xen/netback: add fraglist support for to-guest rx
[cascardo/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x)               (x)
30 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET              (0x00)
45 #define MCT_L_ICNTB_OFFSET              (0x08)
46 #define MCT_L_TCON_OFFSET               (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
48 #define MCT_L_INT_ENB_OFFSET            (0x34)
49 #define MCT_L_WSTAT_OFFSET              (0x40)
50 #define MCT_G_TCON_START                (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
54 #define MCT_L_TCON_INT_START            (1 << 1)
55 #define MCT_L_TCON_TIMER_START          (1 << 0)
56
57 #define TICK_BASE_CNT   1
58
59 enum {
60         MCT_INT_SPI,
61         MCT_INT_PPI
62 };
63
64 enum {
65         MCT_G0_IRQ,
66         MCT_G1_IRQ,
67         MCT_G2_IRQ,
68         MCT_G3_IRQ,
69         MCT_L0_IRQ,
70         MCT_L1_IRQ,
71         MCT_L2_IRQ,
72         MCT_L3_IRQ,
73         MCT_L4_IRQ,
74         MCT_L5_IRQ,
75         MCT_L6_IRQ,
76         MCT_L7_IRQ,
77         MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86         struct clock_event_device evt;
87         unsigned long base;
88         char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93         unsigned long stat_addr;
94         u32 mask;
95         u32 i;
96
97         writel_relaxed(value, reg_base + offset);
98
99         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
102                 case MCT_L_TCON_OFFSET:
103                         mask = 1 << 3;          /* L_TCON write status */
104                         break;
105                 case MCT_L_ICNTB_OFFSET:
106                         mask = 1 << 1;          /* L_ICNTB write status */
107                         break;
108                 case MCT_L_TCNTB_OFFSET:
109                         mask = 1 << 0;          /* L_TCNTB write status */
110                         break;
111                 default:
112                         return;
113                 }
114         } else {
115                 switch (offset) {
116                 case EXYNOS4_MCT_G_TCON:
117                         stat_addr = EXYNOS4_MCT_G_WSTAT;
118                         mask = 1 << 16;         /* G_TCON write status */
119                         break;
120                 case EXYNOS4_MCT_G_COMP0_L:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 0;          /* G_COMP0_L write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_U:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 1;          /* G_COMP0_U write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
131                         break;
132                 case EXYNOS4_MCT_G_CNT_L:
133                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134                         mask = 1 << 0;          /* G_CNT_L write status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_U:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 1;          /* G_CNT_U write status */
139                         break;
140                 default:
141                         return;
142                 }
143         }
144
145         /* Wait maximum 1 ms until written values are applied */
146         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147                 if (readl_relaxed(reg_base + stat_addr) & mask) {
148                         writel_relaxed(mask, reg_base + stat_addr);
149                         return;
150                 }
151
152         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158         u32 reg;
159
160         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161         reg |= MCT_G_TCON_START;
162         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177         unsigned int lo, hi;
178         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180         do {
181                 hi = hi2;
182                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184         } while (hi != hi2);
185
186         return ((cycle_t)hi << 32) | lo;
187 }
188
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204         return exynos4_read_count_32();
205 }
206
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209         exynos4_mct_frc_start();
210 }
211
212 static struct clocksource mct_frc = {
213         .name           = "mct-frc",
214         .rating         = 400,
215         .read           = exynos4_frc_read,
216         .mask           = CLOCKSOURCE_MASK(32),
217         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
218         .resume         = exynos4_frc_resume,
219 };
220
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223         return exynos4_read_count_32();
224 }
225
226 static struct delay_timer exynos4_delay_timer;
227
228 static cycles_t exynos4_read_current_timer(void)
229 {
230         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231                          "cycles_t needs to move to 32-bit for ARM64 usage");
232         return exynos4_read_count_32();
233 }
234
235 static int __init exynos4_clocksource_init(void)
236 {
237         exynos4_mct_frc_start();
238
239         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240         exynos4_delay_timer.freq = clk_rate;
241         register_current_timer_delay(&exynos4_delay_timer);
242
243         if (clocksource_register_hz(&mct_frc, clk_rate))
244                 panic("%s: can't register clocksource\n", mct_frc.name);
245
246         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247
248         return 0;
249 }
250
251 static void exynos4_mct_comp0_stop(void)
252 {
253         unsigned int tcon;
254
255         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
256         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
257
258         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
