clocksource: arm_arch_timer: Enable counter access for 32-bit ARM
[cascardo/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
24
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
27
28 #include <clocksource/arm_arch_timer.h>
29
30 #define CNTTIDR         0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
32
33 #define CNTVCT_LO       0x08
34 #define CNTVCT_HI       0x0c
35 #define CNTFRQ          0x10
36 #define CNTP_TVAL       0x28
37 #define CNTP_CTL        0x2c
38 #define CNTV_TVAL       0x38
39 #define CNTV_CTL        0x3c
40
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER  BIT(1)
43 static unsigned arch_timers_present __initdata;
44
45 static void __iomem *arch_counter_base;
46
47 struct arch_timer {
48         void __iomem *base;
49         struct clock_event_device evt;
50 };
51
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
53
54 static u32 arch_timer_rate;
55
56 enum ppi_nr {
57         PHYS_SECURE_PPI,
58         PHYS_NONSECURE_PPI,
59         VIRT_PPI,
60         HYP_PPI,
61         MAX_TIMER_PPI
62 };
63
64 static int arch_timer_ppi[MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71
72 /*
73  * Architected system timer support.
74  */
75
76 static __always_inline
77 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
78                           struct clock_event_device *clk)
79 {
80         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
81                 struct arch_timer *timer = to_arch_timer(clk);
82                 switch (reg) {
83                 case ARCH_TIMER_REG_CTRL:
84                         writel_relaxed(val, timer->base + CNTP_CTL);
85                         break;
86                 case ARCH_TIMER_REG_TVAL:
87                         writel_relaxed(val, timer->base + CNTP_TVAL);
88                         break;
89                 }
90         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
91                 struct arch_timer *timer = to_arch_timer(clk);
92                 switch (reg) {
93                 case ARCH_TIMER_REG_CTRL:
94                         writel_relaxed(val, timer->base + CNTV_CTL);
95                         break;
96                 case ARCH_TIMER_REG_TVAL:
97                         writel_relaxed(val, timer->base + CNTV_TVAL);
98                         break;
99                 }
100         } else {
101                 arch_timer_reg_write_cp15(access, reg, val);
102         }
103 }
104
105 static __always_inline
106 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
107                         struct clock_event_device *clk)
108 {
109         u32 val;
110
111         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
112                 struct arch_timer *timer = to_arch_timer(clk);
113                 switch (reg) {
114                 case ARCH_TIMER_REG_CTRL:
115                         val = readl_relaxed(timer->base + CNTP_CTL);
116                         break;
117                 case ARCH_TIMER_REG_TVAL:
118                         val = readl_relaxed(timer->base + CNTP_TVAL);
119                         break;
120                 }
121         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
122                 struct arch_timer *timer = to_arch_timer(clk);
123                 switch (reg) {
124                 case ARCH_TIMER_REG_CTRL:
125                         val = readl_relaxed(timer->base + CNTV_CTL);
126                         break;
127                 case ARCH_TIMER_REG_TVAL:
128                         val = readl_relaxed(timer->base + CNTV_TVAL);
129                         break;
130                 }
131         } else {
132                 val = arch_timer_reg_read_cp15(access, reg);
133         }
134
135         return val;
136 }
137
138 static __always_inline irqreturn_t timer_handler(const int access,
139                                         struct clock_event_device *evt)
140 {
141         unsigned long ctrl;
142
143         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
144         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
145                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
146                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
147                 evt->event_handler(evt);
148                 return IRQ_HANDLED;
149         }
150
151         return IRQ_NONE;
152 }
153
154 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
155 {
156         struct clock_event_device *evt = dev_id;
157
158         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
159 }
160
161 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
162 {
163         struct clock_event_device *evt = dev_id;
164
165         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
166 }
167
168 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
169 {
170         struct clock_event_device *evt = dev_id;
171
172         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
173 }
174
175 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
176 {
177         struct clock_event_device *evt = dev_id;
178
179         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
180 }
181
182 static __always_inline void timer_set_mode(const int access, int mode,
