Merge branch 'smack-for-3.19' of git://git.gitorious.org/smack-next/kernel into next
[cascardo/linux.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22
23 #include "clk-factors.h"
24
25 static DEFINE_SPINLOCK(clk_lock);
26
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS       5
29
30 /**
31  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
32  * PLL1 rate is calculated as follows
33  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
34  * parent_rate is always 24Mhz
35  */
36
37 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
38                                    u8 *n, u8 *k, u8 *m, u8 *p)
39 {
40         u8 div;
41
42         /* Normalize value to a 6M multiple */
43         div = *freq / 6000000;
44         *freq = 6000000 * div;
45
46         /* we were called to round the frequency, we can now return */
47         if (n == NULL)
48                 return;
49
50         /* m is always zero for pll1 */
51         *m = 0;
52
53         /* k is 1 only on these cases */
54         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
55                 *k = 1;
56         else
57                 *k = 0;
58
59         /* p will be 3 for divs under 10 */
60         if (div < 10)
61                 *p = 3;
62
63         /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64         else if (div < 20 || (div < 32 && (div & 1)))
65                 *p = 2;
66
67         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68          * of divs between 40-62 */
69         else if (div < 40 || (div < 64 && (div & 2)))
70                 *p = 1;
71
72         /* any other entries have p = 0 */
73         else
74                 *p = 0;
75
76         /* calculate a suitable n based on k and p */
77         div <<= *p;
78         div /= (*k + 1);
79         *n = div / 4;
80 }
81
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
88 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
89                                        u8 *n, u8 *k, u8 *m, u8 *p)
90 {
91         /*
92          * We can operate only on MHz, this will make our life easier
93          * later.
94          */
95         u32 freq_mhz = *freq / 1000000;
96         u32 parent_freq_mhz = parent_rate / 1000000;
97
98         /*
99          * Round down the frequency to the closest multiple of either
100          * 6 or 16
101          */
102         u32 round_freq_6 = round_down(freq_mhz, 6);
103         u32 round_freq_16 = round_down(freq_mhz, 16);
104
105         if (round_freq_6 > round_freq_16)
106                 freq_mhz = round_freq_6;
107         else
108                 freq_mhz = round_freq_16;
109
110         *freq = freq_mhz * 1000000;
111
112         /*
113          * If the factors pointer are null, we were just called to
114          * round down the frequency.
115          * Exit.
116          */
117         if (n == NULL)
118                 return;
119
120         /* If the frequency is a multiple of 32 MHz, k is always 3 */
121         if (!(freq_mhz % 32))
122                 *k = 3;
123         /* If the frequency is a multiple of 9 MHz, k is always 2 */
124         else if (!(freq_mhz % 9))
125                 *k = 2;
126         /* If the frequency is a multiple of 8 MHz, k is always 1 */
127         else if (!(freq_mhz % 8))
128                 *k = 1;
129         /* Otherwise, we don't use the k factor */
130         else
131                 *k = 0;
132
133         /*
134          * If the frequency is a multiple of 2 but not a multiple of
135          * 3, m is 3. This is the first time we use 6 here, yet we
136          * will use it on several other places.
137          * We use this number because it's the lowest frequency we can
138          * generate (with n = 0, k = 0, m = 3), so every other frequency
139          * somehow relates to this frequency.
140          */
141         if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
142                 *m = 2;
143         /*
144          * If the frequency is a multiple of 6MHz, but the factor is
145          * odd, m will be 3
146          */
147         else if ((freq_mhz / 6) & 1)
148                 *m = 3;
149         /* Otherwise, we end up with m = 1 */
150         else
151                 *m = 1;
152
153         /* Calculate n thanks to the above factors we already got */
154         *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
155
156         /*
157          * If n end up being outbound, and that we can still decrease
158          * m, do it.
