                 /* Write to registers */
238                 for (i = 0; i < ARRAY_SIZE(pll); ++i)
239                         regmap_write(data->chip->regmap,
240                                 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
241                 /* Enable PLL */
242                 regmap_update_bits(data->chip->regmap,
243                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
244         }
245
246         return 0;
247 }
248
249 static void cdce925_pll_unprepare(struct clk_hw *hw)
250 {
251         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
252         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
253
254         regmap_update_bits(data->chip->regmap,
255                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
256 }
257
258 static const struct clk_ops cdce925_pll_ops = {
259         .prepare = cdce925_pll_prepare,
260         .unprepare = cdce925_pll_unprepare,
261         .recalc_rate = cdce925_pll_recalc_rate,
262         .round_rate = cdce925_pll_round_rate,
263         .set_rate = cdce925_pll_set_rate,
264 };
265
266
267 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
268 {
269         switch (data->index) {
270         case 0:
271                 regmap_update_bits(data->chip->regmap,
272                         CDCE925_REG_Y1SPIPDIVH,
273                         0x03, (pdiv >> 8) & 0x03);
274                 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
275                 break;
276         case 1:
277                 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
278                 break;
279         case 2:
280                 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
281                 break;
282         case 3:
283                 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
284                 break;
285         case 4:
286                 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
287                 break;
288         }
289 }
290
291 static void cdce925_clk_activate(struct clk_cdce925_output *data)
292 {
293         switch (data->index) {
294         case 0:
295                 regmap_update_bits(data->chip->regmap,
296                         CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
297                 break;
298         case 1:
299         case 2:
300                 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
301                 break;
302         case 3:
303         case 4:
304                 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
305                 break;
306         }
307 }
308
309 static int cdce925_clk_prepare(struct clk_hw *hw)
310 {
311         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
312
313         cdce925_clk_set_pdiv(data, data->pdiv);
314         cdce925_clk_activate(data);
315         return 0;
316 }
317
318 static void cdce925_clk_unprepare(struct clk_hw *hw)
319 {
320         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
321
322         /* Disable clock by setting divider to "0" */
323         cdce925_clk_set_pdiv(data, 0);
324 }
325
326 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
327                 unsigned long parent_rate)
328 {
329         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
330
331         if (data->pdiv)
332                 return parent_rate / data->pdiv;
333         return 0;
334 }
335
336 static u16 cdce925_calc_divider(unsigned long rate,
337                 unsigned long parent_rate)
338 {
339         unsigned long divider;
340
341         if (!rate)
342                 return 0;
343         if (rate >= parent_rate)
344                 return 1;
345
346         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
347         if (divider > 0x7F)
348                 divider = 0x7F;
349
350         return (u16)divider;
351 }
352
353 static unsigned long cdce925_clk_best_parent_rate(
354         struct clk_hw *hw, unsigned long rate)
355 {
356         struct clk *pll = clk_get_parent(hw->clk);
357         struct clk *root = clk_get_parent(pll);
358         unsigned long root_rate = clk_get_rate(root);
359         unsigned long best_rate_error = rate;
360         u16 pdiv_min;
361         u16 pdiv_max;
362         u16 pdiv_best;
363         u16 pdiv_now;
364
365         if (root_rate % rate == 0)
366                 return root_rate; /* Don't need the PLL, use bypass */
367
368         pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
369         pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
370
371         if (pdiv_min > pdiv_max)
372                 return 0; /* No can do? */
373
374         pdiv_best = pdiv_min;
375         for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
