Merge tag 'platform-drivers-x86-v3.19-1' of git://git.infradead.org/users/dvhart...
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52         return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57         int mask, ret;
58
59         ret = fp_toint(x);
60         mask = (1 << FRAC_BITS) - 1;
61         if (x & mask)
62                 ret += 1;
63         return ret;
64 }
65
66 struct sample {
67         int32_t core_pct_busy;
68         u64 aperf;
69         u64 mperf;
70         int freq;
71         ktime_t time;
72 };
73
74 struct pstate_data {
75         int     current_pstate;
76         int     min_pstate;
77         int     max_pstate;
78         int     scaling;
79         int     turbo_pstate;
80 };
81
82 struct vid_data {
83         int min;
84         int max;
85         int turbo;
86         int32_t ratio;
87 };
88
89 struct _pid {
90         int setpoint;
91         int32_t integral;
92         int32_t p_gain;
93         int32_t i_gain;
94         int32_t d_gain;
95         int deadband;
96         int32_t last_err;
97 };
98
99 struct cpudata {
100         int cpu;
101
102         struct timer_list timer;
103
104         struct pstate_data pstate;
105         struct vid_data vid;
106         struct _pid pid;
107
108         ktime_t last_sample_time;
109         u64     prev_aperf;
110         u64     prev_mperf;
111         struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116         int sample_rate_ms;
117         int deadband;
118         int setpoint;
119         int p_gain_pct;
120         int d_gain_pct;
121         int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125         int (*get_max)(void);
126         int (*get_min)(void);
127         int (*get_turbo)(void);
128         int (*get_scaling)(void);
129         void (*set)(struct cpudata*, int pstate);
130         void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134         struct pstate_adjust_policy pid_policy;
135         struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143         int no_turbo;
144         int turbo_disabled;
145         int max_perf_pct;
146         int min_perf_pct;
147         int32_t max_perf;
148         int32_t min_perf;
149         int max_policy_pct;
150         int max_sysfs_pct;
151 };
152
153 static struct perf_limits limits = {
154         .no_turbo = 0,
155         .turbo_disabled = 0,
156         .max_perf_pct = 100,
157         .max_perf = int_tofp(1),
158         .min_perf_pct = 0,
159         .min_perf = 0,
160         .max_policy_pct = 100,
161         .max_sysfs_pct = 100,
162 };
163
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165                              int deadband, int integral) {
166         pid->setpoint = setpoint;
167         pid->deadband  = deadband;
168         pid->integral  = int_tofp(integral);
169         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
170 }
171
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189         signed int result;
190         int32_t pterm, dterm, fp_error;
191         int32_t integral_limit;
192
193         fp_error = int_tofp(pid->setpoint) - busy;
194
195         if (abs(fp_error) <= int_tofp(pid->deadband))
196                 return 0;
197
198         pterm = mul_fp(pid->p_gain, fp_error);
199
200         pid->integral += fp_error;
201
202         /* limit the integral term */
203         integral_limit = int_tofp(30);
204         if (pid->integral > integral_limit)
205                 pid->integral = integral_limit;
206         if (pid->integral < -integral_limit)
207                 pid->integral = -integral_limit;
208
209         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
210         pid->last_err = fp_error;
211
212         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
213         result = result + (1 << (FRAC_BITS-1));
214         return (signed int)fp_toint(result);
215 }
216
217 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
218 {
219         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
220         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
221         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
222
223         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
224 }
225
226 static inline void intel_pstate_reset_all_pid(void)
227 {
228         unsigned int cpu;
229
230         for_each_online_cpu(cpu) {
231                 if (all_cpu_data[cpu])
232                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
233         }
234 }
235
236 static inline void update_turbo_state(void)
237 {
238         u64 misc_en;
239         struct cpudata *cpu;
240
241         cpu = all_cpu_data[0];
242         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
243         limits.turbo_disabled =
244                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
245                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
246 }
247
248 #define PCT_TO_HWP(x) (x * 255 / 100)
249 static void intel_pstate_hwp_set(void)
