Merge branch 'pm-cpufreq'
[cascardo/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x)               (x)
30 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET              (0x00)
45 #define MCT_L_ICNTB_OFFSET              (0x08)
46 #define MCT_L_TCON_OFFSET               (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
48 #define MCT_L_INT_ENB_OFFSET            (0x34)
49 #define MCT_L_WSTAT_OFFSET              (0x40)
50 #define MCT_G_TCON_START                (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
54 #define MCT_L_TCON_INT_START            (1 << 1)
55 #define MCT_L_TCON_TIMER_START          (1 << 0)
56
57 #define TICK_BASE_CNT   1
58
59 enum {
60         MCT_INT_SPI,
61         MCT_INT_PPI
62 };
63
64 enum {
65         MCT_G0_IRQ,
66         MCT_G1_IRQ,
67         MCT_G2_IRQ,
68         MCT_G3_IRQ,
69         MCT_L0_IRQ,
70         MCT_L1_IRQ,
71         MCT_L2_IRQ,
72         MCT_L3_IRQ,
73         MCT_L4_IRQ,
74         MCT_L5_IRQ,
75         MCT_L6_IRQ,
76         MCT_L7_IRQ,
77         MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86         struct clock_event_device evt;
87         unsigned long base;
88         char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93         unsigned long stat_addr;
94         u32 mask;
95         u32 i;
96
97         __raw_writel(value, reg_base + offset);
98
99         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100                 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101                 switch (offset & EXYNOS4_MCT_L_MASK) {
102                 case MCT_L_TCON_OFFSET:
103                         mask = 1 << 3;          /* L_TCON write status */
104                         break;
105                 case MCT_L_ICNTB_OFFSET:
106                         mask = 1 << 1;          /* L_ICNTB write status */
107                         break;
108                 case MCT_L_TCNTB_OFFSET:
109                         mask = 1 << 0;          /* L_TCNTB write status */
110                         break;
111                 default:
112                         return;
113                 }
114         } else {
115                 switch (offset) {
116                 case EXYNOS4_MCT_G_TCON:
117                         stat_addr = EXYNOS4_MCT_G_WSTAT;
118                         mask = 1 << 16;         /* G_TCON write status */
119                         break;
120                 case EXYNOS4_MCT_G_COMP0_L:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 0;          /* G_COMP0_L write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_U:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 1;          /* G_COMP0_U write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
131                         break;
132                 case EXYNOS4_MCT_G_CNT_L:
133                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134                         mask = 1 << 0;          /* G_CNT_L write status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_U:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 1;          /* G_CNT_U write status */
139                         break;
140                 default:
141                         return;
142                 }
143         }
144
145         /* Wait maximum 1 ms until written values are applied */
146         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147                 if (__raw_readl(reg_base + stat_addr) & mask) {
148                         __raw_writel(mask, reg_base + stat_addr);
149                         return;
150                 }
151
152         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(u32 hi, u32 lo)
157 {
158         u32 reg;
159
160         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
161         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
162
163         reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
164         reg |= MCT_G_TCON_START;
165         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
166 }
167
168 static cycle_t exynos4_frc_read(struct clocksource *cs)
169 {
170         unsigned int lo, hi;
171         u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
172
173         do {
174                 hi = hi2;
175                 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
176                 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
177         } while (hi != hi2);
178
179         return ((cycle_t)hi << 32) | lo;
180 }
181
182 static void exynos4_frc_resume(struct clocksource *cs)
183 {
184         exynos4_mct_frc_start(0, 0);
185 }
186
187 struct clocksource mct_frc = {
188         .name           = "mct-frc",
189         .rating         = 400,
190         .read           = exynos4_frc_read,
191         .mask           = CLOCKSOURCE_MASK(64),
192         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
193         .resume         = exynos4_frc_resume,
194 };
195
196 static u64 notrace exynos4_read_sched_clock(void)
197 {
198         return exynos4_frc_read(&mct_frc);
199 }
200
201 static void __init exynos4_clocksource_init(void)
202 {
203         exynos4_mct_frc_start(0, 0);
204
205         if (clocksource_register_hz(&mct_frc, clk_rate))
206                 panic("%s: can't register clocksource\n", mct_frc.name);
207
208         sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
209 }
210
211 static void exynos4_mct_comp0_stop(void)
212 {
213         unsigned int tcon;
214
215         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
216         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
217
218         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
219         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
220 }