159          */
160         if ((*n + 1) > 31 && (*m + 1) > 1) {
161                 *n = (*n + 1) / 2 - 1;
162                 *m = (*m + 1) / 2 - 1;
163         }
164 }
165
166 /**
167  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
168  * PLL1 rate is calculated as follows
169  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
170  * parent_rate is always 24Mhz
171  */
172
173 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
174                                    u8 *n, u8 *k, u8 *m, u8 *p)
175 {
176         u8 div;
177
178         /* Normalize value to a 6M multiple */
179         div = *freq / 6000000;
180         *freq = 6000000 * div;
181
182         /* we were called to round the frequency, we can now return */
183         if (n == NULL)
184                 return;
185
186         /* m is always zero for pll1 */
187         *m = 0;
188
189         /* k is 1 only on these cases */
190         if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
191                 *k = 1;
192         else
193                 *k = 0;
194
195         /* p will be 2 for divs under 20 and odd divs under 32 */
196         if (div < 20 || (div < 32 && (div & 1)))
197                 *p = 2;
198
199         /* p will be 1 for even divs under 32, divs under 40 and odd pairs
200          * of divs between 40-62 */
201         else if (div < 40 || (div < 64 && (div & 2)))
202                 *p = 1;
203
204         /* any other entries have p = 0 */
205         else
206                 *p = 0;
207
208         /* calculate a suitable n based on k and p */
209         div <<= *p;
210         div /= (*k + 1);
211         *n = div / 4 - 1;
212 }
213
214 /**
215  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
216  * PLL5 rate is calculated as follows
217  * rate = parent_rate * n * (k + 1)
218  * parent_rate is always 24Mhz
219  */
220
221 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
222                                    u8 *n, u8 *k, u8 *m, u8 *p)
223 {
224         u8 div;
225
226         /* Normalize value to a parent_rate multiple (24M) */
227         div = *freq / parent_rate;
228         *freq = parent_rate * div;
229
230         /* we were called to round the frequency, we can now return */
231         if (n == NULL)
232                 return;
233
234         if (div < 31)
235                 *k = 0;
236         else if (div / 2 < 31)
237                 *k = 1;
238         else if (div / 3 < 31)
239                 *k = 2;
240         else
241                 *k = 3;
242
243         *n = DIV_ROUND_UP(div, (*k+1));
244 }
245
246 /**
247  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
248  * PLL6 rate is calculated as follows
249  * rate = parent_rate * n * (k + 1) / 2
250  * parent_rate is always 24Mhz
251  */
252
253 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
254                                        u8 *n, u8 *k, u8 *m, u8 *p)
255 {
256         u8 div;
257
258         /*
259          * We always have 24MHz / 2, so we can just say that our
260          * parent clock is 12MHz.
261          */
262         parent_rate = parent_rate / 2;
263
264         /* Normalize value to a parent_rate multiple (24M / 2) */
265         div = *freq / parent_rate;
266         *freq = parent_rate * div;
267
268         /* we were called to round the frequency, we can now return */
269         if (n == NULL)
270                 return;
271
272         *k = div / 32;
273         if (*k > 3)
274                 *k = 3;
275
276         *n = DIV_ROUND_UP(div, (*k+1));
277 }
278
279 /**
280  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
281  * APB1 rate is calculated as follows
282  * rate = (parent_rate >> p) / (m + 1);
283  */
284
285 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
286                                    u8 *n, u8 *k, u8 *m, u8 *p)
287 {
288         u8 calcm, calcp;
289
290         if (parent_rate < *freq)
291                 *freq = parent_rate;
292
293         parent_rate = DIV_ROUND_UP(parent_rate, *freq);
294
295         /* Invalid rate! */
296         if (parent_rate > 32)
297                 return;
298
299         if (parent_rate <= 4)
300                 calcp = 0;
301         else if (parent_rate <= 8)
302                 calcp = 1;
303         else if (parent_rate <= 16)
304                 calcp = 2;
305         else
306                 calcp = 3;
307
308         calcm = (parent_rate >> calcp) - 1;
309
310         *freq = (parent_rate >> calcp) / (calcm + 1);
311
312         /* we were called to round the frequency, we can now return */
313         if (n == NULL)
314                 return;
315
316         *m = calcm;
317         *p = calcp;
318 }
319
320
321
322 /**
323  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
324  * MOD0 rate is calculated as follows
325  * rate = (parent_rate >> p) / (m + 1);
326  */
327
328 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
329                                    u8 *n, u8 *k, u8 *m, u8 *p)
330 {
331         u8 div, calcm, calcp;
332
333         /* These clocks can only divide, so we will never be able to achieve
334          * frequencies higher than the parent frequency */
335         if (*freq > parent_rate)
336                 *freq = parent_rate;
337
338         div = DIV_ROUND_UP(parent_rate, *freq);
339
340         if (div < 16)
341                 calcp = 0;
342         else if (div / 2 < 16)
343                 calcp = 1;
344         else if (div / 4 < 16)
345                 calcp = 2;
346         else
347                 calcp = 3;
348
349         calcm = DIV_ROUND_UP(div, 1 << calcp);