250 {
251         int min, max, cpu;
252         u64 value, freq;
253
254         get_online_cpus();
255
256         for_each_online_cpu(cpu) {
257                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
258                 min = PCT_TO_HWP(limits.min_perf_pct);
259                 value &= ~HWP_MIN_PERF(~0L);
260                 value |= HWP_MIN_PERF(min);
261
262                 max = PCT_TO_HWP(limits.max_perf_pct);
263                 if (limits.no_turbo) {
264                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
265                         max = HWP_GUARANTEED_PERF(freq);
266                 }
267
268                 value &= ~HWP_MAX_PERF(~0L);
269                 value |= HWP_MAX_PERF(max);
270                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
271         }
272
273         put_online_cpus();
274 }
275
276 /************************** debugfs begin ************************/
277 static int pid_param_set(void *data, u64 val)
278 {
279         *(u32 *)data = val;
280         intel_pstate_reset_all_pid();
281         return 0;
282 }
283
284 static int pid_param_get(void *data, u64 *val)
285 {
286         *val = *(u32 *)data;
287         return 0;
288 }
289 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
290
291 struct pid_param {
292         char *name;
293         void *value;
294 };
295
296 static struct pid_param pid_files[] = {
297         {"sample_rate_ms", &pid_params.sample_rate_ms},
298         {"d_gain_pct", &pid_params.d_gain_pct},
299         {"i_gain_pct", &pid_params.i_gain_pct},
300         {"deadband", &pid_params.deadband},
301         {"setpoint", &pid_params.setpoint},
302         {"p_gain_pct", &pid_params.p_gain_pct},
303         {NULL, NULL}
304 };
305
306 static void __init intel_pstate_debug_expose_params(void)
307 {
308         struct dentry *debugfs_parent;
309         int i = 0;
310
311         if (hwp_active)
312                 return;
313         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
314         if (IS_ERR_OR_NULL(debugfs_parent))
315                 return;
316         while (pid_files[i].name) {
317                 debugfs_create_file(pid_files[i].name, 0660,
318                                     debugfs_parent, pid_files[i].value,
319                                     &fops_pid_param);
320                 i++;
321         }
322 }
323
324 /************************** debugfs end ************************/
325
326 /************************** sysfs begin ************************/
327 #define show_one(file_name, object)                                     \
328         static ssize_t show_##file_name                                 \
329         (struct kobject *kobj, struct attribute *attr, char *buf)       \
330         {                                                               \
331                 return sprintf(buf, "%u\n", limits.object);             \
332         }
333
334 static ssize_t show_no_turbo(struct kobject *kobj,
335                              struct attribute *attr, char *buf)
336 {
337         ssize_t ret;
338
339         update_turbo_state();
340         if (limits.turbo_disabled)
341                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
342         else
343                 ret = sprintf(buf, "%u\n", limits.no_turbo);
344
345         return ret;
346 }
347
348 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
349                               const char *buf, size_t count)
350 {
351         unsigned int input;
352         int ret;
353
354         ret = sscanf(buf, "%u", &input);
355         if (ret != 1)
356                 return -EINVAL;
357
358         update_turbo_state();
359         if (limits.turbo_disabled) {
360                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
361                 return -EPERM;
362         }
363
364         limits.no_turbo = clamp_t(int, input, 0, 1);
365
366         if (hwp_active)
367                 intel_pstate_hwp_set();
368
369         return count;
370 }
371
372 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
373                                   const char *buf, size_t count)
374 {
375         unsigned int input;
376         int ret;
377
378         ret = sscanf(buf, "%u", &input);
379         if (ret != 1)
380                 return -EINVAL;
381
382         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
383         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
384         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
385
386         if (hwp_active)
387                 intel_pstate_hwp_set();
388         return count;
389 }
390
391 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
392                                   const char *buf, size_t count)
393 {
394         unsigned int input;
395         int ret;
396
397         ret = sscanf(buf, "%u", &input);
398         if (ret != 1)
399                 return -EINVAL;
400         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