376                 unsigned long target_rate = rate * pdiv_now;
377                 long pll_rate = clk_round_rate(pll, target_rate);
378                 unsigned long actual_rate;
379                 unsigned long rate_error;
380
381                 if (pll_rate <= 0)
382                         continue;
383                 actual_rate = pll_rate / pdiv_now;
384                 rate_error = abs((long)actual_rate - (long)rate);
385                 if (rate_error < best_rate_error) {
386                         pdiv_best = pdiv_now;
387                         best_rate_error = rate_error;
388                 }
389                 /* TODO: Consider PLL frequency based on smaller n/m values
390                  * and pick the better one if the error is equal */
391         }
392
393         return rate * pdiv_best;
394 }
395
396 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
397                 unsigned long *parent_rate)
398 {
399         unsigned long l_parent_rate = *parent_rate;
400         u16 divider = cdce925_calc_divider(rate, l_parent_rate);
401
402         if (l_parent_rate / divider != rate) {
403                 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
404                 divider = cdce925_calc_divider(rate, l_parent_rate);
405                 *parent_rate = l_parent_rate;
406         }
407
408         if (divider)
409                 return (long)(l_parent_rate / divider);
410         return 0;
411 }
412
413 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
414                 unsigned long parent_rate)
415 {
416         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
417
418         data->pdiv = cdce925_calc_divider(rate, parent_rate);
419
420         return 0;
421 }
422
423 static const struct clk_ops cdce925_clk_ops = {
424         .prepare = cdce925_clk_prepare,
425         .unprepare = cdce925_clk_unprepare,
426         .recalc_rate = cdce925_clk_recalc_rate,
427         .round_rate = cdce925_clk_round_rate,
428         .set_rate = cdce925_clk_set_rate,
429 };
430
431
432 static u16 cdce925_y1_calc_divider(unsigned long rate,
433                 unsigned long parent_rate)
434 {
435         unsigned long divider;
436
437         if (!rate)
438                 return 0;
439         if (rate >= parent_rate)
440                 return 1;
441
442         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
443         if (divider > 0x3FF) /* Y1 has 10-bit divider */
444                 divider = 0x3FF;
445
446         return (u16)divider;
447 }
448
449 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
450                 unsigned long *parent_rate)
451 {
452         unsigned long l_parent_rate = *parent_rate;
453         u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
454
455         if (divider)
456                 return (long)(l_parent_rate / divider);
457         return 0;
458 }
459
460 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
461                 unsigned long parent_rate)
462 {
463         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
464
465         data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
466
467         return 0;
468 }
469
470 static const struct clk_ops cdce925_clk_y1_ops = {
471         .prepare = cdce925_clk_prepare,
472         .unprepare = cdce925_clk_unprepare,
473         .recalc_rate = cdce925_clk_recalc_rate,
474         .round_rate = cdce925_clk_y1_round_rate,
475         .set_rate = cdce925_clk_y1_set_rate,
476 };
477
478
479 static struct regmap_config cdce925_regmap_config = {
480         .name = "configuration0",
481         .reg_bits = 8,
482         .val_bits = 8,
483         .cache_type = REGCACHE_RBTREE,
484         .max_register = 0x2F,
485 };
486
487 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
488 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
489
490 static int cdce925_regmap_i2c_write(
491         void *context, const void *data, size_t count)
492 {
493         struct device *dev = context;
494         struct i2c_client *i2c = to_i2c_client(dev);
495         int ret;
496         u8 reg_data[2];
497
498         if (count != 2)
499                 return -ENOTSUPP;
500
501         /* First byte is command code */
502         reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
503         reg_data[1] = ((u8 *)data)[1];
504
505         dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
506                         reg_data[0], reg_data[1]);
507
508         ret = i2c_master_send(i2c, reg_data, count);
509         if (likely(ret == count))
510                 return 0;
511         else if (ret < 0)
512                 return ret;
513         else
514                 return -EIO;
515 }
516