183                                   struct clock_event_device *clk)
184 {
185         unsigned long ctrl;
186         switch (mode) {
187         case CLOCK_EVT_MODE_UNUSED:
188         case CLOCK_EVT_MODE_SHUTDOWN:
189                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192                 break;
193         default:
194                 break;
195         }
196 }
197
198 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
199                                      struct clock_event_device *clk)
200 {
201         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
202 }
203
204 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
205                                      struct clock_event_device *clk)
206 {
207         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
208 }
209
210 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
211                                          struct clock_event_device *clk)
212 {
213         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
214 }
215
216 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
217                                          struct clock_event_device *clk)
218 {
219         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
220 }
221
222 static __always_inline void set_next_event(const int access, unsigned long evt,
223                                            struct clock_event_device *clk)
224 {
225         unsigned long ctrl;
226         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
227         ctrl |= ARCH_TIMER_CTRL_ENABLE;
228         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
229         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
230         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
231 }
232
233 static int arch_timer_set_next_event_virt(unsigned long evt,
234                                           struct clock_event_device *clk)
235 {
236         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
237         return 0;
238 }
239
240 static int arch_timer_set_next_event_phys(unsigned long evt,
241                                           struct clock_event_device *clk)
242 {
243         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
244         return 0;
245 }
246
247 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
248                                               struct clock_event_device *clk)
249 {
250         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
251         return 0;
252 }
253
254 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
255                                               struct clock_event_device *clk)
256 {
257         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
258         return 0;
259 }
260
261 static void __arch_timer_setup(unsigned type,
262                                struct clock_event_device *clk)
263 {
264         clk->features = CLOCK_EVT_FEAT_ONESHOT;
265
266         if (type == ARCH_CP15_TIMER) {
267                 if (arch_timer_c3stop)
268                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
269                 clk->name = "arch_sys_timer";
270                 clk->rating = 450;
271                 clk->cpumask = cpumask_of(smp_processor_id());
272                 if (arch_timer_use_virtual) {
273                         clk->irq = arch_timer_ppi[VIRT_PPI];
274                         clk->set_mode = arch_timer_set_mode_virt;
275                         clk->set_next_event = arch_timer_set_next_event_virt;
276                 } else {
277                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
278                         clk->set_mode = arch_timer_set_mode_phys;
279                         clk->set_next_event = arch_timer_set_next_event_phys;
280                 }
281         } else {
282                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
283                 clk->name = "arch_mem_timer";
284                 clk->rating = 400;
285                 clk->cpumask = cpu_all_mask;
286                 if (arch_timer_mem_use_virtual) {
287                         clk->set_mode = arch_timer_set_mode_virt_mem;
288                         clk->set_next_event =
289                                 arch_timer_set_next_event_virt_mem;
290                 } else {
291                         clk->set_mode = arch_timer_set_mode_phys_mem;
292                         clk->set_next_event =
293                                 arch_timer_set_next_event_phys_mem;
294                 }
295         }
296
297         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
298
299         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
300 }
301
302 static void arch_timer_configure_evtstream(void)
303 {
304         int evt_stream_div, pos;
305
306         /* Find the closest power of two to the divisor */
307         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
308         pos = fls(evt_stream_div);
309         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
310                 pos--;
311         /* enable event stream */
312         arch_timer_evtstrm_enable(min(pos, 15));
313 }
314
315 static void arch_counter_set_user_access(void)
316 {
317         u32 cntkctl = arch_timer_get_cntkctl();