259         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
260 }
261
262 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
263 {
264         unsigned int tcon;
265         cycle_t comp_cycle;
266
267         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268
269         if (periodic) {
270                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
271                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
272         }
273
274         comp_cycle = exynos4_read_count_64() + cycles;
275         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
276         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
277
278         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
279
280         tcon |= MCT_G_TCON_COMP0_ENABLE;
281         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
282 }
283
284 static int exynos4_comp_set_next_event(unsigned long cycles,
285                                        struct clock_event_device *evt)
286 {
287         exynos4_mct_comp0_start(false, cycles);
288
289         return 0;
290 }
291
292 static int mct_set_state_shutdown(struct clock_event_device *evt)
293 {
294         exynos4_mct_comp0_stop();
295         return 0;
296 }
297
298 static int mct_set_state_periodic(struct clock_event_device *evt)
299 {
300         unsigned long cycles_per_jiffy;
301
302         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
303                             >> evt->shift);
304         exynos4_mct_comp0_stop();
305         exynos4_mct_comp0_start(true, cycles_per_jiffy);
306         return 0;
307 }
308
309 static struct clock_event_device mct_comp_device = {
310         .name                   = "mct-comp",
311         .features               = CLOCK_EVT_FEAT_PERIODIC |
312                                   CLOCK_EVT_FEAT_ONESHOT,
313         .rating                 = 250,
314         .set_next_event         = exynos4_comp_set_next_event,
315         .set_state_periodic     = mct_set_state_periodic,
316         .set_state_shutdown     = mct_set_state_shutdown,
317         .set_state_oneshot      = mct_set_state_shutdown,
318         .set_state_oneshot_stopped = mct_set_state_shutdown,
319         .tick_resume            = mct_set_state_shutdown,
320 };
321
322 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
323 {
324         struct clock_event_device *evt = dev_id;
325
326         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
327
328         evt->event_handler(evt);
329
330         return IRQ_HANDLED;
331 }
332
333 static struct irqaction mct_comp_event_irq = {
334         .name           = "mct_comp_irq",
335         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
336         .handler        = exynos4_mct_comp_isr,
337         .dev_id         = &mct_comp_device,
338 };
339
340 static int exynos4_clockevent_init(void)
341 {
342         mct_comp_device.cpumask = cpumask_of(0);
343         clockevents_config_and_register(&mct_comp_device, clk_rate,
344                                         0xf, 0xffffffff);
345         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
346
347         return 0;
348 }
349
350 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
351
352 /* Clock event handling */
353 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
354 {
355         unsigned long tmp;
356         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
357         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
358
359         tmp = readl_relaxed(reg_base + offset);
360         if (tmp & mask) {
361                 tmp &= ~mask;
362                 exynos4_mct_write(tmp, offset);
363         }
364 }
365
366 static void exynos4_mct_tick_start(unsigned long cycles,
367                                    struct mct_clock_event_device *mevt)
368 {
369         unsigned long tmp;
370
371         exynos4_mct_tick_stop(mevt);
372
373         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
374
375         /* update interrupt count buffer */
376         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
377
378         /* enable MCT tick interrupt */
379         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
380
381         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
382         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
383                MCT_L_TCON_INTERVAL_MODE;
384         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
385 }
386
387 static int exynos4_tick_set_next_event(unsigned long cycles,
388                                        struct clock_event_device *evt)
389 {
390         struct mct_clock_event_device *mevt;
391
392         mevt = container_of(evt, struct mct_clock_event_device, evt);
393         exynos4_mct_tick_start(cycles, mevt);
394         return 0;
395 }
396
397 static int set_state_shutdown(struct clock_event_device *evt)
398 {
399         struct mct_clock_event_device *mevt;
400
401         mevt = container_of(evt, struct mct_clock_event_device, evt);
402         exynos4_mct_tick_stop(mevt);
403         return 0;
404 }
405
406 static int set_state_periodic(struct clock_event_device *evt)
407 {
408         struct mct_clock_event_device *mevt;
409         unsigned long cycles_per_jiffy;
410
411         mevt = container_of(evt, struct mct_clock_event_device, evt);
412         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
413                             >> evt->shift);
414         exynos4_mct_tick_stop(mevt);
415         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
416         return 0;
417 }
418
419 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
420 {
421         /*
422          * This is for supporting oneshot mode.
423          * Mct would generate interrupt periodically
424          * without explicit stopping.