517 static int cdce925_regmap_i2c_read(void *context,
518            const void *reg, size_t reg_size, void *val, size_t val_size)
519 {
520         struct device *dev = context;
521         struct i2c_client *i2c = to_i2c_client(dev);
522         struct i2c_msg xfer[2];
523         int ret;
524         u8 reg_data[2];
525
526         if (reg_size != 1)
527                 return -ENOTSUPP;
528
529         xfer[0].addr = i2c->addr;
530         xfer[0].flags = 0;
531         xfer[0].buf = reg_data;
532         if (val_size == 1) {
533                 reg_data[0] =
534                         CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
535                 xfer[0].len = 1;
536         } else {
537                 reg_data[0] =
538                         CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
539                 reg_data[1] = val_size;
540                 xfer[0].len = 2;
541         }
542
543         xfer[1].addr = i2c->addr;
544         xfer[1].flags = I2C_M_RD;
545         xfer[1].len = val_size;
546         xfer[1].buf = val;
547
548         ret = i2c_transfer(i2c->adapter, xfer, 2);
549         if (likely(ret == 2)) {
550                 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
551                                 reg_size, val_size, reg_data[0], *((u8 *)val));
552                 return 0;
553         } else if (ret < 0)
554                 return ret;
555         else
556                 return -EIO;
557 }
558
559 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
560  * just weird, so just use the single byte mode exclusively. */
561 static struct regmap_bus regmap_cdce925_bus = {
562         .write = cdce925_regmap_i2c_write,
563         .read = cdce925_regmap_i2c_read,
564 };
565
566 static int cdce925_probe(struct i2c_client *client,
567                 const struct i2c_device_id *id)
568 {
569         struct clk_cdce925_chip *data;
570         struct device_node *node = client->dev.of_node;
571         const char *parent_name;
572         const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
573         struct clk_init_data init;
574         struct clk *clk;
575         u32 value;
576         int i;
577         int err;
578         struct device_node *np_output;
579         char child_name[6];
580
581         dev_dbg(&client->dev, "%s\n", __func__);
582         data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
583         if (!data)
584                 return -ENOMEM;
585
586         data->i2c_client = client;
587         data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
588                         &client->dev, &cdce925_regmap_config);
589         if (IS_ERR(data->regmap)) {
590                 dev_err(&client->dev, "failed to allocate register map\n");
591                 return PTR_ERR(data->regmap);
592         }
593         i2c_set_clientdata(client, data);
594
595         parent_name = of_clk_get_parent_name(node, 0);
596         if (!parent_name) {
597                 dev_err(&client->dev, "missing parent clock\n");
598                 return -ENODEV;
599         }
600         dev_dbg(&client->dev, "parent is: %s\n", parent_name);
601
602         if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
603                 regmap_write(data->regmap,
604                         CDCE925_REG_XCSEL, (value << 3) & 0xF8);
605         /* PWDN bit */
606         regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
607
608         /* Set input source for Y1 to be the XTAL */
609         regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
610
611         init.ops = &cdce925_pll_ops;
612         init.flags = 0;
613         init.parent_names = &parent_name;
614         init.num_parents = parent_name ? 1 : 0;
615
616         /* Register PLL clocks */
617         for (i = 0; i < NUMBER_OF_PLLS; ++i) {
618                 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
619                         client->dev.of_node->name, i);
620                 init.name = pll_clk_name[i];
621                 data->pll[i].chip = data;
622                 data->pll[i].hw.init = &init;
623                 data->pll[i].index = i;
624                 clk = devm_clk_register(&client->dev, &data->pll[i].hw);
625                 if (IS_ERR(clk)) {
626                         dev_err(&client->dev, "Failed register PLL %d\n", i);
627                         err = PTR_ERR(clk);
628                         goto error;
629                 }
630                 sprintf(child_name, "PLL%d", i+1);
631                 np_output = of_get_child_by_name(node, child_name);
632                 if (!np_output)
633                         continue;
634                 if (!of_property_read_u32(np_output,