401         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
402
403         if (hwp_active)
404                 intel_pstate_hwp_set();
405         return count;
406 }
407
408 show_one(max_perf_pct, max_perf_pct);
409 show_one(min_perf_pct, min_perf_pct);
410
411 define_one_global_rw(no_turbo);
412 define_one_global_rw(max_perf_pct);
413 define_one_global_rw(min_perf_pct);
414
415 static struct attribute *intel_pstate_attributes[] = {
416         &no_turbo.attr,
417         &max_perf_pct.attr,
418         &min_perf_pct.attr,
419         NULL
420 };
421
422 static struct attribute_group intel_pstate_attr_group = {
423         .attrs = intel_pstate_attributes,
424 };
425
426 static void __init intel_pstate_sysfs_expose_params(void)
427 {
428         struct kobject *intel_pstate_kobject;
429         int rc;
430
431         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
432                                                 &cpu_subsys.dev_root->kobj);
433         BUG_ON(!intel_pstate_kobject);
434         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
435         BUG_ON(rc);
436 }
437 /************************** sysfs end ************************/
438
439 static void intel_pstate_hwp_enable(void)
440 {
441         hwp_active++;
442         pr_info("intel_pstate HWP enabled\n");
443
444         wrmsrl( MSR_PM_ENABLE, 0x1);
445 }
446
447 static int byt_get_min_pstate(void)
448 {
449         u64 value;
450
451         rdmsrl(BYT_RATIOS, value);
452         return (value >> 8) & 0x7F;
453 }
454
455 static int byt_get_max_pstate(void)
456 {
457         u64 value;
458
459         rdmsrl(BYT_RATIOS, value);
460         return (value >> 16) & 0x7F;
461 }
462
463 static int byt_get_turbo_pstate(void)
464 {
465         u64 value;
466
467         rdmsrl(BYT_TURBO_RATIOS, value);
468         return value & 0x7F;
469 }
470
471 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
472 {
473         u64 val;
474         int32_t vid_fp;
475         u32 vid;
476
477         val = pstate << 8;
478         if (limits.no_turbo && !limits.turbo_disabled)
479                 val |= (u64)1 << 32;
480
481         vid_fp = cpudata->vid.min + mul_fp(
482                 int_tofp(pstate - cpudata->pstate.min_pstate),
483                 cpudata->vid.ratio);
484
485         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
486         vid = ceiling_fp(vid_fp);
487
488         if (pstate > cpudata->pstate.max_pstate)
489                 vid = cpudata->vid.turbo;
490
491         val |= vid;
492
493         wrmsrl(MSR_IA32_PERF_CTL, val);
494 }
495
496 #define BYT_BCLK_FREQS 5
497 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
498
499 static int byt_get_scaling(void)
500 {
501         u64 value;
502         int i;
503
504         rdmsrl(MSR_FSB_FREQ, value);
505         i = value & 0x3;
506
507         BUG_ON(i > BYT_BCLK_FREQS);
508
509         return byt_freq_table[i] * 100;
510 }
511
512 static void byt_get_vid(struct cpudata *cpudata)
513 {
514         u64 value;
515
516         rdmsrl(BYT_VIDS, value);
517         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
518         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
519         cpudata->vid.ratio = div_fp(
520                 cpudata->vid.max - cpudata->vid.min,
521                 int_tofp(cpudata->pstate.max_pstate -
522                         cpudata->pstate.min_pstate));
523
524         rdmsrl(BYT_TURBO_VIDS, value);
525         cpudata->vid.turbo = value & 0x7f;
526 }
527
528 static int core_get_min_pstate(void)
529 {
530         u64 value;
531
532         rdmsrl(MSR_PLATFORM_INFO, value);
533         return (value >> 40) & 0xFF;
534 }
535
536 static int core_get_max_pstate(void)
537 {
538         u64 value;
539
540         rdmsrl(MSR_PLATFORM_INFO, value);
541         return (value >> 8) & 0xFF;
542 }
543
544 static int core_get_turbo_pstate(void)
545 {
546         u64 value;
547         int nont, ret;
548
549         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
550         nont = core_get_max_pstate();
551         ret = (value) & 255;
552         if (ret <= nont)
553                 ret = nont;
554         return ret;
555 }
556
557 static inline int core_get_scaling(void)
558 {
559         return 100000;
560 }
561
562 static void core_set_pstate(struct cpudata *cpudata, int pstate)
563 {
564         u64 val;
565
566         val = pstate << 8;
567         if (limits.no_turbo && !limits.turbo_disabled)
568                 val |= (u64)1 << 32;
569
570         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
571 }
572
573 static struct cpu_defaults core_params = {
574         .pid_policy = {
575                 .sample_rate_ms = 10,
576                 .deadband = 0,
577                 .setpoint = 97,
578                 .p_gain_pct = 20,
579                 .d_gain_pct = 0,
580                 .i_gain_pct = 0,
581         },
582         .funcs = {
583                 .get_max = core_get_max_pstate,
584                 .get_min = core_get_min_pstate,