350
351         *freq = (parent_rate >> calcp) / calcm;
352
353         /* we were called to round the frequency, we can now return */
354         if (n == NULL)
355                 return;
356
357         *m = calcm - 1;
358         *p = calcp;
359 }
360
361
362
363 /**
364  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
365  * CLK_OUT rate is calculated as follows
366  * rate = (parent_rate >> p) / (m + 1);
367  */
368
369 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
370                                       u8 *n, u8 *k, u8 *m, u8 *p)
371 {
372         u8 div, calcm, calcp;
373
374         /* These clocks can only divide, so we will never be able to achieve
375          * frequencies higher than the parent frequency */
376         if (*freq > parent_rate)
377                 *freq = parent_rate;
378
379         div = DIV_ROUND_UP(parent_rate, *freq);
380
381         if (div < 32)
382                 calcp = 0;
383         else if (div / 2 < 32)
384                 calcp = 1;
385         else if (div / 4 < 32)
386                 calcp = 2;
387         else
388                 calcp = 3;
389
390         calcm = DIV_ROUND_UP(div, 1 << calcp);
391
392         *freq = (parent_rate >> calcp) / calcm;
393
394         /* we were called to round the frequency, we can now return */
395         if (n == NULL)
396                 return;
397
398         *m = calcm - 1;
399         *p = calcp;
400 }
401
402 /**
403  * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
404  */
405
406 void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
407 {
408         #define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
409         #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
410
411         struct clk_hw *hw = __clk_get_hw(clk);
412         struct clk_composite *composite = to_clk_composite(hw);
413         struct clk_hw *rate_hw = composite->rate_hw;
414         struct clk_factors *factors = to_clk_factors(rate_hw);
415         unsigned long flags = 0;
416         u32 reg;
417
418         if (factors->lock)
419                 spin_lock_irqsave(factors->lock, flags);
420
421         reg = readl(factors->reg);
422
423         /* set sample clock phase control */
424         reg &= ~(0x7 << 20);
425         reg |= ((sample & 0x7) << 20);
426
427         /* set output clock phase control */
428         reg &= ~(0x7 << 8);
429         reg |= ((output & 0x7) << 8);
430
431         writel(reg, factors->reg);
432
433         if (factors->lock)
434                 spin_unlock_irqrestore(factors->lock, flags);
435 }
436 EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
437
438
439 /**
440  * sunxi_factors_clk_setup() - Setup function for factor clocks
441  */
442
443 #define SUNXI_FACTORS_MUX_MASK 0x3
444
445 struct factors_data {
446         int enable;
447         int mux;
448         struct clk_factors_config *table;
449         void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
450         const char *name;
451 };
452
453 static struct clk_factors_config sun4i_pll1_config = {
454         .nshift = 8,
455         .nwidth = 5,
456         .kshift = 4,
457         .kwidth = 2,
458         .mshift = 0,
459         .mwidth = 2,
460         .pshift = 16,
461         .pwidth = 2,
462 };
463
464 static struct clk_factors_config sun6i_a31_pll1_config = {
465         .nshift = 8,
466         .nwidth = 5,
467         .kshift = 4,
468         .kwidth = 2,
469         .mshift = 0,
470         .mwidth = 2,
471 };
472
473 static struct clk_factors_config sun8i_a23_pll1_config = {
474         .nshift = 8,
475         .nwidth = 5,
476         .kshift = 4,
477         .kwidth = 2,
478         .mshift = 0,
479         .mwidth = 2,
480         .pshift = 16,
481         .pwidth = 2,
482         .n_start = 1,
483 };
484
485 static struct clk_factors_config sun4i_pll5_config = {
486         .nshift = 8,
487         .nwidth = 5,
488         .kshift = 4,
489         .kwidth = 2,
490 };
491
492 static struct clk_factors_config sun6i_a31_pll6_config = {
493         .nshift = 8,
494         .nwidth = 5,
495         .kshift = 4,
496         .kwidth = 2,
497 };
498
499 static struct clk_factors_config sun4i_apb1_config = {
500         .mshift = 0,
501         .mwidth = 5,
502         .pshift = 16,
503         .pwidth = 2,
504 };
505
506 /* user manual says "n" but it's really "p" */
507 static struct clk_factors_config sun4i_mod0_config = {
508         .mshift = 0,
509         .mwidth = 4,
510         .pshift = 16,
511         .pwidth = 2,
512 };
513
514 /* user manual says "n" but it's really "p" */
515 static struct clk_factors_config sun7i_a20_out_config = {
516         .mshift = 8,
517         .mwidth = 5,
518         .pshift = 20,
519         .pwidth = 2,
520 };
521
522 static const struct factors_data sun4i_pll1_data __initconst = {
523         .enable = 31,
524         .table = &sun4i_pll1_config,
525         .getter = sun4i_get_pll1_factors,
526 };
527
528 static const struct factors_data sun6i_a31_pll1_data __initconst = {
529         .enable = 31,
530         .table = &sun6i_a31_pll1_config,
531         .getter = sun6i_a31_get_pll1_factors,
532 };
533
534 static const struct factors_data sun8i_a23_pll1_data __initconst = {
535         .enable = 31,
536         .table = &sun8i_a23_pll1_config,
537         .getter = sun8i_a23_get_pll1_factors,
538 };
539
540 static const struct factors_data sun7i_a20_pll4_data __initconst = {
541         .enable = 31,
542         .table = &sun4i_pll5_config,
543         .getter = sun4i_get_pll5_factors,
544 };
545
546 static const struct factors_data sun4i_pll5_data __initconst = {