635                         "clock-frequency", &value)) {
636                         err = clk_set_rate(clk, value);
637                         if (err)
638                                 dev_err(&client->dev,
639                                         "unable to set PLL frequency %ud\n",
640                                         value);
641                 }
642                 if (!of_property_read_u32(np_output,
643                         "spread-spectrum", &value)) {
644                         u8 flag = of_property_read_bool(np_output,
645                                 "spread-spectrum-center") ? 0x80 : 0x00;
646                         regmap_update_bits(data->regmap,
647                                 0x16 + (i*CDCE925_OFFSET_PLL),
648                                 0x80, flag);
649                         regmap_update_bits(data->regmap,
650                                 0x12 + (i*CDCE925_OFFSET_PLL),
651                                 0x07, value & 0x07);
652                 }
653         }
654
655         /* Register output clock Y1 */
656         init.ops = &cdce925_clk_y1_ops;
657         init.flags = 0;
658         init.num_parents = 1;
659         init.parent_names = &parent_name; /* Mux Y1 to input */
660         init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
661         data->clk[0].chip = data;
662         data->clk[0].hw.init = &init;
663         data->clk[0].index = 0;
664         data->clk[0].pdiv = 1;
665         clk = devm_clk_register(&client->dev, &data->clk[0].hw);
666         kfree(init.name); /* clock framework made a copy of the name */
667         if (IS_ERR(clk)) {
668                 dev_err(&client->dev, "clock registration Y1 failed\n");
669                 err = PTR_ERR(clk);
670                 goto error;
671         }
672         data->dt_clk[0] = clk;
673
674         /* Register output clocks Y2 .. Y5*/
675         init.ops = &cdce925_clk_ops;
676         init.flags = CLK_SET_RATE_PARENT;
677         init.num_parents = 1;
678         for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
679                 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
680                         client->dev.of_node->name, i+1);
681                 data->clk[i].chip = data;
682                 data->clk[i].hw.init = &init;
683                 data->clk[i].index = i;
684                 data->clk[i].pdiv = 1;
685                 switch (i) {
686                 case 1:
687                 case 2:
688                         /* Mux Y2/3 to PLL1 */
689                         init.parent_names = &pll_clk_name[0];
690                         break;
691                 case 3:
692                 case 4:
693                         /* Mux Y4/5 to PLL2 */
694                         init.parent_names = &pll_clk_name[1];
695                         break;
696                 }
697                 clk = devm_clk_register(&client->dev, &data->clk[i].hw);
698                 kfree(init.name); /* clock framework made a copy of the name */
699                 if (IS_ERR(clk)) {
700                         dev_err(&client->dev, "clock registration failed\n");
701                         err = PTR_ERR(clk);
702                         goto error;
703                 }
704                 data->dt_clk[i] = clk;
705         }
706
707         /* Register the output clocks */
708         data->onecell.clk_num = NUMBER_OF_OUTPUTS;
709         data->onecell.clks = data->dt_clk;
710         err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
711                 &data->onecell);
712         if (err)
713                 dev_err(&client->dev, "unable to add OF clock provider\n");
714
715         err = 0;
716
717 error:
718         for (i = 0; i < NUMBER_OF_PLLS; ++i)
719                 /* clock framework made a copy of the name */
720                 kfree(pll_clk_name[i]);
721
722         return err;
723 }
724
725 static const struct i2c_device_id cdce925_id[] = {
726         { "cdce925", 0 },
727         { }
728 };
729 MODULE_DEVICE_TABLE(i2c, cdce925_id);
730
731 static const struct of_device_id clk_cdce925_of_match[] = {
732         { .compatible = "ti,cdce925" },
733         { },
734 };
735 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
736
737 static struct i2c_driver cdce925_driver = {
738         .driver = {
739                 .name = "cdce925",
740                 .of_match_table = of_match_ptr(clk_cdce925_of_match),
741         },
742         .probe          = cdce925_probe,
743         .id_table       = cdce925_id,
744 };
745 module_i2c_driver(cdce925_driver);
746
747 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
748 MODULE_DESCRIPTION("cdce925 driver");
749 MODULE_LICENSE("GPL");