clocksource: sh_tmu: Rename clock to "fck" in the non-legacy case
[cascardo/linux.git] / drivers / clocksource / sh_tmu.c
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/irq.h>
29 #include <linux/err.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 enum sh_tmu_model {
39         SH_TMU_LEGACY,
40         SH_TMU,
41         SH_TMU_SH3,
42 };
43
44 struct sh_tmu_device;
45
46 struct sh_tmu_channel {
47         struct sh_tmu_device *tmu;
48         unsigned int index;
49
50         void __iomem *base;
51         int irq;
52
53         unsigned long rate;
54         unsigned long periodic;
55         struct clock_event_device ced;
56         struct clocksource cs;
57         bool cs_enabled;
58         unsigned int enable_count;
59 };
60
61 struct sh_tmu_device {
62         struct platform_device *pdev;
63
64         void __iomem *mapbase;
65         struct clk *clk;
66
67         enum sh_tmu_model model;
68
69         struct sh_tmu_channel *channels;
70         unsigned int num_channels;
71
72         bool has_clockevent;
73         bool has_clocksource;
74 };
75
76 static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
77
78 #define TSTR -1 /* shared register */
79 #define TCOR  0 /* channel register */
80 #define TCNT 1 /* channel register */
81 #define TCR 2 /* channel register */
82
83 #define TCR_UNF                 (1 << 8)
84 #define TCR_UNIE                (1 << 5)
85 #define TCR_TPSC_CLK4           (0 << 0)
86 #define TCR_TPSC_CLK16          (1 << 0)
87 #define TCR_TPSC_CLK64          (2 << 0)
88 #define TCR_TPSC_CLK256         (3 << 0)
89 #define TCR_TPSC_CLK1024        (4 << 0)
90 #define TCR_TPSC_MASK           (7 << 0)
91
92 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
93 {
94         unsigned long offs;
95
96         if (reg_nr == TSTR) {
97                 switch (ch->tmu->model) {
98                 case SH_TMU_LEGACY:
99                         return ioread8(ch->tmu->mapbase);
100                 case SH_TMU_SH3:
101                         return ioread8(ch->tmu->mapbase + 2);
102                 case SH_TMU:
103                         return ioread8(ch->tmu->mapbase + 4);
104                 }
105         }
106
107         offs = reg_nr << 2;
108
109         if (reg_nr == TCR)
110                 return ioread16(ch->base + offs);
111         else
112                 return ioread32(ch->base + offs);
113 }
114
115 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
116                                 unsigned long value)
117 {
118         unsigned long offs;
119
120         if (reg_nr == TSTR) {
121                 switch (ch->tmu->model) {
122                 case SH_TMU_LEGACY:
123                         return iowrite8(value, ch->tmu->mapbase);
124                 case SH_TMU_SH3:
125                         return iowrite8(value, ch->tmu->mapbase + 2);
126                 case SH_TMU:
127                         return iowrite8(value, ch->tmu->mapbase + 4);
128                 }
129         }
130
131         offs = reg_nr << 2;
132
133         if (reg_nr == TCR)
134                 iowrite16(value, ch->base + offs);
135         else
136                 iowrite32(value, ch->base + offs);
137 }
138
139 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
140 {
141         unsigned long flags, value;
142
143         /* start stop register shared by multiple timer channels */
144         raw_spin_lock_irqsave(&sh_tmu_lock, flags);
145         value = sh_tmu_read(ch, TSTR);
146
147         if (start)
148                 value |= 1 << ch->index;
149         else
150                 value &= ~(1 << ch->index);
151
152         sh_tmu_write(ch, TSTR, value);
153         raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
154 }
155
156 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
157 {
158         int ret;
159
160         /* enable clock */
161         ret = clk_enable(ch->tmu->clk);
162         if (ret) {
163                 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
164                         ch->index);
165                 return ret;
166         }
167
168         /* make sure channel is disabled */
169         sh_tmu_start_stop_ch(ch, 0);
170
171         /* maximum timeout */
172         sh_tmu_write(ch, TCOR, 0xffffffff);
173         sh_tmu_write(ch, TCNT, 0xffffffff);
174
175         /* configure channel to parent clock / 4, irq off */
176         ch->rate = clk_get_rate(ch->tmu->clk) / 4;
177         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
178
179         /* enable channel */
180         sh_tmu_start_stop_ch(ch, 1);
181
182         return 0;
183 }
184
185 static int sh_tmu_enable(struct sh_tmu_channel *ch)
186 {
187         if (ch->enable_count++ > 0)
188                 return 0;
189
190         pm_runtime_get_sync(&ch->tmu->pdev->dev);
191         dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
192
193         return __sh_tmu_enable(ch);
194 }
195
196 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
197 {
198         /* disable channel */
199         sh_tmu_start_stop_ch(ch, 0);
200
201         /* disable interrupts in TMU block */
202         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
203
204         /* stop clock */
205         clk_disable(ch->tmu->clk);
206 }
207
208 static void sh_tmu_disable(struct sh_tmu_channel *ch)
209 {
210         if (WARN_ON(ch->enable_count == 0))
211                 return;
212
213         if (--ch->enable_count > 0)