547         .enable = 31,
548         .table = &sun4i_pll5_config,
549         .getter = sun4i_get_pll5_factors,
550         .name = "pll5",
551 };
552
553 static const struct factors_data sun4i_pll6_data __initconst = {
554         .enable = 31,
555         .table = &sun4i_pll5_config,
556         .getter = sun4i_get_pll5_factors,
557         .name = "pll6",
558 };
559
560 static const struct factors_data sun6i_a31_pll6_data __initconst = {
561         .enable = 31,
562         .table = &sun6i_a31_pll6_config,
563         .getter = sun6i_a31_get_pll6_factors,
564 };
565
566 static const struct factors_data sun4i_apb1_data __initconst = {
567         .table = &sun4i_apb1_config,
568         .getter = sun4i_get_apb1_factors,
569 };
570
571 static const struct factors_data sun4i_mod0_data __initconst = {
572         .enable = 31,
573         .mux = 24,
574         .table = &sun4i_mod0_config,
575         .getter = sun4i_get_mod0_factors,
576 };
577
578 static const struct factors_data sun7i_a20_out_data __initconst = {
579         .enable = 31,
580         .mux = 24,
581         .table = &sun7i_a20_out_config,
582         .getter = sun7i_a20_get_out_factors,
583 };
584
585 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
586                                                 const struct factors_data *data)
587 {
588         struct clk *clk;
589         struct clk_factors *factors;
590         struct clk_gate *gate = NULL;
591         struct clk_mux *mux = NULL;
592         struct clk_hw *gate_hw = NULL;
593         struct clk_hw *mux_hw = NULL;
594         const char *clk_name = node->name;
595         const char *parents[SUNXI_MAX_PARENTS];
596         void __iomem *reg;
597         int i = 0;
598
599         reg = of_iomap(node, 0);
600
601         /* if we have a mux, we will have >1 parents */
602         while (i < SUNXI_MAX_PARENTS &&
603                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
604                 i++;
605
606         /*
607          * some factor clocks, such as pll5 and pll6, may have multiple
608          * outputs, and have their name designated in factors_data
609          */
610         if (data->name)
611                 clk_name = data->name;
612         else
613                 of_property_read_string(node, "clock-output-names", &clk_name);
614
615         factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
616         if (!factors)
617                 return NULL;
618
619         /* Add a gate if this factor clock can be gated */
620         if (data->enable) {
621                 gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
622                 if (!gate) {
623                         kfree(factors);
624                         return NULL;
625                 }
626
627                 /* set up gate properties */
628                 gate->reg = reg;
629                 gate->bit_idx = data->enable;
630                 gate->lock = &clk_lock;
631                 gate_hw = &gate->hw;
632         }
633
634         /* Add a mux if this factor clock can be muxed */
635         if (data->mux) {
636                 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
637                 if (!mux) {
638                         kfree(factors);
639                         kfree(gate);
640                         return NULL;
641                 }
642
643                 /* set up gate properties */
644                 mux->reg = reg;
645                 mux->shift = data->mux;
646                 mux->mask = SUNXI_FACTORS_MUX_MASK;
647                 mux->lock = &clk_lock;
648                 mux_hw = &mux->hw;
649         }
650
651         /* set up factors properties */
652         factors->reg = reg;
653         factors->config = data->table;
654         factors->get_factors = data->getter;
655         factors->lock = &clk_lock;
656
657         clk = clk_register_composite(NULL, clk_name,
658                         parents, i,
659                         mux_hw, &clk_mux_ops,
660                         &factors->hw, &clk_factors_ops,
661                         gate_hw, &clk_gate_ops, 0);
662
663         if (!IS_ERR(clk)) {
664                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
665                 clk_register_clkdev(clk, clk_name, NULL);
666         }
667
668         return clk;
669 }
670
671
672
673 /**
674  * sunxi_mux_clk_setup() - Setup function for muxes
675  */
676
677 #define SUNXI_MUX_GATE_WIDTH    2
678
679 struct mux_data {
680         u8 shift;
681 };
682
683 static const struct mux_data sun4i_cpu_mux_data __initconst = {
684         .shift = 16,
685 };
686
687 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
688         .shift = 12,
689 };
690
691 static const struct mux_data sun4i_apb1_mux_data __initconst = {
692         .shift = 24,
693 };
694
695 static void __init sunxi_mux_clk_setup(struct device_node *node,
696                                        struct mux_data *data)
697 {
698         struct clk *clk;
699         const char *clk_name = node->name;
700         const char *parents[SUNXI_MAX_PARENTS];
701         void __iomem *reg;
702         int i = 0;
703
704         reg = of_iomap(node, 0);
705
706         while (i < SUNXI_MAX_PARENTS &&
707                (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
708                 i++;
709
710         of_property_read_string(node, "clock-output-names", &clk_name);
711
712         clk = clk_register_mux(NULL, clk_name, parents, i,
713                                CLK_SET_RATE_NO_REPARENT, reg,