585                 .get_turbo = core_get_turbo_pstate,
586                 .get_scaling = core_get_scaling,
587                 .set = core_set_pstate,
588         },
589 };
590
591 static struct cpu_defaults byt_params = {
592         .pid_policy = {
593                 .sample_rate_ms = 10,
594                 .deadband = 0,
595                 .setpoint = 97,
596                 .p_gain_pct = 14,
597                 .d_gain_pct = 0,
598                 .i_gain_pct = 4,
599         },
600         .funcs = {
601                 .get_max = byt_get_max_pstate,
602                 .get_min = byt_get_min_pstate,
603                 .get_turbo = byt_get_turbo_pstate,
604                 .set = byt_set_pstate,
605                 .get_scaling = byt_get_scaling,
606                 .get_vid = byt_get_vid,
607         },
608 };
609
610 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
611 {
612         int max_perf = cpu->pstate.turbo_pstate;
613         int max_perf_adj;
614         int min_perf;
615
616         if (limits.no_turbo || limits.turbo_disabled)
617                 max_perf = cpu->pstate.max_pstate;
618
619         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
620         *max = clamp_t(int, max_perf_adj,
621                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
622
623         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
624         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
625 }
626
627 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
628 {
629         int max_perf, min_perf;
630
631         update_turbo_state();
632
633         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
634
635         pstate = clamp_t(int, pstate, min_perf, max_perf);
636
637         if (pstate == cpu->pstate.current_pstate)
638                 return;
639
640         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
641
642         cpu->pstate.current_pstate = pstate;
643
644         pstate_funcs.set(cpu, pstate);
645 }
646
647 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
648 {
649         cpu->pstate.min_pstate = pstate_funcs.get_min();
650         cpu->pstate.max_pstate = pstate_funcs.get_max();
651         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
652         cpu->pstate.scaling = pstate_funcs.get_scaling();
653
654         if (pstate_funcs.get_vid)
655                 pstate_funcs.get_vid(cpu);
656         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
657 }
658
659 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
660 {
661         struct sample *sample = &cpu->sample;
662         int64_t core_pct;
663
664         core_pct = int_tofp(sample->aperf) * int_tofp(100);
665         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
666
667         sample->freq = fp_toint(
668                 mul_fp(int_tofp(
669                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
670                         core_pct));
671
672         sample->core_pct_busy = (int32_t)core_pct;
673 }
674
675 static inline void intel_pstate_sample(struct cpudata *cpu)
676 {
677         u64 aperf, mperf;
678         unsigned long flags;
679
680         local_irq_save(flags);
681         rdmsrl(MSR_IA32_APERF, aperf);
682         rdmsrl(MSR_IA32_MPERF, mperf);
683         local_irq_restore(flags);
684
685         cpu->last_sample_time = cpu->sample.time;
686         cpu->sample.time = ktime_get();
687         cpu->sample.aperf = aperf;
688         cpu->sample.mperf = mperf;
689         cpu->sample.aperf -= cpu->prev_aperf;
690         cpu->sample.mperf -= cpu->prev_mperf;
691
692         intel_pstate_calc_busy(cpu);
693
694         cpu->prev_aperf = aperf;
695         cpu->prev_mperf = mperf;
696 }
697
698 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
699 {
700         int delay;
701
702         delay = msecs_to_jiffies(50);
703         mod_timer_pinned(&cpu->timer, jiffies + delay);
704 }
705
706 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
707 {
708         int delay;
709
710         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
711         mod_timer_pinned(&cpu->timer, jiffies + delay);
712 }
713
714 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
715 {
716         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
717         u32 duration_us;
718         u32 sample_time;
719
720         core_busy = cpu->sample.core_pct_busy;
721         max_pstate = int_tofp(cpu->pstate.max_pstate);
722         current_pstate = int_tofp(cpu->pstate.current_pstate);
723         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
724
725         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
726         duration_us = (u32) ktime_us_delta(cpu->sample.time,
727                                            cpu->last_sample_time);
728         if (duration_us > sample_time * 3) {
729                 sample_ratio = div_fp(int_tofp(sample_time),
730                                       int_tofp(duration_us));