214                 return;
215
216         __sh_tmu_disable(ch);
217
218         dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
219         pm_runtime_put(&ch->tmu->pdev->dev);
220 }
221
222 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
223                             int periodic)
224 {
225         /* stop timer */
226         sh_tmu_start_stop_ch(ch, 0);
227
228         /* acknowledge interrupt */
229         sh_tmu_read(ch, TCR);
230
231         /* enable interrupt */
232         sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
233
234         /* reload delta value in case of periodic timer */
235         if (periodic)
236                 sh_tmu_write(ch, TCOR, delta);
237         else
238                 sh_tmu_write(ch, TCOR, 0xffffffff);
239
240         sh_tmu_write(ch, TCNT, delta);
241
242         /* start timer */
243         sh_tmu_start_stop_ch(ch, 1);
244 }
245
246 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
247 {
248         struct sh_tmu_channel *ch = dev_id;
249
250         /* disable or acknowledge interrupt */
251         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
252                 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
253         else
254                 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
255
256         /* notify clockevent layer */
257         ch->ced.event_handler(&ch->ced);
258         return IRQ_HANDLED;
259 }
260
261 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
262 {
263         return container_of(cs, struct sh_tmu_channel, cs);
264 }
265
266 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
267 {
268         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
269
270         return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
271 }
272
273 static int sh_tmu_clocksource_enable(struct clocksource *cs)
274 {
275         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
276         int ret;
277
278         if (WARN_ON(ch->cs_enabled))
279                 return 0;
280
281         ret = sh_tmu_enable(ch);
282         if (!ret) {
283                 __clocksource_updatefreq_hz(cs, ch->rate);
284                 ch->cs_enabled = true;
285         }
286
287         return ret;
288 }
289
290 static void sh_tmu_clocksource_disable(struct clocksource *cs)
291 {
292         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
293
294         if (WARN_ON(!ch->cs_enabled))
295                 return;
296
297         sh_tmu_disable(ch);
298         ch->cs_enabled = false;
299 }
300
301 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
302 {
303         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
304
305         if (!ch->cs_enabled)
306                 return;
307
308         if (--ch->enable_count == 0) {
309                 __sh_tmu_disable(ch);
310                 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
311         }
312 }
313
314 static void sh_tmu_clocksource_resume(struct clocksource *cs)
315 {
316         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
317
318         if (!ch->cs_enabled)
319                 return;
320
321         if (ch->enable_count++ == 0) {
322                 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
323                 __sh_tmu_enable(ch);
324         }
325 }
326
327 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
328                                        const char *name)
329 {
330         struct clocksource *cs = &ch->cs;
331
332         cs->name = name;
333         cs->rating = 200;
334         cs->read = sh_tmu_clocksource_read;
335         cs->enable = sh_tmu_clocksource_enable;
336         cs->disable = sh_tmu_clocksource_disable;
337         cs->suspend = sh_tmu_clocksource_suspend;
338         cs->resume = sh_tmu_clocksource_resume;
339         cs->mask = CLOCKSOURCE_MASK(32);
340         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
341
342         dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
343                  ch->index);
344
345         /* Register with dummy 1 Hz value, gets updated in ->enable() */
346         clocksource_register_hz(cs, 1);
347         return 0;
348 }
349
350 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
351 {
352         return container_of(ced, struct sh_tmu_channel, ced);
353 }
354
355 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
356 {
357         struct clock_event_device *ced = &ch->ced;
358
359         sh_tmu_enable(ch);
360
361         clockevents_config(ced, ch->rate);
362
363         if (periodic) {
364                 ch->periodic = (ch->rate + HZ/2) / HZ;
365                 sh_tmu_set_next(ch, ch->periodic, 1);
366         }
367 }
368
369 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
370                                     struct clock_event_device *ced)
371 {
372         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
373         int disabled = 0;
374
375         /* deal with old setting first */
376         switch (ced->mode) {
377         case CLOCK_EVT_MODE_PERIODIC:
378         case CLOCK_EVT_MODE_ONESHOT:
379                 sh_tmu_disable(ch);
380                 disabled = 1;
381                 break;
382         default:
383                 break;
384         }
385
386         switch (mode) {
387         case CLOCK_EVT_MODE_PERIODIC:
388                 dev_info(&ch->tmu->pdev->dev,
389                          "ch%u: used for periodic clock events\n", ch->index);