714                                data->shift, SUNXI_MUX_GATE_WIDTH,
715                                0, &clk_lock);
716
717         if (clk) {
718                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
719                 clk_register_clkdev(clk, clk_name, NULL);
720         }
721 }
722
723
724
725 /**
726  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
727  */
728
729 struct div_data {
730         u8      shift;
731         u8      pow;
732         u8      width;
733         const struct clk_div_table *table;
734 };
735
736 static const struct div_data sun4i_axi_data __initconst = {
737         .shift  = 0,
738         .pow    = 0,
739         .width  = 2,
740 };
741
742 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
743         { .val = 0, .div = 1 },
744         { .val = 1, .div = 2 },
745         { .val = 2, .div = 3 },
746         { .val = 3, .div = 4 },
747         { .val = 4, .div = 4 },
748         { .val = 5, .div = 4 },
749         { .val = 6, .div = 4 },
750         { .val = 7, .div = 4 },
751         { } /* sentinel */
752 };
753
754 static const struct div_data sun8i_a23_axi_data __initconst = {
755         .width  = 3,
756         .table  = sun8i_a23_axi_table,
757 };
758
759 static const struct div_data sun4i_ahb_data __initconst = {
760         .shift  = 4,
761         .pow    = 1,
762         .width  = 2,
763 };
764
765 static const struct div_data sun4i_apb0_data __initconst = {
766         .shift  = 8,
767         .pow    = 1,
768         .width  = 2,
769 };
770
771 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
772         .shift  = 0,
773         .pow    = 0,
774         .width  = 4,
775 };
776
777 static void __init sunxi_divider_clk_setup(struct device_node *node,
778                                            struct div_data *data)
779 {
780         struct clk *clk;
781         const char *clk_name = node->name;
782         const char *clk_parent;
783         void __iomem *reg;
784
785         reg = of_iomap(node, 0);
786
787         clk_parent = of_clk_get_parent_name(node, 0);
788
789         of_property_read_string(node, "clock-output-names", &clk_name);
790
791         clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
792                                          reg, data->shift, data->width,
793                                          data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
794                                          data->table, &clk_lock);
795         if (clk) {
796                 of_clk_add_provider(node, of_clk_src_simple_get, clk);
797                 clk_register_clkdev(clk, clk_name, NULL);
798         }
799 }
800
801
802
803 /**
804  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
805  */
806
807 struct gates_reset_data {
808         void __iomem                    *reg;
809         spinlock_t                      *lock;
810         struct reset_controller_dev     rcdev;
811 };
812
813 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
814                               unsigned long id)
815 {
816         struct gates_reset_data *data = container_of(rcdev,
817                                                      struct gates_reset_data,
818                                                      rcdev);
819         unsigned long flags;
820         u32 reg;
821
822         spin_lock_irqsave(data->lock, flags);
823
824         reg = readl(data->reg);
825         writel(reg & ~BIT(id), data->reg);
826
827         spin_unlock_irqrestore(data->lock, flags);
828
829         return 0;
830 }
831
832 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
833                                 unsigned long id)
834 {
835         struct gates_reset_data *data = container_of(rcdev,
836                                                      struct gates_reset_data,
837                                                      rcdev);
838         unsigned long flags;
839         u32 reg;
840
841         spin_lock_irqsave(data->lock, flags);
842
843         reg = readl(data->reg);
844         writel(reg | BIT(id), data->reg);
845
846         spin_unlock_irqrestore(data->lock, flags);
847
848         return 0;
849 }
850
851 static struct reset_control_ops sunxi_gates_reset_ops = {
852         .assert         = sunxi_gates_reset_assert,
853         .deassert       = sunxi_gates_reset_deassert,
854 };
855
856 /**
857  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
858  */
859
860 #define SUNXI_GATES_MAX_SIZE    64
861
862 struct gates_data {
863         DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
864         u32 reset_mask;
865 };
866
867 static const struct gates_data sun4i_axi_gates_data __initconst = {
868         .mask = {1},
869 };
870
871 static const struct gates_data sun4i_ahb_gates_data __initconst = {
872         .mask = {0x7F77FFF, 0x14FB3F},
873 };
874
875 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
876         .mask = {0x147667e7, 0x185915},
877 };
878
879 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
880         .mask = {0x107067e7, 0x185111},
881 };
882
883 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
884         .mask = {0xEDFE7F62, 0x794F931},
885 };
886
887 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
888         .mask = { 0x12f77fff, 0x16ff3f },
889 };
890
891 static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
892         .mask = {0x25386742, 0x2505111},
893 };
894
895 static const struct gates_data sun4i_apb0_gates_data __initconst = {
896         .mask = {0x4EF},
897 };
898
899 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
900         .mask = {0x469},
901 };
