Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[cascardo/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x)               (x)
30 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET              (0x00)
45 #define MCT_L_ICNTB_OFFSET              (0x08)
46 #define MCT_L_TCON_OFFSET               (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
48 #define MCT_L_INT_ENB_OFFSET            (0x34)
49 #define MCT_L_WSTAT_OFFSET              (0x40)
50 #define MCT_G_TCON_START                (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
54 #define MCT_L_TCON_INT_START            (1 << 1)
55 #define MCT_L_TCON_TIMER_START          (1 << 0)
56
57 #define TICK_BASE_CNT   1
58
59 enum {
60         MCT_INT_SPI,
61         MCT_INT_PPI
62 };
63
64 enum {
65         MCT_G0_IRQ,
66         MCT_G1_IRQ,
67         MCT_G2_IRQ,
68         MCT_G3_IRQ,
69         MCT_L0_IRQ,
70         MCT_L1_IRQ,
71         MCT_L2_IRQ,
72         MCT_L3_IRQ,
73         MCT_L4_IRQ,
74         MCT_L5_IRQ,
75         MCT_L6_IRQ,
76         MCT_L7_IRQ,
77         MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86         struct clock_event_device evt;
87         unsigned long base;
88         char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93         unsigned long stat_addr;
94         u32 mask;
95         u32 i;
96
97         __raw_writel(value, reg_base + offset);
98
99         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100                 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101                 switch (offset & EXYNOS4_MCT_L_MASK) {
102                 case MCT_L_TCON_OFFSET:
103                         mask = 1 << 3;          /* L_TCON write status */
104                         break;
105                 case MCT_L_ICNTB_OFFSET:
106                         mask = 1 << 1;          /* L_ICNTB write status */
107                         break;
108                 case MCT_L_TCNTB_OFFSET:
109                         mask = 1 << 0;          /* L_TCNTB write status */
110                         break;
111                 default:
112                         return;
113                 }
114         } else {
115                 switch (offset) {
116                 case EXYNOS4_MCT_G_TCON:
117                         stat_addr = EXYNOS4_MCT_G_WSTAT;
118                         mask = 1 << 16;         /* G_TCON write status */
119                         break;
120                 case EXYNOS4_MCT_G_COMP0_L:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 0;          /* G_COMP0_L write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_U:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 1;          /* G_COMP0_U write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
131                         break;
132                 case EXYNOS4_MCT_G_CNT_L:
133                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134                         mask = 1 << 0;          /* G_CNT_L write status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_U:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 1;          /* G_CNT_U write status */
139                         break;
140                 default:
141                         return;
142                 }
143         }
144
145         /* Wait maximum 1 ms until written values are applied */
146         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147                 if (__raw_readl(reg_base + stat_addr) & mask) {
148                         __raw_writel(mask, reg_base + stat_addr);
149                         return;
150                 }
151
152         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158         u32 reg;
159
160         reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
161         reg |= MCT_G_TCON_START;
162         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 static cycle_t exynos4_frc_read(struct clocksource *cs)
166 {
167         unsigned int lo, hi;
168         u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
169
170         do {
171                 hi = hi2;
172                 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
173                 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
174         } while (hi != hi2);
175
176         return ((cycle_t)hi << 32) | lo;
177 }
178
179 static void exynos4_frc_resume(struct clocksource *cs)
180 {
181         exynos4_mct_frc_start();
182 }
183
184 struct clocksource mct_frc = {
185         .name           = "mct-frc",
186         .rating         = 400,
187         .read           = exynos4_frc_read,
188         .mask           = CLOCKSOURCE_MASK(64),
189         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
190         .resume         = exynos4_frc_resume,
191 };
192
193 static u64 notrace exynos4_read_sched_clock(void)
194 {
195         return exynos4_frc_read(&mct_frc);
196 }
197
198 static void __init exynos4_clocksource_init(void)
199 {
200         exynos4_mct_frc_start();
201
202         if (clocksource_register_hz(&mct_frc, clk_rate))
203                 panic("%s: can't register clocksource\n", mct_frc.name);
204
205         sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
206 }
207
208 static void exynos4_mct_comp0_stop(void)
209 {
210         unsigned int tcon;
211
212         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
213         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
214
215         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
216         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
217 }
218
219 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
