Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(int32_t x, int32_t y)
52 {
53         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
54 }
55
56 struct sample {
57         int32_t core_pct_busy;
58         u64 aperf;
59         u64 mperf;
60         int freq;
61         ktime_t time;
62 };
63
64 struct pstate_data {
65         int     current_pstate;
66         int     min_pstate;
67         int     max_pstate;
68         int     turbo_pstate;
69 };
70
71 struct vid_data {
72         int min;
73         int max;
74         int turbo;
75         int32_t ratio;
76 };
77
78 struct _pid {
79         int setpoint;
80         int32_t integral;
81         int32_t p_gain;
82         int32_t i_gain;
83         int32_t d_gain;
84         int deadband;
85         int32_t last_err;
86 };
87
88 struct cpudata {
89         int cpu;
90
91         struct timer_list timer;
92
93         struct pstate_data pstate;
94         struct vid_data vid;
95         struct _pid pid;
96
97         ktime_t last_sample_time;
98         u64     prev_aperf;
99         u64     prev_mperf;
100         struct sample sample;
101 };
102
103 static struct cpudata **all_cpu_data;
104 struct pstate_adjust_policy {
105         int sample_rate_ms;
106         int deadband;
107         int setpoint;
108         int p_gain_pct;
109         int d_gain_pct;
110         int i_gain_pct;
111 };
112
113 struct pstate_funcs {
114         int (*get_max)(void);
115         int (*get_min)(void);
116         int (*get_turbo)(void);
117         void (*set)(struct cpudata*, int pstate);
118         void (*get_vid)(struct cpudata *);
119 };
120
121 struct cpu_defaults {
122         struct pstate_adjust_policy pid_policy;
123         struct pstate_funcs funcs;
124 };
125
126 static struct pstate_adjust_policy pid_params;
127 static struct pstate_funcs pstate_funcs;
128
129 struct perf_limits {
130         int no_turbo;
131         int max_perf_pct;
132         int min_perf_pct;
133         int32_t max_perf;
134         int32_t min_perf;
135         int max_policy_pct;
136         int max_sysfs_pct;
137 };
138
139 static struct perf_limits limits = {
140         .no_turbo = 0,
141         .max_perf_pct = 100,
142         .max_perf = int_tofp(1),
143         .min_perf_pct = 0,
144         .min_perf = 0,
145         .max_policy_pct = 100,
146         .max_sysfs_pct = 100,
147 };
148
149 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
150                         int deadband, int integral) {
151         pid->setpoint = setpoint;
152         pid->deadband  = deadband;
153         pid->integral  = int_tofp(integral);
154         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 }
156
157 static inline void pid_p_gain_set(struct _pid *pid, int percent)
158 {
159         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
160 }
161
162 static inline void pid_i_gain_set(struct _pid *pid, int percent)
163 {
164         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
165 }
166
167 static inline void pid_d_gain_set(struct _pid *pid, int percent)
168 {
169
170         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
171 }
172
173 static signed int pid_calc(struct _pid *pid, int32_t busy)
174 {
175         signed int result;
176         int32_t pterm, dterm, fp_error;
177         int32_t integral_limit;
178
179         fp_error = int_tofp(pid->setpoint) - busy;
180
181         if (abs(fp_error) <= int_tofp(pid->deadband))
182                 return 0;
183
184         pterm = mul_fp(pid->p_gain, fp_error);
185
186         pid->integral += fp_error;
187
188         /* limit the integral term */
189         integral_limit = int_tofp(30);
190         if (pid->integral > integral_limit)
191                 pid->integral = integral_limit;
192         if (pid->integral < -integral_limit)
193                 pid->integral = -integral_limit;
194
195         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
196         pid->last_err = fp_error;
197
198         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
199         result = result + (1 << (FRAC_BITS-1));
200         return (signed int)fp_toint(result);
201 }
202
203 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
204 {
205         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
206         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
207         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
208
209         pid_reset(&cpu->pid,
210                 pid_params.setpoint,
211                 100,
212                 pid_params.deadband,
213                 0);
214 }
215
216 static inline void intel_pstate_reset_all_pid(void)
217 {
218         unsigned int cpu;
219         for_each_online_cpu(cpu) {
220                 if (all_cpu_data[cpu])
221                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
222         }
223 }
224
225 /************************** debugfs begin ************************/
226 static int pid_param_set(void *data, u64 val)