902
903 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
904         .mask = {0x61},
905 };
906
907 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
908         .mask = { 0x4ff },
909 };
910
911 static const struct gates_data sun4i_apb1_gates_data __initconst = {
912         .mask = {0xFF00F7},
913 };
914
915 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
916         .mask = {0xf0007},
917 };
918
919 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
920         .mask = {0xa0007},
921 };
922
923 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
924         .mask = {0x3031},
925 };
926
927 static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
928         .mask = {0x3021},
929 };
930
931 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
932         .mask = {0x3F000F},
933 };
934
935 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
936         .mask = { 0xff80ff },
937 };
938
939 static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
940         .mask = {0x1F0007},
941 };
942
943 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
944         .mask = {0x1C0},
945         .reset_mask = 0x07,
946 };
947
948 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
949         .mask = {0x140},
950         .reset_mask = 0x03,
951 };
952
953 static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
954         .mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
955         .reset_mask = BIT(2) | BIT(1) | BIT(0),
956 };
957
958 static void __init sunxi_gates_clk_setup(struct device_node *node,
959                                          struct gates_data *data)
960 {
961         struct clk_onecell_data *clk_data;
962         struct gates_reset_data *reset_data;
963         const char *clk_parent;
964         const char *clk_name;
965         void __iomem *reg;
966         int qty;
967         int i = 0;
968         int j = 0;
969
970         reg = of_iomap(node, 0);
971
972         clk_parent = of_clk_get_parent_name(node, 0);
973
974         /* Worst-case size approximation and memory allocation */
975         qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
976         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
977         if (!clk_data)
978                 return;
979         clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
980         if (!clk_data->clks) {
981                 kfree(clk_data);
982                 return;
983         }
984
985         for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
986                 of_property_read_string_index(node, "clock-output-names",
987                                               j, &clk_name);
988
989                 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
990                                                       clk_parent, 0,
991                                                       reg + 4 * (i/32), i % 32,
992                                                       0, &clk_lock);
993                 WARN_ON(IS_ERR(clk_data->clks[i]));
994                 clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
995
996                 j++;
997         }
998
999         /* Adjust to the real max */
1000         clk_data->clk_num = i;
1001
1002         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1003
1004         /* Register a reset controler for gates with reset bits */
1005         if (data->reset_mask == 0)
1006                 return;
1007
1008         reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
1009         if (!reset_data)
1010                 return;
1011
1012         reset_data->reg = reg;
1013         reset_data->lock = &clk_lock;
1014         reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
1015         reset_data->rcdev.ops = &sunxi_gates_reset_ops;
1016         reset_data->rcdev.of_node = node;
1017         reset_controller_register(&reset_data->rcdev);
1018 }
1019
1020
1021
1022 /**
1023  * sunxi_divs_clk_setup() helper data
1024  */
1025
1026 #define SUNXI_DIVS_MAX_QTY      2
1027 #define SUNXI_DIVISOR_WIDTH     2
1028
1029 struct divs_data {
1030         const struct factors_data *factors; /* data for the factor clock */
1031         struct {
1032                 u8 fixed; /* is it a fixed divisor? if not... */
1033                 struct clk_div_table *table; /* is it a table based divisor? */
1034                 u8 shift; /* otherwise it's a normal divisor with this shift */
1035                 u8 pow;   /* is it power-of-two based? */
1036                 u8 gate;  /* is it independently gateable? */
1037         } div[SUNXI_DIVS_MAX_QTY];
1038 };
1039
1040 static struct clk_div_table pll6_sata_tbl[] = {
1041         { .val = 0, .div = 6, },
1042         { .val = 1, .div = 12, },
1043         { .val = 2, .div = 18, },
1044         { .val = 3, .div = 24, },
1045         { } /* sentinel */
1046 };
1047
1048 static const struct divs_data pll5_divs_data __initconst = {
1049         .factors = &sun4i_pll5_data,
1050         .div = {
1051                 { .shift = 0, .pow = 0, }, /* M, DDR */
1052                 { .shift = 16, .pow = 1, }, /* P, other */
1053         }
1054 };
1055
1056 static const struct divs_data pll6_divs_data __initconst = {
1057         .factors = &sun4i_pll6_data,
1058         .div = {
1059                 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1060                 { .fixed = 2 }, /* P, other */
1061         }
1062 };
1063
1064 /**
1065  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1066  *
1067  * These clocks look something like this
1068  *            ________________________