318
319         /* Disable user access to the timers and the physical counter */
320         /* Also disable virtual event stream */
321         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
322                         | ARCH_TIMER_USR_VT_ACCESS_EN
323                         | ARCH_TIMER_VIRT_EVT_EN
324                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
325
326         /* Enable user access to the virtual counter */
327         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
328
329         arch_timer_set_cntkctl(cntkctl);
330 }
331
332 static int arch_timer_setup(struct clock_event_device *clk)
333 {
334         __arch_timer_setup(ARCH_CP15_TIMER, clk);
335
336         if (arch_timer_use_virtual)
337                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
338         else {
339                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
340                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
341                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
342         }
343
344         arch_counter_set_user_access();
345         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
346                 arch_timer_configure_evtstream();
347
348         return 0;
349 }
350
351 static void
352 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
353 {
354         /* Who has more than one independent system counter? */
355         if (arch_timer_rate)
356                 return;
357
358         /* Try to determine the frequency from the device tree or CNTFRQ */
359         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
360                 if (cntbase)
361                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
362                 else
363                         arch_timer_rate = arch_timer_get_cntfrq();
364         }
365
366         /* Check the timer frequency. */
367         if (arch_timer_rate == 0)
368                 pr_warn("Architected timer frequency not available\n");
369 }
370
371 static void arch_timer_banner(unsigned type)
372 {
373         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
374                      type & ARCH_CP15_TIMER ? "cp15" : "",
375                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
376                      type & ARCH_MEM_TIMER ? "mmio" : "",
377                      (unsigned long)arch_timer_rate / 1000000,
378                      (unsigned long)(arch_timer_rate / 10000) % 100,
379                      type & ARCH_CP15_TIMER ?
380                         arch_timer_use_virtual ? "virt" : "phys" :
381                         "",
382                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
383                      type & ARCH_MEM_TIMER ?
384                         arch_timer_mem_use_virtual ? "virt" : "phys" :
385                         "");
386 }
387
388 u32 arch_timer_get_rate(void)
389 {
390         return arch_timer_rate;
391 }
392
393 static u64 arch_counter_get_cntvct_mem(void)
394 {
395         u32 vct_lo, vct_hi, tmp_hi;
396
397         do {
398                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
399                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
400                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
401         } while (vct_hi != tmp_hi);
402
403         return ((u64) vct_hi << 32) | vct_lo;
404 }
405
406 /*
407  * Default to cp15 based access because arm64 uses this function for
408  * sched_clock() before DT is probed and the cp15 method is guaranteed
409  * to exist on arm64. arm doesn't use this before DT is probed so even
410  * if we don't have the cp15 accessors we won't have a problem.
411  */
412 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
413
414 static cycle_t arch_counter_read(struct clocksource *cs)
415 {
416         return arch_timer_read_counter();
417 }
418
419 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
420 {
421         return arch_timer_read_counter();
422 }
423
424 static struct clocksource clocksource_counter = {
425         .name   = "arch_sys_counter",
426         .rating = 400,
427         .read   = arch_counter_read,
428         .mask   = CLOCKSOURCE_MASK(56),
429         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
430 };
431
432 static struct cyclecounter cyclecounter = {
433         .read   = arch_counter_read_cc,
434         .mask   = CLOCKSOURCE_MASK(56),
435 };
436
437 static struct timecounter timecounter;
438
439 struct timecounter *arch_timer_get_timecounter(void)
440 {
441         return &timecounter;
442 }
443
444 static void __init arch_counter_register(unsigned type)
445 {
446         u64 start_count;
447
448         /* Register the CP15 based counter if we have one */
449         if (type & ARCH_CP15_TIMER) {
450                 arch_timer_read_counter = arch_counter_get_cntvct;
451         } else {
452                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
453
454                 /* If the clocksource name is "arch_sys_counter" the
455                  * VDSO will attempt to read the CP15-based counter.
456                  * Ensure this does not happen when CP15-based
457                  * counter is not available.