221
222 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
223                                     unsigned long cycles)
224 {
225         unsigned int tcon;
226         cycle_t comp_cycle;
227
228         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
229
230         if (mode == CLOCK_EVT_MODE_PERIODIC) {
231                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
232                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
233         }
234
235         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
236         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
237         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
238
239         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
240
241         tcon |= MCT_G_TCON_COMP0_ENABLE;
242         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
243 }
244
245 static int exynos4_comp_set_next_event(unsigned long cycles,
246                                        struct clock_event_device *evt)
247 {
248         exynos4_mct_comp0_start(evt->mode, cycles);
249
250         return 0;
251 }
252
253 static void exynos4_comp_set_mode(enum clock_event_mode mode,
254                                   struct clock_event_device *evt)
255 {
256         unsigned long cycles_per_jiffy;
257         exynos4_mct_comp0_stop();
258
259         switch (mode) {
260         case CLOCK_EVT_MODE_PERIODIC:
261                 cycles_per_jiffy =
262                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
263                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
264                 break;
265
266         case CLOCK_EVT_MODE_ONESHOT:
267         case CLOCK_EVT_MODE_UNUSED:
268         case CLOCK_EVT_MODE_SHUTDOWN:
269         case CLOCK_EVT_MODE_RESUME:
270                 break;
271         }
272 }
273
274 static struct clock_event_device mct_comp_device = {
275         .name           = "mct-comp",
276         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
277         .rating         = 250,
278         .set_next_event = exynos4_comp_set_next_event,
279         .set_mode       = exynos4_comp_set_mode,
280 };
281
282 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
283 {
284         struct clock_event_device *evt = dev_id;
285
286         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
287
288         evt->event_handler(evt);
289
290         return IRQ_HANDLED;
291 }
292
293 static struct irqaction mct_comp_event_irq = {
294         .name           = "mct_comp_irq",
295         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
296         .handler        = exynos4_mct_comp_isr,
297         .dev_id         = &mct_comp_device,
298 };
299
300 static void exynos4_clockevent_init(void)
301 {
302         mct_comp_device.cpumask = cpumask_of(0);
303         clockevents_config_and_register(&mct_comp_device, clk_rate,
304                                         0xf, 0xffffffff);
305         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
306 }
307
308 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
309
310 /* Clock event handling */
311 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
312 {
313         unsigned long tmp;
314         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
315         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
316
317         tmp = __raw_readl(reg_base + offset);
318         if (tmp & mask) {
319                 tmp &= ~mask;
320                 exynos4_mct_write(tmp, offset);
321         }
322 }
323
324 static void exynos4_mct_tick_start(unsigned long cycles,
325                                    struct mct_clock_event_device *mevt)
326 {
327         unsigned long tmp;
328
329         exynos4_mct_tick_stop(mevt);
330
331         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
332
333         /* update interrupt count buffer */
334         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
335
336         /* enable MCT tick interrupt */
337         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
338
339         tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
340         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
341                MCT_L_TCON_INTERVAL_MODE;
342         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
343 }
344
345 static int exynos4_tick_set_next_event(unsigned long cycles,
346                                        struct clock_event_device *evt)
347 {
348         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
349
350         exynos4_mct_tick_start(cycles, mevt);
351
352         return 0;
353 }
354
355 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
356                                          struct clock_event_device *evt)
357 {
358         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
359         unsigned long cycles_per_jiffy;
360
361         exynos4_mct_tick_stop(mevt);
362
363         switch (mode) {
364         case CLOCK_EVT_MODE_PERIODIC:
365                 cycles_per_jiffy =
366                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
367                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
368                 break;
369
370         case CLOCK_EVT_MODE_ONESHOT:
371         case CLOCK_EVT_MODE_UNUSED:
372         case CLOCK_EVT_MODE_SHUTDOWN:
373         case CLOCK_EVT_MODE_RESUME:
374                 break;
375         }
376 }
377
378 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
379 {
380         struct clock_event_device *evt = &mevt->evt;
381
382         /*
383          * This is for supporting oneshot mode.
384          * Mct would generate interrupt periodically
385          * without explicit stopping.