1069  *           |         ___divisor 1---|----> to consumer
1070  * parent >--|  pll___/___divisor 2---|----> to consumer
1071  *           |        \_______________|____> to consumer
1072  *           |________________________|
1073  */
1074
1075 static void __init sunxi_divs_clk_setup(struct device_node *node,
1076                                         struct divs_data *data)
1077 {
1078         struct clk_onecell_data *clk_data;
1079         const char *parent;
1080         const char *clk_name;
1081         struct clk **clks, *pclk;
1082         struct clk_hw *gate_hw, *rate_hw;
1083         const struct clk_ops *rate_ops;
1084         struct clk_gate *gate = NULL;
1085         struct clk_fixed_factor *fix_factor;
1086         struct clk_divider *divider;
1087         void __iomem *reg;
1088         int i = 0;
1089         int flags, clkflags;
1090
1091         /* Set up factor clock that we will be dividing */
1092         pclk = sunxi_factors_clk_setup(node, data->factors);
1093         parent = __clk_get_name(pclk);
1094
1095         reg = of_iomap(node, 0);
1096
1097         clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1098         if (!clk_data)
1099                 return;
1100
1101         clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1102         if (!clks)
1103                 goto free_clkdata;
1104
1105         clk_data->clks = clks;
1106
1107         /* It's not a good idea to have automatic reparenting changing
1108          * our RAM clock! */
1109         clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1110
1111         for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1112                 if (of_property_read_string_index(node, "clock-output-names",
1113                                                   i, &clk_name) != 0)
1114                         break;
1115
1116                 gate_hw = NULL;
1117                 rate_hw = NULL;
1118                 rate_ops = NULL;
1119
1120                 /* If this leaf clock can be gated, create a gate */
1121                 if (data->div[i].gate) {
1122                         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1123                         if (!gate)
1124                                 goto free_clks;
1125
1126                         gate->reg = reg;
1127                         gate->bit_idx = data->div[i].gate;
1128                         gate->lock = &clk_lock;
1129
1130                         gate_hw = &gate->hw;
1131                 }
1132
1133                 /* Leaves can be fixed or configurable divisors */
1134                 if (data->div[i].fixed) {
1135                         fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1136                         if (!fix_factor)
1137                                 goto free_gate;
1138
1139                         fix_factor->mult = 1;
1140                         fix_factor->div = data->div[i].fixed;
1141
1142                         rate_hw = &fix_factor->hw;
1143                         rate_ops = &clk_fixed_factor_ops;
1144                 } else {
1145                         divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1146                         if (!divider)
1147                                 goto free_gate;
1148
1149                         flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1150
1151                         divider->reg = reg;
1152                         divider->shift = data->div[i].shift;
1153                         divider->width = SUNXI_DIVISOR_WIDTH;
1154                         divider->flags = flags;
1155                         divider->lock = &clk_lock;
1156                         divider->table = data->div[i].table;
1157
1158                         rate_hw = &divider->hw;
1159                         rate_ops = &clk_divider_ops;
1160                 }
1161
1162                 /* Wrap the (potential) gate and the divisor on a composite
1163                  * clock to unify them */
1164                 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1165                                                  NULL, NULL,
1166                                                  rate_hw, rate_ops,
1167                                                  gate_hw, &clk_gate_ops,
1168                                                  clkflags);
1169
1170                 WARN_ON(IS_ERR(clk_data->clks[i]));
1171                 clk_register_clkdev(clks[i], clk_name, NULL);
1172         }
1173
1174         /* The last clock available on the getter is the parent */
1175         clks[i++] = pclk;
1176
1177         /* Adjust to the real max */
1178         clk_data->clk_num = i;
1179
1180         of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1181
1182         return;
1183
1184 free_gate:
1185         kfree(gate);
1186 free_clks:
1187         kfree(clks);
1188 free_clkdata:
1189         kfree(clk_data);
1190 }
1191
1192
1193
1194 /* Matches for factors clocks */
1195 static const struct of_device_id clk_factors_match[] __initconst = {
1196         {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1197         {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1198         {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1199         {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1200         {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1201         {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1202         {.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1203         {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1204         {}