425          */
426         if (!clockevent_state_periodic(&mevt->evt))
427                 exynos4_mct_tick_stop(mevt);
428
429         /* Clear the MCT tick interrupt */
430         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
431                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
432 }
433
434 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
435 {
436         struct mct_clock_event_device *mevt = dev_id;
437         struct clock_event_device *evt = &mevt->evt;
438
439         exynos4_mct_tick_clear(mevt);
440
441         evt->event_handler(evt);
442
443         return IRQ_HANDLED;
444 }
445
446 static int exynos4_mct_starting_cpu(unsigned int cpu)
447 {
448         struct mct_clock_event_device *mevt =
449                 per_cpu_ptr(&percpu_mct_tick, cpu);
450         struct clock_event_device *evt = &mevt->evt;
451
452         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
453         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
454
455         evt->name = mevt->name;
456         evt->cpumask = cpumask_of(cpu);
457         evt->set_next_event = exynos4_tick_set_next_event;
458         evt->set_state_periodic = set_state_periodic;
459         evt->set_state_shutdown = set_state_shutdown;
460         evt->set_state_oneshot = set_state_shutdown;
461         evt->set_state_oneshot_stopped = set_state_shutdown;
462         evt->tick_resume = set_state_shutdown;
463         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
464         evt->rating = 450;
465
466         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
467
468         if (mct_int_type == MCT_INT_SPI) {
469
470                 if (evt->irq == -1)
471                         return -EIO;
472
473                 irq_force_affinity(evt->irq, cpumask_of(cpu));
474                 enable_irq(evt->irq);
475         } else {
476                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
477         }
478         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
479                                         0xf, 0x7fffffff);
480
481         return 0;
482 }
483
484 static int exynos4_mct_dying_cpu(unsigned int cpu)
485 {
486         struct mct_clock_event_device *mevt =
487                 per_cpu_ptr(&percpu_mct_tick, cpu);
488         struct clock_event_device *evt = &mevt->evt;
489
490         evt->set_state_shutdown(evt);
491         if (mct_int_type == MCT_INT_SPI) {
492                 if (evt->irq != -1)
493                         disable_irq_nosync(evt->irq);
494         } else {
495                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
496         }
497         return 0;
498 }
499
500 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
501 {
502         int err, cpu;
503         struct clk *mct_clk, *tick_clk;
504
505         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
506                                 clk_get(NULL, "fin_pll");
507         if (IS_ERR(tick_clk))
508                 panic("%s: unable to determine tick clock rate\n", __func__);
509         clk_rate = clk_get_rate(tick_clk);
510
511         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
512         if (IS_ERR(mct_clk))
513                 panic("%s: unable to retrieve mct clock instance\n", __func__);
514         clk_prepare_enable(mct_clk);
515
516         reg_base = base;
517         if (!reg_base)
518                 panic("%s: unable to ioremap mct address space\n", __func__);
519
520         if (mct_int_type == MCT_INT_PPI) {
521
522                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
523                                          exynos4_mct_tick_isr, "MCT",
524                                          &percpu_mct_tick);
525                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
526                      mct_irqs[MCT_L0_IRQ], err);
527         } else {
528                 for_each_possible_cpu(cpu) {
529                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
530                         struct mct_clock_event_device *pcpu_mevt =
531                                 per_cpu_ptr(&percpu_mct_tick, cpu);
532
533                         pcpu_mevt->evt.irq = -1;
534
535                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
536                         if (request_irq(mct_irq,
537                                         exynos4_mct_tick_isr,
538                                         IRQF_TIMER | IRQF_NOBALANCING,
539                                         pcpu_mevt->name, pcpu_mevt)) {
540                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
541                                                                         cpu);
542
543                                 continue;
544                         }
545                         pcpu_mevt->evt.irq = mct_irq;
546                 }
547         }
548
549         /* Install hotplug callbacks which configure the timer on this CPU */
550         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
551                                 "AP_EXYNOS4_MCT_TIMER_STARTING",
552                                 exynos4_mct_starting_cpu,
553                                 exynos4_mct_dying_cpu);
554         if (err)
555                 goto out_irq;
556
557         return 0;
558
559 out_irq:
560         free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
561         return err;
562 }
563
564 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
565 {
566         u32 nr_irqs, i;
567         int ret;
568
569         mct_int_type = int_type;
570
571         /* This driver uses only one global timer interrupt */
572         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
573
574         /*
575          * Find out the number of local irqs specified. The local
576          * timer irqs are specified after the four global timer
577          * irqs are specified.
578          */
579 #ifdef CONFIG_OF
580         nr_irqs = of_irq_count(np);
581 #else
582         nr_irqs = 0;
583 #endif
584         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
585                 mct_irqs[i] = irq_of_parse_and_map(np, i);
586
587         ret = exynos4_timer_resources(np, of_iomap(np, 0));
588         if (ret)
589                 return ret;
590
591         ret = exynos4_clocksource_init();
592         if (ret)
593                 return ret;
594
595         return exynos4_clockevent_init();
596 }
597
598
599 static int __init mct_init_spi(struct device_node *np)
600 {
601         return mct_init_dt(np, MCT_INT_SPI);
602 }
603
604 static int __init mct_init_ppi(struct device_node *np)
605 {
606         return mct_init_dt(np, MCT_INT_PPI);
607 }
608 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
609 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);