458                  */
459                 clocksource_counter.name = "arch_mem_counter";
460         }
461
462         start_count = arch_timer_read_counter();
463         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
464         cyclecounter.mult = clocksource_counter.mult;
465         cyclecounter.shift = clocksource_counter.shift;
466         timecounter_init(&timecounter, &cyclecounter, start_count);
467
468         /* 56 bits minimum, so we assume worst case rollover */
469         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
470 }
471
472 static void arch_timer_stop(struct clock_event_device *clk)
473 {
474         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
475                  clk->irq, smp_processor_id());
476
477         if (arch_timer_use_virtual)
478                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
479         else {
480                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
481                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
482                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
483         }
484
485         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
486 }
487
488 static int arch_timer_cpu_notify(struct notifier_block *self,
489                                            unsigned long action, void *hcpu)
490 {
491         /*
492          * Grab cpu pointer in each case to avoid spurious
493          * preemptible warnings
494          */
495         switch (action & ~CPU_TASKS_FROZEN) {
496         case CPU_STARTING:
497                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
498                 break;
499         case CPU_DYING:
500                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
501                 break;
502         }
503
504         return NOTIFY_OK;
505 }
506
507 static struct notifier_block arch_timer_cpu_nb = {
508         .notifier_call = arch_timer_cpu_notify,
509 };
510
511 #ifdef CONFIG_CPU_PM
512 static unsigned int saved_cntkctl;
513 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
514                                     unsigned long action, void *hcpu)
515 {
516         if (action == CPU_PM_ENTER)
517                 saved_cntkctl = arch_timer_get_cntkctl();
518         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
519                 arch_timer_set_cntkctl(saved_cntkctl);
520         return NOTIFY_OK;
521 }
522
523 static struct notifier_block arch_timer_cpu_pm_notifier = {
524         .notifier_call = arch_timer_cpu_pm_notify,
525 };
526
527 static int __init arch_timer_cpu_pm_init(void)
528 {
529         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
530 }
531 #else
532 static int __init arch_timer_cpu_pm_init(void)
533 {
534         return 0;
535 }
536 #endif
537
538 static int __init arch_timer_register(void)
539 {
540         int err;
541         int ppi;
542
543         arch_timer_evt = alloc_percpu(struct clock_event_device);
544         if (!arch_timer_evt) {
545                 err = -ENOMEM;
546                 goto out;
547         }
548
549         if (arch_timer_use_virtual) {
550                 ppi = arch_timer_ppi[VIRT_PPI];
551                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
552                                          "arch_timer", arch_timer_evt);
553         } else {
554                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
555                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
556                                          "arch_timer", arch_timer_evt);
557                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
558                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
559                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
560                                                  "arch_timer", arch_timer_evt);
561                         if (err)
562                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
563                                                 arch_timer_evt);
564                 }
565         }
566
567         if (err) {
568                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
569                        ppi, err);
570                 goto out_free;
571         }
572
573         err = register_cpu_notifier(&arch_timer_cpu_nb);
574         if (err)
575                 goto out_free_irq;
576
577         err = arch_timer_cpu_pm_init();
578         if (err)
579                 goto out_unreg_notify;
580
581         /* Immediately configure the timer on the boot CPU */
582         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
583
584         return 0;
585
586 out_unreg_notify:
587         unregister_cpu_notifier(&arch_timer_cpu_nb);
588 out_free_irq:
589         if (arch_timer_use_virtual)
590                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
591         else {
592                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
593                                 arch_timer_evt);
594                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
595                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
596                                         arch_timer_evt);
597         }
598
599 out_free:
600         free_percpu(arch_timer_evt);
601 out:
602         return err;
603 }
604
605 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
606 {
607         int ret;
608         irq_handler_t func;
609         struct arch_timer *t;
610
611         t = kzalloc(sizeof(*t), GFP_KERNEL);
612         if (!t)
613                 return -ENOMEM;
614
615         t->base = base;
616         t->evt.irq = irq;
617         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
618
619         if (arch_timer_mem_use_virtual)