386          */
387         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
388                 exynos4_mct_tick_stop(mevt);
389
390         /* Clear the MCT tick interrupt */
391         if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
392                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
393                 return 1;
394         } else {
395                 return 0;
396         }
397 }
398
399 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
400 {
401         struct mct_clock_event_device *mevt = dev_id;
402         struct clock_event_device *evt = &mevt->evt;
403
404         exynos4_mct_tick_clear(mevt);
405
406         evt->event_handler(evt);
407
408         return IRQ_HANDLED;
409 }
410
411 static int exynos4_local_timer_setup(struct clock_event_device *evt)
412 {
413         struct mct_clock_event_device *mevt;
414         unsigned int cpu = smp_processor_id();
415
416         mevt = container_of(evt, struct mct_clock_event_device, evt);
417
418         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
419         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
420
421         evt->name = mevt->name;
422         evt->cpumask = cpumask_of(cpu);
423         evt->set_next_event = exynos4_tick_set_next_event;
424         evt->set_mode = exynos4_tick_set_mode;
425         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
426         evt->rating = 450;
427
428         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
429
430         if (mct_int_type == MCT_INT_SPI) {
431                 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
432                 if (request_irq(evt->irq, exynos4_mct_tick_isr,
433                                 IRQF_TIMER | IRQF_NOBALANCING,
434                                 evt->name, mevt)) {
435                         pr_err("exynos-mct: cannot register IRQ %d\n",
436                                 evt->irq);
437                         return -EIO;
438                 }
439                 irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
440         } else {
441                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
442         }
443         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
444                                         0xf, 0x7fffffff);
445
446         return 0;
447 }
448
449 static void exynos4_local_timer_stop(struct clock_event_device *evt)
450 {
451         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
452         if (mct_int_type == MCT_INT_SPI)
453                 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
454         else
455                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
456 }
457
458 static int exynos4_mct_cpu_notify(struct notifier_block *self,
459                                            unsigned long action, void *hcpu)
460 {
461         struct mct_clock_event_device *mevt;
462
463         /*
464          * Grab cpu pointer in each case to avoid spurious
465          * preemptible warnings
466          */
467         switch (action & ~CPU_TASKS_FROZEN) {
468         case CPU_STARTING:
469                 mevt = this_cpu_ptr(&percpu_mct_tick);
470                 exynos4_local_timer_setup(&mevt->evt);
471                 break;
472         case CPU_DYING:
473                 mevt = this_cpu_ptr(&percpu_mct_tick);
474                 exynos4_local_timer_stop(&mevt->evt);
475                 break;
476         }
477
478         return NOTIFY_OK;
479 }
480
481 static struct notifier_block exynos4_mct_cpu_nb = {
482         .notifier_call = exynos4_mct_cpu_notify,
483 };
484
485 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
486 {
487         int err;
488         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
489         struct clk *mct_clk, *tick_clk;
490
491         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
492                                 clk_get(NULL, "fin_pll");
493         if (IS_ERR(tick_clk))
494                 panic("%s: unable to determine tick clock rate\n", __func__);
495         clk_rate = clk_get_rate(tick_clk);
496
497         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
498         if (IS_ERR(mct_clk))
499                 panic("%s: unable to retrieve mct clock instance\n", __func__);
500         clk_prepare_enable(mct_clk);
501
502         reg_base = base;
503         if (!reg_base)
504                 panic("%s: unable to ioremap mct address space\n", __func__);
505
506         if (mct_int_type == MCT_INT_PPI) {
507
508                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
509                                          exynos4_mct_tick_isr, "MCT",
510                                          &percpu_mct_tick);
511                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
512                      mct_irqs[MCT_L0_IRQ], err);
513         } else {
514                 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
515         }
516
517         err = register_cpu_notifier(&exynos4_mct_cpu_nb);
518         if (err)
519                 goto out_irq;
520
521         /* Immediately configure the timer on the boot CPU */
522         exynos4_local_timer_setup(&mevt->evt);
523         return;
524
525 out_irq:
526         free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
527 }
528
529 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
530 {
531         mct_irqs[MCT_G0_IRQ] = irq_g0;
532         mct_irqs[MCT_L0_IRQ] = irq_l0;
533         mct_irqs[MCT_L1_IRQ] = irq_l1;
534         mct_int_type = MCT_INT_SPI;
535
536         exynos4_timer_resources(NULL, base);
537         exynos4_clocksource_init();
538         exynos4_clockevent_init();
539 }
540
541 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
542 {
543         u32 nr_irqs, i;
544
545         mct_int_type = int_type;
546
547         /* This driver uses only one global timer interrupt */
548         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549
550         /*
551          * Find out the number of local irqs specified. The local
552          * timer irqs are specified after the four global timer
553          * irqs are specified.
554          */
555 #ifdef CONFIG_OF
556         nr_irqs = of_irq_count(np);
557 #else
558         nr_irqs = 0;
559 #endif
560         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
561                 mct_irqs[i] = irq_of_parse_and_map(np, i);
562
563         exynos4_timer_resources(np, of_iomap(np, 0));
564         exynos4_clocksource_init();
565         exynos4_clockevent_init();
566 }
567
568
569 static void __init mct_init_spi(struct device_node *np)
570 {
571         return mct_init_dt(np, MCT_INT_SPI);
572 }
573
574 static void __init mct_init_ppi(struct device_node *np)
575 {
576         return mct_init_dt(np, MCT_INT_PPI);
577 }
578 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
579 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);