731                 core_busy = mul_fp(core_busy, sample_ratio);
732         }
733
734         return core_busy;
735 }
736
737 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
738 {
739         int32_t busy_scaled;
740         struct _pid *pid;
741         signed int ctl;
742
743         pid = &cpu->pid;
744         busy_scaled = intel_pstate_get_scaled_busy(cpu);
745
746         ctl = pid_calc(pid, busy_scaled);
747
748         /* Negative values of ctl increase the pstate and vice versa */
749         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
750 }
751
752 static void intel_hwp_timer_func(unsigned long __data)
753 {
754         struct cpudata *cpu = (struct cpudata *) __data;
755
756         intel_pstate_sample(cpu);
757         intel_hwp_set_sample_time(cpu);
758 }
759
760 static void intel_pstate_timer_func(unsigned long __data)
761 {
762         struct cpudata *cpu = (struct cpudata *) __data;
763         struct sample *sample;
764
765         intel_pstate_sample(cpu);
766
767         sample = &cpu->sample;
768
769         intel_pstate_adjust_busy_pstate(cpu);
770
771         trace_pstate_sample(fp_toint(sample->core_pct_busy),
772                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
773                         cpu->pstate.current_pstate,
774                         sample->mperf,
775                         sample->aperf,
776                         sample->freq);
777
778         intel_pstate_set_sample_time(cpu);
779 }
780
781 #define ICPU(model, policy) \
782         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
783                         (unsigned long)&policy }
784
785 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
786         ICPU(0x2a, core_params),
787         ICPU(0x2d, core_params),
788         ICPU(0x37, byt_params),
789         ICPU(0x3a, core_params),
790         ICPU(0x3c, core_params),
791         ICPU(0x3d, core_params),
792         ICPU(0x3e, core_params),
793         ICPU(0x3f, core_params),
794         ICPU(0x45, core_params),
795         ICPU(0x46, core_params),
796         ICPU(0x47, core_params),
797         ICPU(0x4c, byt_params),
798         ICPU(0x4f, core_params),
799         ICPU(0x56, core_params),
800         {}
801 };
802 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
803
804 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
805         ICPU(0x56, core_params),
806         {}
807 };
808
809 static int intel_pstate_init_cpu(unsigned int cpunum)
810 {
811         struct cpudata *cpu;
812
813         if (!all_cpu_data[cpunum])
814                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
815                                                GFP_KERNEL);
816         if (!all_cpu_data[cpunum])
817                 return -ENOMEM;
818
819         cpu = all_cpu_data[cpunum];
820
821         cpu->cpu = cpunum;
822         intel_pstate_get_cpu_pstates(cpu);
823
824         init_timer_deferrable(&cpu->timer);
825         cpu->timer.data = (unsigned long)cpu;
826         cpu->timer.expires = jiffies + HZ/100;
827
828         if (!hwp_active)
829                 cpu->timer.function = intel_pstate_timer_func;
830         else
831                 cpu->timer.function = intel_hwp_timer_func;
832
833         intel_pstate_busy_pid_reset(cpu);
834         intel_pstate_sample(cpu);
835
836         add_timer_on(&cpu->timer, cpunum);
837
838         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
839
840         return 0;
841 }
842
843 static unsigned int intel_pstate_get(unsigned int cpu_num)
844 {
845         struct sample *sample;
846         struct cpudata *cpu;
847
848         cpu = all_cpu_data[cpu_num];
849         if (!cpu)
850                 return 0;
851         sample = &cpu->sample;
852         return sample->freq;
853 }
854
855 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
856 {
857         if (!policy->cpuinfo.max_freq)
858                 return -ENODEV;
859
860         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
861                 limits.min_perf_pct = 100;
862                 limits.min_perf = int_tofp(1);
863                 limits.max_policy_pct = 100;
864                 limits.max_perf_pct = 100;
865                 limits.max_perf = int_tofp(1);
866                 limits.no_turbo = 0;
867                 return 0;
868         }
869
870         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
871         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
872         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
873
874         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
875         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
876         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
877         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
878
879         if (hwp_active)
880                 intel_pstate_hwp_set();
881
882         return 0;
883 }
884
885 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
886 {
887         cpufreq_verify_within_cpu_limits(policy);