227 {
228         *(u32 *)data = val;
229         intel_pstate_reset_all_pid();
230         return 0;
231 }
232 static int pid_param_get(void *data, u64 *val)
233 {
234         *val = *(u32 *)data;
235         return 0;
236 }
237 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
238                         pid_param_set, "%llu\n");
239
240 struct pid_param {
241         char *name;
242         void *value;
243 };
244
245 static struct pid_param pid_files[] = {
246         {"sample_rate_ms", &pid_params.sample_rate_ms},
247         {"d_gain_pct", &pid_params.d_gain_pct},
248         {"i_gain_pct", &pid_params.i_gain_pct},
249         {"deadband", &pid_params.deadband},
250         {"setpoint", &pid_params.setpoint},
251         {"p_gain_pct", &pid_params.p_gain_pct},
252         {NULL, NULL}
253 };
254
255 static struct dentry *debugfs_parent;
256 static void intel_pstate_debug_expose_params(void)
257 {
258         int i = 0;
259
260         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
261         if (IS_ERR_OR_NULL(debugfs_parent))
262                 return;
263         while (pid_files[i].name) {
264                 debugfs_create_file(pid_files[i].name, 0660,
265                                 debugfs_parent, pid_files[i].value,
266                                 &fops_pid_param);
267                 i++;
268         }
269 }
270
271 /************************** debugfs end ************************/
272
273 /************************** sysfs begin ************************/
274 #define show_one(file_name, object)                                     \
275         static ssize_t show_##file_name                                 \
276         (struct kobject *kobj, struct attribute *attr, char *buf)       \
277         {                                                               \
278                 return sprintf(buf, "%u\n", limits.object);             \
279         }
280
281 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
282                                 const char *buf, size_t count)
283 {
284         unsigned int input;
285         int ret;
286         ret = sscanf(buf, "%u", &input);
287         if (ret != 1)
288                 return -EINVAL;
289         limits.no_turbo = clamp_t(int, input, 0 , 1);
290
291         return count;
292 }
293
294 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
295                                 const char *buf, size_t count)
296 {
297         unsigned int input;
298         int ret;
299         ret = sscanf(buf, "%u", &input);
300         if (ret != 1)
301                 return -EINVAL;
302
303         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
304         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
305         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
306         return count;
307 }
308
309 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
310                                 const char *buf, size_t count)
311 {
312         unsigned int input;
313         int ret;
314         ret = sscanf(buf, "%u", &input);
315         if (ret != 1)
316                 return -EINVAL;
317         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
318         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
319
320         return count;
321 }
322
323 show_one(no_turbo, no_turbo);
324 show_one(max_perf_pct, max_perf_pct);
325 show_one(min_perf_pct, min_perf_pct);
326
327 define_one_global_rw(no_turbo);
328 define_one_global_rw(max_perf_pct);
329 define_one_global_rw(min_perf_pct);
330
331 static struct attribute *intel_pstate_attributes[] = {
332         &no_turbo.attr,
333         &max_perf_pct.attr,
334         &min_perf_pct.attr,
335         NULL
336 };
337
338 static struct attribute_group intel_pstate_attr_group = {
339         .attrs = intel_pstate_attributes,
340 };
341 static struct kobject *intel_pstate_kobject;
342
343 static void intel_pstate_sysfs_expose_params(void)
344 {
345         int rc;
346
347         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
348                                                 &cpu_subsys.dev_root->kobj);
349         BUG_ON(!intel_pstate_kobject);
350         rc = sysfs_create_group(intel_pstate_kobject,
351                                 &intel_pstate_attr_group);
352         BUG_ON(rc);
353 }
354
355 /************************** sysfs end ************************/
356 static int byt_get_min_pstate(void)
357 {
358         u64 value;
359         rdmsrl(BYT_RATIOS, value);
360         return (value >> 8) & 0x3F;
361 }
362
363 static int byt_get_max_pstate(void)
364 {
365         u64 value;
366         rdmsrl(BYT_RATIOS, value);
367         return (value >> 16) & 0x3F;
368 }
369
370 static int byt_get_turbo_pstate(void)
371 {
372         u64 value;
373         rdmsrl(BYT_TURBO_RATIOS, value);
374         return value & 0x3F;
375 }
376
377 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
378 {
379         u64 val;
380         int32_t vid_fp;
381         u32 vid;