220                                     unsigned long cycles)
221 {
222         unsigned int tcon;
223         cycle_t comp_cycle;
224
225         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
226
227         if (mode == CLOCK_EVT_MODE_PERIODIC) {
228                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
229                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
230         }
231
232         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
233         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
234         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
235
236         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
237
238         tcon |= MCT_G_TCON_COMP0_ENABLE;
239         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
240 }
241
242 static int exynos4_comp_set_next_event(unsigned long cycles,
243                                        struct clock_event_device *evt)
244 {
245         exynos4_mct_comp0_start(evt->mode, cycles);
246
247         return 0;
248 }
249
250 static void exynos4_comp_set_mode(enum clock_event_mode mode,
251                                   struct clock_event_device *evt)
252 {
253         unsigned long cycles_per_jiffy;
254         exynos4_mct_comp0_stop();
255
256         switch (mode) {
257         case CLOCK_EVT_MODE_PERIODIC:
258                 cycles_per_jiffy =
259                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
260                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
261                 break;
262
263         case CLOCK_EVT_MODE_ONESHOT:
264         case CLOCK_EVT_MODE_UNUSED:
265         case CLOCK_EVT_MODE_SHUTDOWN:
266         case CLOCK_EVT_MODE_RESUME:
267                 break;
268         }
269 }
270
271 static struct clock_event_device mct_comp_device = {
272         .name           = "mct-comp",
273         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
274         .rating         = 250,
275         .set_next_event = exynos4_comp_set_next_event,
276         .set_mode       = exynos4_comp_set_mode,
277 };
278
279 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
280 {
281         struct clock_event_device *evt = dev_id;
282
283         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
284
285         evt->event_handler(evt);
286
287         return IRQ_HANDLED;
288 }
289
290 static struct irqaction mct_comp_event_irq = {
291         .name           = "mct_comp_irq",
292         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
293         .handler        = exynos4_mct_comp_isr,
294         .dev_id         = &mct_comp_device,
295 };
296
297 static void exynos4_clockevent_init(void)
298 {
299         mct_comp_device.cpumask = cpumask_of(0);
300         clockevents_config_and_register(&mct_comp_device, clk_rate,
301                                         0xf, 0xffffffff);
302         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
303 }
304
305 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
306
307 /* Clock event handling */
308 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
309 {
310         unsigned long tmp;
311         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
312         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
313
314         tmp = __raw_readl(reg_base + offset);
315         if (tmp & mask) {
316                 tmp &= ~mask;
317                 exynos4_mct_write(tmp, offset);
318         }
319 }
320
321 static void exynos4_mct_tick_start(unsigned long cycles,
322                                    struct mct_clock_event_device *mevt)
323 {
324         unsigned long tmp;
325
326         exynos4_mct_tick_stop(mevt);
327
328         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
329
330         /* update interrupt count buffer */
331         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
332
333         /* enable MCT tick interrupt */
334         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
335
336         tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
337         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
338                MCT_L_TCON_INTERVAL_MODE;
339         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
340 }
341
342 static int exynos4_tick_set_next_event(unsigned long cycles,
343                                        struct clock_event_device *evt)
344 {
345         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
346
347         exynos4_mct_tick_start(cycles, mevt);
348
349         return 0;
350 }
351
352 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
353                                          struct clock_event_device *evt)
354 {
355         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
356         unsigned long cycles_per_jiffy;
357
358         exynos4_mct_tick_stop(mevt);
359
360         switch (mode) {
361         case CLOCK_EVT_MODE_PERIODIC:
362                 cycles_per_jiffy =
363                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
364                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
365                 break;
366
367         case CLOCK_EVT_MODE_ONESHOT:
368         case CLOCK_EVT_MODE_UNUSED:
369         case CLOCK_EVT_MODE_SHUTDOWN:
370         case CLOCK_EVT_MODE_RESUME:
371                 break;
372         }
373 }
374
375 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
376 {
377         struct clock_event_device *evt = &mevt->evt;
378
379         /*
380          * This is for supporting oneshot mode.
381          * Mct would generate interrupt periodically
382          * without explicit stopping.