888
889         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
890             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
891                 return -EINVAL;
892
893         return 0;
894 }
895
896 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
897 {
898         int cpu_num = policy->cpu;
899         struct cpudata *cpu = all_cpu_data[cpu_num];
900
901         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
902
903         del_timer_sync(&all_cpu_data[cpu_num]->timer);
904         if (hwp_active)
905                 return;
906
907         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
908 }
909
910 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
911 {
912         struct cpudata *cpu;
913         int rc;
914
915         rc = intel_pstate_init_cpu(policy->cpu);
916         if (rc)
917                 return rc;
918
919         cpu = all_cpu_data[policy->cpu];
920
921         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
922                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
923         else
924                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
925
926         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
927         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
928
929         /* cpuinfo and default policy values */
930         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
931         policy->cpuinfo.max_freq =
932                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
933         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
934         cpumask_set_cpu(policy->cpu, policy->cpus);
935
936         return 0;
937 }
938
939 static struct cpufreq_driver intel_pstate_driver = {
940         .flags          = CPUFREQ_CONST_LOOPS,
941         .verify         = intel_pstate_verify_policy,
942         .setpolicy      = intel_pstate_set_policy,
943         .get            = intel_pstate_get,
944         .init           = intel_pstate_cpu_init,
945         .stop_cpu       = intel_pstate_stop_cpu,
946         .name           = "intel_pstate",
947 };
948
949 static int __initdata no_load;
950 static int __initdata no_hwp;
951
952 static int intel_pstate_msrs_not_valid(void)
953 {
954         /* Check that all the msr's we are using are valid. */
955         u64 aperf, mperf, tmp;
956
957         rdmsrl(MSR_IA32_APERF, aperf);
958         rdmsrl(MSR_IA32_MPERF, mperf);
959
960         if (!pstate_funcs.get_max() ||
961             !pstate_funcs.get_min() ||
962             !pstate_funcs.get_turbo())
963                 return -ENODEV;
964
965         rdmsrl(MSR_IA32_APERF, tmp);
966         if (!(tmp - aperf))
967                 return -ENODEV;
968
969         rdmsrl(MSR_IA32_MPERF, tmp);
970         if (!(tmp - mperf))
971                 return -ENODEV;
972
973         return 0;
974 }
975
976 static void copy_pid_params(struct pstate_adjust_policy *policy)
977 {
978         pid_params.sample_rate_ms = policy->sample_rate_ms;
979         pid_params.p_gain_pct = policy->p_gain_pct;
980         pid_params.i_gain_pct = policy->i_gain_pct;
981         pid_params.d_gain_pct = policy->d_gain_pct;
982         pid_params.deadband = policy->deadband;
983         pid_params.setpoint = policy->setpoint;
984 }
985
986 static void copy_cpu_funcs(struct pstate_funcs *funcs)
987 {
988         pstate_funcs.get_max   = funcs->get_max;
989         pstate_funcs.get_min   = funcs->get_min;
990         pstate_funcs.get_turbo = funcs->get_turbo;
991         pstate_funcs.get_scaling = funcs->get_scaling;
992         pstate_funcs.set       = funcs->set;
993         pstate_funcs.get_vid   = funcs->get_vid;
994 }
995
996 #if IS_ENABLED(CONFIG_ACPI)
997 #include <acpi/processor.h>
998
999 static bool intel_pstate_no_acpi_pss(void)
1000 {
1001         int i;
1002
1003         for_each_possible_cpu(i) {
1004                 acpi_status status;
1005                 union acpi_object *pss;
1006                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1007                 struct acpi_processor *pr = per_cpu(processors, i);
1008
1009                 if (!pr)
1010                         continue;
1011
1012                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1013                 if (ACPI_FAILURE(status))
1014                         continue;
1015
1016                 pss = buffer.pointer;
1017                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1018                         kfree(pss);
1019                         return false;
1020                 }
1021
1022                 kfree(pss);
1023         }
1024
1025         return true;
1026 }
1027
1028 static bool intel_pstate_has_acpi_ppc(void)
1029 {
1030         int i;
1031
1032         for_each_possible_cpu(i) {
1033                 struct acpi_processor *pr = per_cpu(processors, i);
1034
1035                 if (!pr)
1036                         continue;
1037                 if (acpi_has_method(pr->handle, "_PPC"))