382
383         val = pstate << 8;
384         if (limits.no_turbo)
385                 val |= (u64)1 << 32;
386
387         vid_fp = cpudata->vid.min + mul_fp(
388                 int_tofp(pstate - cpudata->pstate.min_pstate),
389                 cpudata->vid.ratio);
390
391         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
392         vid = fp_toint(vid_fp);
393
394         if (pstate > cpudata->pstate.max_pstate)
395                 vid = cpudata->vid.turbo;
396
397         val |= vid;
398
399         wrmsrl(MSR_IA32_PERF_CTL, val);
400 }
401
402 static void byt_get_vid(struct cpudata *cpudata)
403 {
404         u64 value;
405
406
407         rdmsrl(BYT_VIDS, value);
408         cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
409         cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
410         cpudata->vid.ratio = div_fp(
411                 cpudata->vid.max - cpudata->vid.min,
412                 int_tofp(cpudata->pstate.max_pstate -
413                         cpudata->pstate.min_pstate));
414
415         rdmsrl(BYT_TURBO_VIDS, value);
416         cpudata->vid.turbo = value & 0x7f;
417 }
418
419
420 static int core_get_min_pstate(void)
421 {
422         u64 value;
423         rdmsrl(MSR_PLATFORM_INFO, value);
424         return (value >> 40) & 0xFF;
425 }
426
427 static int core_get_max_pstate(void)
428 {
429         u64 value;
430         rdmsrl(MSR_PLATFORM_INFO, value);
431         return (value >> 8) & 0xFF;
432 }
433
434 static int core_get_turbo_pstate(void)
435 {
436         u64 value;
437         int nont, ret;
438         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
439         nont = core_get_max_pstate();
440         ret = ((value) & 255);
441         if (ret <= nont)
442                 ret = nont;
443         return ret;
444 }
445
446 static void core_set_pstate(struct cpudata *cpudata, int pstate)
447 {
448         u64 val;
449
450         val = pstate << 8;
451         if (limits.no_turbo)
452                 val |= (u64)1 << 32;
453
454         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
455 }
456
457 static struct cpu_defaults core_params = {
458         .pid_policy = {
459                 .sample_rate_ms = 10,
460                 .deadband = 0,
461                 .setpoint = 97,
462                 .p_gain_pct = 20,
463                 .d_gain_pct = 0,
464                 .i_gain_pct = 0,
465         },
466         .funcs = {
467                 .get_max = core_get_max_pstate,
468                 .get_min = core_get_min_pstate,
469                 .get_turbo = core_get_turbo_pstate,
470                 .set = core_set_pstate,
471         },
472 };
473
474 static struct cpu_defaults byt_params = {
475         .pid_policy = {
476                 .sample_rate_ms = 10,
477                 .deadband = 0,
478                 .setpoint = 97,
479                 .p_gain_pct = 14,
480                 .d_gain_pct = 0,
481                 .i_gain_pct = 4,
482         },
483         .funcs = {
484                 .get_max = byt_get_max_pstate,
485                 .get_min = byt_get_min_pstate,
486                 .get_turbo = byt_get_turbo_pstate,
487                 .set = byt_set_pstate,
488                 .get_vid = byt_get_vid,
489         },
490 };
491
492
493 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
494 {
495         int max_perf = cpu->pstate.turbo_pstate;
496         int max_perf_adj;
497         int min_perf;
498         if (limits.no_turbo)
499                 max_perf = cpu->pstate.max_pstate;
500
501         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
502         *max = clamp_t(int, max_perf_adj,
503                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
504
505         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
506         *min = clamp_t(int, min_perf,
507                         cpu->pstate.min_pstate, max_perf);
508 }
509
510 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
511 {
512         int max_perf, min_perf;
513
514         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
515
516         pstate = clamp_t(int, pstate, min_perf, max_perf);
517
518         if (pstate == cpu->pstate.current_pstate)
519                 return;
520
521         trace_cpu_frequency(pstate * 100000, cpu->cpu);
522
523         cpu->pstate.current_pstate = pstate;
524
525         pstate_funcs.set(cpu, pstate);
526 }
527
528 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
529 {
530         int target;
531         target = cpu->pstate.current_pstate + steps;
532
533         intel_pstate_set_pstate(cpu, target);
534 }
535
536 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
537 {
538         int target;
539         target = cpu->pstate.current_pstate - steps;
540         intel_pstate_set_pstate(cpu, target);
541 }
542
543 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
544 {
545         cpu->pstate.min_pstate = pstate_funcs.get_min();