383          */
384         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
385                 exynos4_mct_tick_stop(mevt);
386
387         /* Clear the MCT tick interrupt */
388         if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
389                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
390                 return 1;
391         } else {
392                 return 0;
393         }
394 }
395
396 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
397 {
398         struct mct_clock_event_device *mevt = dev_id;
399         struct clock_event_device *evt = &mevt->evt;
400
401         exynos4_mct_tick_clear(mevt);
402
403         evt->event_handler(evt);
404
405         return IRQ_HANDLED;
406 }
407
408 static int exynos4_local_timer_setup(struct clock_event_device *evt)
409 {
410         struct mct_clock_event_device *mevt;
411         unsigned int cpu = smp_processor_id();
412
413         mevt = container_of(evt, struct mct_clock_event_device, evt);
414
415         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
416         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
417
418         evt->name = mevt->name;
419         evt->cpumask = cpumask_of(cpu);
420         evt->set_next_event = exynos4_tick_set_next_event;
421         evt->set_mode = exynos4_tick_set_mode;
422         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
423         evt->rating = 450;
424
425         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
426
427         if (mct_int_type == MCT_INT_SPI) {
428                 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
429                 if (request_irq(evt->irq, exynos4_mct_tick_isr,
430                                 IRQF_TIMER | IRQF_NOBALANCING,
431                                 evt->name, mevt)) {
432                         pr_err("exynos-mct: cannot register IRQ %d\n",
433                                 evt->irq);
434                         return -EIO;
435                 }
436                 irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
437         } else {
438                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
439         }
440         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
441                                         0xf, 0x7fffffff);
442
443         return 0;
444 }
445
446 static void exynos4_local_timer_stop(struct clock_event_device *evt)
447 {
448         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
449         if (mct_int_type == MCT_INT_SPI)
450                 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
451         else
452                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
453 }
454
455 static int exynos4_mct_cpu_notify(struct notifier_block *self,
456                                            unsigned long action, void *hcpu)
457 {
458         struct mct_clock_event_device *mevt;
459
460         /*
461          * Grab cpu pointer in each case to avoid spurious
462          * preemptible warnings
463          */
464         switch (action & ~CPU_TASKS_FROZEN) {
465         case CPU_STARTING:
466                 mevt = this_cpu_ptr(&percpu_mct_tick);
467                 exynos4_local_timer_setup(&mevt->evt);
468                 break;
469         case CPU_DYING:
470                 mevt = this_cpu_ptr(&percpu_mct_tick);
471                 exynos4_local_timer_stop(&mevt->evt);
472                 break;
473         }
474
475         return NOTIFY_OK;
476 }
477
478 static struct notifier_block exynos4_mct_cpu_nb = {
479         .notifier_call = exynos4_mct_cpu_notify,
480 };
481
482 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
483 {
484         int err;
485         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
486         struct clk *mct_clk, *tick_clk;
487
488         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
489                                 clk_get(NULL, "fin_pll");
490         if (IS_ERR(tick_clk))
491                 panic("%s: unable to determine tick clock rate\n", __func__);
492         clk_rate = clk_get_rate(tick_clk);
493
494         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
495         if (IS_ERR(mct_clk))
496                 panic("%s: unable to retrieve mct clock instance\n", __func__);
497         clk_prepare_enable(mct_clk);
498
499         reg_base = base;
500         if (!reg_base)
501                 panic("%s: unable to ioremap mct address space\n", __func__);
502
503         if (mct_int_type == MCT_INT_PPI) {
504
505                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
506                                          exynos4_mct_tick_isr, "MCT",
507                                          &percpu_mct_tick);
508                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
509                      mct_irqs[MCT_L0_IRQ], err);
510         } else {
511                 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
512         }
513
514         err = register_cpu_notifier(&exynos4_mct_cpu_nb);
515         if (err)
516                 goto out_irq;
517
518         /* Immediately configure the timer on the boot CPU */
519         exynos4_local_timer_setup(&mevt->evt);
520         return;
521
522 out_irq:
523         free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
524 }
525
526 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
527 {
528         mct_irqs[MCT_G0_IRQ] = irq_g0;
529         mct_irqs[MCT_L0_IRQ] = irq_l0;
530         mct_irqs[MCT_L1_IRQ] = irq_l1;
531         mct_int_type = MCT_INT_SPI;
532
533         exynos4_timer_resources(NULL, base);
534         exynos4_clocksource_init();
535         exynos4_clockevent_init();
536 }
537
538 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
539 {
540         u32 nr_irqs, i;
541
542         mct_int_type = int_type;
543
544         /* This driver uses only one global timer interrupt */
545         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
546
547         /*
548          * Find out the number of local irqs specified. The local
549          * timer irqs are specified after the four global timer
550          * irqs are specified.
551          */
552 #ifdef CONFIG_OF
553         nr_irqs = of_irq_count(np);
554 #else
555         nr_irqs = 0;
556 #endif
557         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
558                 mct_irqs[i] = irq_of_parse_and_map(np, i);
559
560         exynos4_timer_resources(np, of_iomap(np, 0));
561         exynos4_clocksource_init();
562         exynos4_clockevent_init();
563 }
564
565
566 static void __init mct_init_spi(struct device_node *np)
567 {
568         return mct_init_dt(np, MCT_INT_SPI);
569 }
570
571 static void __init mct_init_ppi(struct device_node *np)
572 {
573         return mct_init_dt(np, MCT_INT_PPI);
574 }
575 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
576 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);