620                 func = arch_timer_handler_virt_mem;
621         else
622                 func = arch_timer_handler_phys_mem;
623
624         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
625         if (ret) {
626                 pr_err("arch_timer: Failed to request mem timer irq\n");
627                 kfree(t);
628         }
629
630         return ret;
631 }
632
633 static const struct of_device_id arch_timer_of_match[] __initconst = {
634         { .compatible   = "arm,armv7-timer",    },
635         { .compatible   = "arm,armv8-timer",    },
636         {},
637 };
638
639 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
640         { .compatible   = "arm,armv7-timer-mem", },
641         {},
642 };
643
644 static bool __init
645 arch_timer_probed(int type, const struct of_device_id *matches)
646 {
647         struct device_node *dn;
648         bool probed = false;
649
650         dn = of_find_matching_node(NULL, matches);
651         if (dn && of_device_is_available(dn) && (arch_timers_present & type))
652                 probed = true;
653         of_node_put(dn);
654
655         return probed;
656 }
657
658 static void __init arch_timer_common_init(void)
659 {
660         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
661
662         /* Wait until both nodes are probed if we have two timers */
663         if ((arch_timers_present & mask) != mask) {
664                 if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
665                         return;
666                 if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
667                         return;
668         }
669
670         arch_timer_banner(arch_timers_present);
671         arch_counter_register(arch_timers_present);
672         arch_timer_arch_init();
673 }
674
675 static void __init arch_timer_init(struct device_node *np)
676 {
677         int i;
678
679         if (arch_timers_present & ARCH_CP15_TIMER) {
680                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
681                 return;
682         }
683
684         arch_timers_present |= ARCH_CP15_TIMER;
685         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
686                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
687         arch_timer_detect_rate(NULL, np);
688
689         /*
690          * If HYP mode is available, we know that the physical timer
691          * has been configured to be accessible from PL1. Use it, so
692          * that a guest can use the virtual timer instead.
693          *
694          * If no interrupt provided for virtual timer, we'll have to
695          * stick to the physical timer. It'd better be accessible...
696          */
697         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
698                 arch_timer_use_virtual = false;
699
700                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
701                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
702                         pr_warn("arch_timer: No interrupt available, giving up\n");
703                         return;
704                 }
705         }
706
707         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
708
709         arch_timer_register();
710         arch_timer_common_init();
711 }
712 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
713 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
714
715 static void __init arch_timer_mem_init(struct device_node *np)
716 {
717         struct device_node *frame, *best_frame = NULL;
718         void __iomem *cntctlbase, *base;
719         unsigned int irq;
720         u32 cnttidr;
721
722         arch_timers_present |= ARCH_MEM_TIMER;
723         cntctlbase = of_iomap(np, 0);
724         if (!cntctlbase) {
725                 pr_err("arch_timer: Can't find CNTCTLBase\n");
726                 return;
727         }
728
729         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
730         iounmap(cntctlbase);
731
732         /*
733          * Try to find a virtual capable frame. Otherwise fall back to a
734          * physical capable frame.
735          */
736         for_each_available_child_of_node(np, frame) {
737                 int n;
738
739                 if (of_property_read_u32(frame, "frame-number", &n)) {
740                         pr_err("arch_timer: Missing frame-number\n");
741                         of_node_put(best_frame);
742                         of_node_put(frame);
743                         return;
744                 }
745
746                 if (cnttidr & CNTTIDR_VIRT(n)) {
747                         of_node_put(best_frame);
748                         best_frame = frame;
749                         arch_timer_mem_use_virtual = true;
750                         break;
751                 }
752                 of_node_put(best_frame);
753                 best_frame = of_node_get(frame);
754         }
755
756         base = arch_counter_base = of_iomap(best_frame, 0);
757         if (!base) {
758                 pr_err("arch_timer: Can't map frame's registers\n");
759                 of_node_put(best_frame);
760                 return;
761         }
762
763         if (arch_timer_mem_use_virtual)
764                 irq = irq_of_parse_and_map(best_frame, 1);
765         else
766                 irq = irq_of_parse_and_map(best_frame, 0);
767         of_node_put(best_frame);
768         if (!irq) {
769                 pr_err("arch_timer: Frame missing %s irq",
770                        arch_timer_mem_use_virtual ? "virt" : "phys");
771                 return;
772         }
773
774         arch_timer_detect_rate(base, np);
775         arch_timer_mem_register(base, irq);
776         arch_timer_common_init();
777 }
778 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
779                        arch_timer_mem_init);