546         cpu->pstate.max_pstate = pstate_funcs.get_max();
547         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
548
549         if (pstate_funcs.get_vid)
550                 pstate_funcs.get_vid(cpu);
551         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
552 }
553
554 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
555 {
556         struct sample *sample = &cpu->sample;
557         int64_t core_pct;
558         int32_t rem;
559
560         core_pct = int_tofp(sample->aperf) * int_tofp(100);
561         core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);
562
563         if ((rem << 1) >= int_tofp(sample->mperf))
564                 core_pct += 1;
565
566         sample->freq = fp_toint(
567                 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
568
569         sample->core_pct_busy = (int32_t)core_pct;
570 }
571
572 static inline void intel_pstate_sample(struct cpudata *cpu)
573 {
574         u64 aperf, mperf;
575
576         rdmsrl(MSR_IA32_APERF, aperf);
577         rdmsrl(MSR_IA32_MPERF, mperf);
578
579         aperf = aperf >> FRAC_BITS;
580         mperf = mperf >> FRAC_BITS;
581
582         cpu->last_sample_time = cpu->sample.time;
583         cpu->sample.time = ktime_get();
584         cpu->sample.aperf = aperf;
585         cpu->sample.mperf = mperf;
586         cpu->sample.aperf -= cpu->prev_aperf;
587         cpu->sample.mperf -= cpu->prev_mperf;
588
589         intel_pstate_calc_busy(cpu);
590
591         cpu->prev_aperf = aperf;
592         cpu->prev_mperf = mperf;
593 }
594
595 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
596 {
597         int sample_time, delay;
598
599         sample_time = pid_params.sample_rate_ms;
600         delay = msecs_to_jiffies(sample_time);
601         mod_timer_pinned(&cpu->timer, jiffies + delay);
602 }
603
604 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
605 {
606         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
607         u32 duration_us;
608         u32 sample_time;
609
610         core_busy = cpu->sample.core_pct_busy;
611         max_pstate = int_tofp(cpu->pstate.max_pstate);
612         current_pstate = int_tofp(cpu->pstate.current_pstate);
613         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
614
615         sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
616         duration_us = (u32) ktime_us_delta(cpu->sample.time,
617                                         cpu->last_sample_time);
618         if (duration_us > sample_time * 3) {
619                 sample_ratio = div_fp(int_tofp(sample_time),
620                                 int_tofp(duration_us));
621                 core_busy = mul_fp(core_busy, sample_ratio);
622         }
623
624         return core_busy;
625 }
626
627 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
628 {
629         int32_t busy_scaled;
630         struct _pid *pid;
631         signed int ctl = 0;
632         int steps;
633
634         pid = &cpu->pid;
635         busy_scaled = intel_pstate_get_scaled_busy(cpu);
636
637         ctl = pid_calc(pid, busy_scaled);
638
639         steps = abs(ctl);
640
641         if (ctl < 0)
642                 intel_pstate_pstate_increase(cpu, steps);
643         else
644                 intel_pstate_pstate_decrease(cpu, steps);
645 }
646
647 static void intel_pstate_timer_func(unsigned long __data)
648 {
649         struct cpudata *cpu = (struct cpudata *) __data;
650         struct sample *sample;
651
652         intel_pstate_sample(cpu);
653
654         sample = &cpu->sample;
655
656         intel_pstate_adjust_busy_pstate(cpu);
657
658         trace_pstate_sample(fp_toint(sample->core_pct_busy),
659                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
660                         cpu->pstate.current_pstate,
661                         sample->mperf,
662                         sample->aperf,
663                         sample->freq);
664
665         intel_pstate_set_sample_time(cpu);
666 }
667
668 #define ICPU(model, policy) \
669         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
670                         (unsigned long)&policy }
671
672 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
673         ICPU(0x2a, core_params),
674         ICPU(0x2d, core_params),
675         ICPU(0x37, byt_params),
676         ICPU(0x3a, core_params),
677         ICPU(0x3c, core_params),
678         ICPU(0x3d, core_params),
679         ICPU(0x3e, core_params),
680         ICPU(0x3f, core_params),
681         ICPU(0x45, core_params),
682         ICPU(0x46, core_params),
683         ICPU(0x4f, core_params),
684         ICPU(0x56, core_params),
685         {}
686 };
687 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
688
689 static int intel_pstate_init_cpu(unsigned int cpunum)
690 {
691         struct cpudata *cpu;
692
693         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
694         if (!all_cpu_data[cpunum])
695                 return -ENOMEM;
696
697         cpu = all_cpu_data[cpunum];