390                 sh_tmu_clock_event_start(ch, 1);
391                 break;
392         case CLOCK_EVT_MODE_ONESHOT:
393                 dev_info(&ch->tmu->pdev->dev,
394                          "ch%u: used for oneshot clock events\n", ch->index);
395                 sh_tmu_clock_event_start(ch, 0);
396                 break;
397         case CLOCK_EVT_MODE_UNUSED:
398                 if (!disabled)
399                         sh_tmu_disable(ch);
400                 break;
401         case CLOCK_EVT_MODE_SHUTDOWN:
402         default:
403                 break;
404         }
405 }
406
407 static int sh_tmu_clock_event_next(unsigned long delta,
408                                    struct clock_event_device *ced)
409 {
410         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
411
412         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
413
414         /* program new delta value */
415         sh_tmu_set_next(ch, delta, 0);
416         return 0;
417 }
418
419 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
420 {
421         pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
422 }
423
424 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
425 {
426         pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
427 }
428
429 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
430                                        const char *name)
431 {
432         struct clock_event_device *ced = &ch->ced;
433         int ret;
434
435         ced->name = name;
436         ced->features = CLOCK_EVT_FEAT_PERIODIC;
437         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
438         ced->rating = 200;
439         ced->cpumask = cpumask_of(0);
440         ced->set_next_event = sh_tmu_clock_event_next;
441         ced->set_mode = sh_tmu_clock_event_mode;
442         ced->suspend = sh_tmu_clock_event_suspend;
443         ced->resume = sh_tmu_clock_event_resume;
444
445         dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
446                  ch->index);
447
448         clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
449
450         ret = request_irq(ch->irq, sh_tmu_interrupt,
451                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
452                           dev_name(&ch->tmu->pdev->dev), ch);
453         if (ret) {
454                 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
455                         ch->index, ch->irq);
456                 return;
457         }
458 }
459
460 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
461                            bool clockevent, bool clocksource)
462 {
463         if (clockevent) {
464                 ch->tmu->has_clockevent = true;
465                 sh_tmu_register_clockevent(ch, name);
466         } else if (clocksource) {
467                 ch->tmu->has_clocksource = true;
468                 sh_tmu_register_clocksource(ch, name);
469         }
470
471         return 0;
472 }
473
474 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
475                                 bool clockevent, bool clocksource,
476                                 struct sh_tmu_device *tmu)
477 {
478         /* Skip unused channels. */
479         if (!clockevent && !clocksource)
480                 return 0;
481
482         ch->tmu = tmu;
483
484         if (tmu->model == SH_TMU_LEGACY) {
485                 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
486
487                 /*
488                  * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps
489                  * channel registers blocks at base + 2 + 12 * index, while all
490                  * other variants map them at base + 4 + 12 * index. We can
491                  * compute the index by just dividing by 12, the 2 bytes or 4
492                  * bytes offset being hidden by the integer division.
493                  */
494                 ch->index = cfg->channel_offset / 12;
495                 ch->base = tmu->mapbase + cfg->channel_offset;
496         } else {
497                 ch->index = index;
498
499                 if (tmu->model == SH_TMU_SH3)
500                         ch->base = tmu->mapbase + 4 + ch->index * 12;
501                 else
502                         ch->base = tmu->mapbase + 8 + ch->index * 12;
503         }
504
505         ch->irq = platform_get_irq(tmu->pdev, ch->index);
506         if (ch->irq < 0) {
507                 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
508                         ch->index);
509                 return ch->irq;
510         }
511
512         ch->cs_enabled = false;
513         ch->enable_count = 0;
514
515         return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
516                                clockevent, clocksource);
517 }
518
519 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
520 {
521         struct resource *res;
522
523         res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
524         if (!res) {
525                 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
526                 return -ENXIO;
527         }
528
529         tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
530         if (tmu->mapbase == NULL)
531                 return -ENXIO;
532
533         /*
534          * In legacy platform device configuration (with one device per channel)
535          * the resource points to the channel base address.