1205 };
1206
1207 /* Matches for divider clocks */
1208 static const struct of_device_id clk_div_match[] __initconst = {
1209         {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1210         {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1211         {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1212         {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1213         {.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1214         {}
1215 };
1216
1217 /* Matches for divided outputs */
1218 static const struct of_device_id clk_divs_match[] __initconst = {
1219         {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1220         {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1221         {}
1222 };
1223
1224 /* Matches for mux clocks */
1225 static const struct of_device_id clk_mux_match[] __initconst = {
1226         {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1227         {.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1228         {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1229         {}
1230 };
1231
1232 /* Matches for gate clocks */
1233 static const struct of_device_id clk_gates_match[] __initconst = {
1234         {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1235         {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1236         {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1237         {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1238         {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1239         {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1240         {.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1241         {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1242         {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1243         {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1244         {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1245         {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1246         {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1247         {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1248         {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1249         {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1250         {.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1251         {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1252         {.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1253         {.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1254         {.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1255         {.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1256         {}
1257 };
1258
1259 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1260                                               void *function)
1261 {
1262         struct device_node *np;
1263         const struct div_data *data;
1264         const struct of_device_id *match;
1265         void (*setup_function)(struct device_node *, const void *) = function;
1266
1267         for_each_matching_node_and_match(np, clk_match, &match) {
1268                 data = match->data;
1269                 setup_function(np, data);
1270         }
1271 }
1272
1273 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1274 {
1275         unsigned int i;
1276
1277         /* Register factor clocks */
1278         of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1279
1280         /* Register divider clocks */
1281         of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1282
1283         /* Register divided output clocks */
1284         of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1285
1286         /* Register mux clocks */
1287         of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1288
1289         /* Register gate clocks */
1290         of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1291
1292         /* Protect the clocks that needs to stay on */
1293         for (i = 0; i < nclocks; i++) {
1294                 struct clk *clk = clk_get(NULL, clocks[i]);
1295
1296                 if (!IS_ERR(clk))
1297                         clk_prepare_enable(clk);
1298         }
1299 }
1300
1301 static const char *sun4i_a10_critical_clocks[] __initdata = {
1302         "pll5_ddr",
1303         "ahb_sdram",
1304 };
1305
1306 static void __init sun4i_a10_init_clocks(struct device_node *node)
1307 {
1308         sunxi_init_clocks(sun4i_a10_critical_clocks,
1309                           ARRAY_SIZE(sun4i_a10_critical_clocks));
1310 }
1311 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1312
1313 static const char *sun5i_critical_clocks[] __initdata = {
1314         "mbus",
1315         "pll5_ddr",
1316         "ahb_sdram",
1317 };
1318
1319 static void __init sun5i_init_clocks(struct device_node *node)
1320 {
1321         sunxi_init_clocks(sun5i_critical_clocks,
1322                           ARRAY_SIZE(sun5i_critical_clocks));
1323 }
1324 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1325 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1326 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1327
1328 static const char *sun6i_critical_clocks[] __initdata = {
1329         "cpu",
1330         "ahb1_sdram",
1331 };
1332
1333 static void __init sun6i_init_clocks(struct device_node *node)
1334 {
1335         sunxi_init_clocks(sun6i_critical_clocks,
1336                           ARRAY_SIZE(sun6i_critical_clocks));
1337 }
1338 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1339 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);