698
699         intel_pstate_get_cpu_pstates(cpu);
700
701         cpu->cpu = cpunum;
702
703         init_timer_deferrable(&cpu->timer);
704         cpu->timer.function = intel_pstate_timer_func;
705         cpu->timer.data =
706                 (unsigned long)cpu;
707         cpu->timer.expires = jiffies + HZ/100;
708         intel_pstate_busy_pid_reset(cpu);
709         intel_pstate_sample(cpu);
710
711         add_timer_on(&cpu->timer, cpunum);
712
713         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
714
715         return 0;
716 }
717
718 static unsigned int intel_pstate_get(unsigned int cpu_num)
719 {
720         struct sample *sample;
721         struct cpudata *cpu;
722
723         cpu = all_cpu_data[cpu_num];
724         if (!cpu)
725                 return 0;
726         sample = &cpu->sample;
727         return sample->freq;
728 }
729
730 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
731 {
732         struct cpudata *cpu;
733
734         cpu = all_cpu_data[policy->cpu];
735
736         if (!policy->cpuinfo.max_freq)
737                 return -ENODEV;
738
739         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
740                 limits.min_perf_pct = 100;
741                 limits.min_perf = int_tofp(1);
742                 limits.max_perf_pct = 100;
743                 limits.max_perf = int_tofp(1);
744                 limits.no_turbo = 0;
745                 return 0;
746         }
747         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
748         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
749         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
750
751         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
752         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
753         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
754         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
755
756         return 0;
757 }
758
759 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
760 {
761         cpufreq_verify_within_cpu_limits(policy);
762
763         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
764                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
765                 return -EINVAL;
766
767         return 0;
768 }
769
770 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
771 {
772         int cpu_num = policy->cpu;
773         struct cpudata *cpu = all_cpu_data[cpu_num];
774
775         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
776
777         del_timer_sync(&all_cpu_data[cpu_num]->timer);
778         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
779         kfree(all_cpu_data[cpu_num]);
780         all_cpu_data[cpu_num] = NULL;
781 }
782
783 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
784 {
785         struct cpudata *cpu;
786         int rc;
787
788         rc = intel_pstate_init_cpu(policy->cpu);
789         if (rc)
790                 return rc;
791
792         cpu = all_cpu_data[policy->cpu];
793
794         if (!limits.no_turbo &&
795                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
796                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
797         else
798                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
799
800         policy->min = cpu->pstate.min_pstate * 100000;
801         policy->max = cpu->pstate.turbo_pstate * 100000;
802
803         /* cpuinfo and default policy values */
804         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
805         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
806         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
807         cpumask_set_cpu(policy->cpu, policy->cpus);
808
809         return 0;
810 }
811
812 static struct cpufreq_driver intel_pstate_driver = {
813         .flags          = CPUFREQ_CONST_LOOPS,
814         .verify         = intel_pstate_verify_policy,
815         .setpolicy      = intel_pstate_set_policy,
816         .get            = intel_pstate_get,
817         .init           = intel_pstate_cpu_init,
818         .stop_cpu       = intel_pstate_stop_cpu,
819         .name           = "intel_pstate",
820 };
821
822 static int __initdata no_load;
823
824 static int intel_pstate_msrs_not_valid(void)
825 {
826         /* Check that all the msr's we are using are valid. */
827         u64 aperf, mperf, tmp;
828
829         rdmsrl(MSR_IA32_APERF, aperf);
830         rdmsrl(MSR_IA32_MPERF, mperf);
831
832         if (!pstate_funcs.get_max() ||
833                 !pstate_funcs.get_min() ||
834                 !pstate_funcs.get_turbo())
835                 return -ENODEV;
836
837         rdmsrl(MSR_IA32_APERF, tmp);
838         if (!(tmp - aperf))
839                 return -ENODEV;
840
841         rdmsrl(MSR_IA32_MPERF, tmp);
842         if (!(tmp - mperf))
843                 return -ENODEV;
844
845         return 0;
846 }
847
848 static void copy_pid_params(struct pstate_adjust_policy *policy)