1038                         return true;
1039         }
1040         return false;
1041 }
1042
1043 enum {
1044         PSS,
1045         PPC,
1046 };
1047
1048 struct hw_vendor_info {
1049         u16  valid;
1050         char oem_id[ACPI_OEM_ID_SIZE];
1051         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1052         int  oem_pwr_table;
1053 };
1054
1055 /* Hardware vendor-specific info that has its own power management modes */
1056 static struct hw_vendor_info vendor_info[] = {
1057         {1, "HP    ", "ProLiant", PSS},
1058         {1, "ORACLE", "X4-2    ", PPC},
1059         {1, "ORACLE", "X4-2L   ", PPC},
1060         {1, "ORACLE", "X4-2B   ", PPC},
1061         {1, "ORACLE", "X3-2    ", PPC},
1062         {1, "ORACLE", "X3-2L   ", PPC},
1063         {1, "ORACLE", "X3-2B   ", PPC},
1064         {1, "ORACLE", "X4470M2 ", PPC},
1065         {1, "ORACLE", "X4270M3 ", PPC},
1066         {1, "ORACLE", "X4270M2 ", PPC},
1067         {1, "ORACLE", "X4170M2 ", PPC},
1068         {0, "", ""},
1069 };
1070
1071 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1072 {
1073         struct acpi_table_header hdr;
1074         struct hw_vendor_info *v_info;
1075         const struct x86_cpu_id *id;
1076         u64 misc_pwr;
1077
1078         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1079         if (id) {
1080                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1081                 if ( misc_pwr & (1 << 8))
1082                         return true;
1083         }
1084
1085         if (acpi_disabled ||
1086             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1087                 return false;
1088
1089         for (v_info = vendor_info; v_info->valid; v_info++) {
1090                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1091                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1092                                                 ACPI_OEM_TABLE_ID_SIZE))
1093                         switch (v_info->oem_pwr_table) {
1094                         case PSS:
1095                                 return intel_pstate_no_acpi_pss();
1096                         case PPC:
1097                                 return intel_pstate_has_acpi_ppc();
1098                         }
1099         }
1100
1101         return false;
1102 }
1103 #else /* CONFIG_ACPI not enabled */
1104 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1105 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1106 #endif /* CONFIG_ACPI */
1107
1108 static int __init intel_pstate_init(void)
1109 {
1110         int cpu, rc = 0;
1111         const struct x86_cpu_id *id;
1112         struct cpu_defaults *cpu_info;
1113         struct cpuinfo_x86 *c = &boot_cpu_data;
1114
1115         if (no_load)
1116                 return -ENODEV;
1117
1118         id = x86_match_cpu(intel_pstate_cpu_ids);
1119         if (!id)
1120                 return -ENODEV;
1121
1122         /*
1123          * The Intel pstate driver will be ignored if the platform
1124          * firmware has its own power management modes.
1125          */
1126         if (intel_pstate_platform_pwr_mgmt_exists())
1127                 return -ENODEV;
1128
1129         cpu_info = (struct cpu_defaults *)id->driver_data;
1130
1131         copy_pid_params(&cpu_info->pid_policy);
1132         copy_cpu_funcs(&cpu_info->funcs);
1133
1134         if (intel_pstate_msrs_not_valid())
1135                 return -ENODEV;
1136
1137         pr_info("Intel P-state driver initializing.\n");
1138
1139         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1140         if (!all_cpu_data)
1141                 return -ENOMEM;
1142
1143         if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1144                 intel_pstate_hwp_enable();
1145
1146         rc = cpufreq_register_driver(&intel_pstate_driver);
1147         if (rc)
1148                 goto out;
1149
1150         intel_pstate_debug_expose_params();
1151         intel_pstate_sysfs_expose_params();
1152
1153         return rc;
1154 out:
1155         get_online_cpus();
1156         for_each_online_cpu(cpu) {
1157                 if (all_cpu_data[cpu]) {
1158                         del_timer_sync(&all_cpu_data[cpu]->timer);
1159                         kfree(all_cpu_data[cpu]);
1160                 }
1161         }
1162
1163         put_online_cpus();
1164         vfree(all_cpu_data);
1165         return -ENODEV;
1166 }
1167 device_initcall(intel_pstate_init);
1168
1169 static int __init intel_pstate_setup(char *str)
1170 {
1171         if (!str)
1172                 return -EINVAL;
1173
1174         if (!strcmp(str, "disable"))
1175                 no_load = 1;
1176         if (!strcmp(str, "no_hwp"))
1177                 no_hwp = 1;
1178         return 0;
1179 }
1180 early_param("intel_pstate", intel_pstate_setup);
1181
1182 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1183 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1184 MODULE_LICENSE("GPL");