536          */
537         if (tmu->model == SH_TMU_LEGACY) {
538                 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
539                 tmu->mapbase -= cfg->channel_offset;
540         }
541
542         return 0;
543 }
544
545 static void sh_tmu_unmap_memory(struct sh_tmu_device *tmu)
546 {
547         if (tmu->model == SH_TMU_LEGACY) {
548                 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
549                 tmu->mapbase += cfg->channel_offset;
550         }
551
552         iounmap(tmu->mapbase);
553 }
554
555 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
556 {
557         struct sh_timer_config *cfg = pdev->dev.platform_data;
558         const struct platform_device_id *id = pdev->id_entry;
559         unsigned int i;
560         int ret;
561
562         if (!cfg) {
563                 dev_err(&tmu->pdev->dev, "missing platform data\n");
564                 return -ENXIO;
565         }
566
567         tmu->pdev = pdev;
568         tmu->model = id->driver_data;
569
570         /* Get hold of clock. */
571         tmu->clk = clk_get(&tmu->pdev->dev,
572                            tmu->model == SH_TMU_LEGACY ? "tmu_fck" : "fck");
573         if (IS_ERR(tmu->clk)) {
574                 dev_err(&tmu->pdev->dev, "cannot get clock\n");
575                 return PTR_ERR(tmu->clk);
576         }
577
578         ret = clk_prepare(tmu->clk);
579         if (ret < 0)
580                 goto err_clk_put;
581
582         /* Map the memory resource. */
583         ret = sh_tmu_map_memory(tmu);
584         if (ret < 0) {
585                 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
586                 goto err_clk_unprepare;
587         }
588
589         /* Allocate and setup the channels. */
590         if (tmu->model == SH_TMU_LEGACY)
591                 tmu->num_channels = 1;
592         else
593                 tmu->num_channels = hweight8(cfg->channels_mask);
594
595         tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
596                                 GFP_KERNEL);
597         if (tmu->channels == NULL) {
598                 ret = -ENOMEM;
599                 goto err_unmap;
600         }
601
602         if (tmu->model == SH_TMU_LEGACY) {
603                 ret = sh_tmu_channel_setup(&tmu->channels[0], 0,
604                                            cfg->clockevent_rating != 0,
605                                            cfg->clocksource_rating != 0, tmu);
606                 if (ret < 0)
607                         goto err_unmap;
608         } else {
609                 /*
610                  * Use the first channel as a clock event device and the second
611                  * channel as a clock source.
612                  */
613                 for (i = 0; i < tmu->num_channels; ++i) {
614                         ret = sh_tmu_channel_setup(&tmu->channels[i], i,
615                                                    i == 0, i == 1, tmu);
616                         if (ret < 0)
617                                 goto err_unmap;
618                 }
619         }
620
621         platform_set_drvdata(pdev, tmu);
622
623         return 0;
624
625 err_unmap:
626         kfree(tmu->channels);
627         sh_tmu_unmap_memory(tmu);
628 err_clk_unprepare:
629         clk_unprepare(tmu->clk);
630 err_clk_put:
631         clk_put(tmu->clk);
632         return ret;
633 }
634
635 static int sh_tmu_probe(struct platform_device *pdev)
636 {
637         struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
638         int ret;
639
640         if (!is_early_platform_device(pdev)) {
641                 pm_runtime_set_active(&pdev->dev);
642                 pm_runtime_enable(&pdev->dev);
643         }
644
645         if (tmu) {
646                 dev_info(&pdev->dev, "kept as earlytimer\n");
647                 goto out;
648         }
649
650         tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
651         if (tmu == NULL) {
652                 dev_err(&pdev->dev, "failed to allocate driver data\n");
653                 return -ENOMEM;
654         }
655
656         ret = sh_tmu_setup(tmu, pdev);
657         if (ret) {
658                 kfree(tmu);
659                 pm_runtime_idle(&pdev->dev);
660                 return ret;
661         }
662         if (is_early_platform_device(pdev))
663                 return 0;
664
665  out:
666         if (tmu->has_clockevent || tmu->has_clocksource)
667                 pm_runtime_irq_safe(&pdev->dev);
668         else
669                 pm_runtime_idle(&pdev->dev);
670
671         return 0;
672 }
673
674 static int sh_tmu_remove(struct platform_device *pdev)
675 {
676         return -EBUSY; /* cannot unregister clockevent and clocksource */
677 }
678
679 static const struct platform_device_id sh_tmu_id_table[] = {
680         { "sh_tmu", SH_TMU_LEGACY },
681         { "sh-tmu", SH_TMU },
682         { "sh-tmu-sh3", SH_TMU_SH3 },
683         { }
684 };
685 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
686
687 static struct platform_driver sh_tmu_device_driver = {
688         .probe          = sh_tmu_probe,
689         .remove         = sh_tmu_remove,
690         .driver         = {
691                 .name   = "sh_tmu",
692         },
693         .id_table       = sh_tmu_id_table,
694 };
695
696 static int __init sh_tmu_init(void)
697 {
698         return platform_driver_register(&sh_tmu_device_driver);
699 }
700
701 static void __exit sh_tmu_exit(void)
702 {
703         platform_driver_unregister(&sh_tmu_device_driver);
704 }
705
706 early_platform_init("earlytimer", &sh_tmu_device_driver);
707 subsys_initcall(sh_tmu_init);
708 module_exit(sh_tmu_exit);
709
710 MODULE_AUTHOR("Magnus Damm");
711 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
712 MODULE_LICENSE("GPL v2");