849 {
850         pid_params.sample_rate_ms = policy->sample_rate_ms;
851         pid_params.p_gain_pct = policy->p_gain_pct;
852         pid_params.i_gain_pct = policy->i_gain_pct;
853         pid_params.d_gain_pct = policy->d_gain_pct;
854         pid_params.deadband = policy->deadband;
855         pid_params.setpoint = policy->setpoint;
856 }
857
858 static void copy_cpu_funcs(struct pstate_funcs *funcs)
859 {
860         pstate_funcs.get_max   = funcs->get_max;
861         pstate_funcs.get_min   = funcs->get_min;
862         pstate_funcs.get_turbo = funcs->get_turbo;
863         pstate_funcs.set       = funcs->set;
864         pstate_funcs.get_vid   = funcs->get_vid;
865 }
866
867 #if IS_ENABLED(CONFIG_ACPI)
868 #include <acpi/processor.h>
869
870 static bool intel_pstate_no_acpi_pss(void)
871 {
872         int i;
873
874         for_each_possible_cpu(i) {
875                 acpi_status status;
876                 union acpi_object *pss;
877                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
878                 struct acpi_processor *pr = per_cpu(processors, i);
879
880                 if (!pr)
881                         continue;
882
883                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
884                 if (ACPI_FAILURE(status))
885                         continue;
886
887                 pss = buffer.pointer;
888                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
889                         kfree(pss);
890                         return false;
891                 }
892
893                 kfree(pss);
894         }
895
896         return true;
897 }
898
899 struct hw_vendor_info {
900         u16  valid;
901         char oem_id[ACPI_OEM_ID_SIZE];
902         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
903 };
904
905 /* Hardware vendor-specific info that has its own power management modes */
906 static struct hw_vendor_info vendor_info[] = {
907         {1, "HP    ", "ProLiant"},
908         {0, "", ""},
909 };
910
911 static bool intel_pstate_platform_pwr_mgmt_exists(void)
912 {
913         struct acpi_table_header hdr;
914         struct hw_vendor_info *v_info;
915
916         if (acpi_disabled
917             || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
918                 return false;
919
920         for (v_info = vendor_info; v_info->valid; v_info++) {
921                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
922                     && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
923                     && intel_pstate_no_acpi_pss())
924                         return true;
925         }
926
927         return false;
928 }
929 #else /* CONFIG_ACPI not enabled */
930 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
931 #endif /* CONFIG_ACPI */
932
933 static int __init intel_pstate_init(void)
934 {
935         int cpu, rc = 0;
936         const struct x86_cpu_id *id;
937         struct cpu_defaults *cpu_info;
938
939         if (no_load)
940                 return -ENODEV;
941
942         id = x86_match_cpu(intel_pstate_cpu_ids);
943         if (!id)
944                 return -ENODEV;
945
946         /*
947          * The Intel pstate driver will be ignored if the platform
948          * firmware has its own power management modes.
949          */
950         if (intel_pstate_platform_pwr_mgmt_exists())
951                 return -ENODEV;
952
953         cpu_info = (struct cpu_defaults *)id->driver_data;
954
955         copy_pid_params(&cpu_info->pid_policy);
956         copy_cpu_funcs(&cpu_info->funcs);
957
958         if (intel_pstate_msrs_not_valid())
959                 return -ENODEV;
960
961         pr_info("Intel P-state driver initializing.\n");
962
963         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
964         if (!all_cpu_data)
965                 return -ENOMEM;
966
967         rc = cpufreq_register_driver(&intel_pstate_driver);
968         if (rc)
969                 goto out;
970
971         intel_pstate_debug_expose_params();
972         intel_pstate_sysfs_expose_params();
973
974         return rc;
975 out:
976         get_online_cpus();
977         for_each_online_cpu(cpu) {
978                 if (all_cpu_data[cpu]) {
979                         del_timer_sync(&all_cpu_data[cpu]->timer);
980                         kfree(all_cpu_data[cpu]);
981                 }
982         }
983
984         put_online_cpus();
985         vfree(all_cpu_data);
986         return -ENODEV;
987 }
988 device_initcall(intel_pstate_init);
989
990 static int __init intel_pstate_setup(char *str)
991 {
992         if (!str)
993                 return -EINVAL;
994
995         if (!strcmp(str, "disable"))
996                 no_load = 1;
997         return 0;
998 }
999 early_param("intel_pstate", intel_pstate_setup);
1000
1001 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1002 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1003 MODULE_LICENSE("GPL");