clocksource: make CLOCKSOURCE_OF_DECLARE type safe
[cascardo/linux.git] / drivers / crypto / ux500 / hash / hash_core.c
1 /*
2  * Cryptographic API.
3  * Support for Nomadik hardware crypto engine.
4
5  * Copyright (C) ST-Ericsson SA 2010
6  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11  * License terms: GNU General Public License (GPL) version 2
12  */
13
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/io.h>
19 #include <linux/klist.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/crypto.h>
24
25 #include <linux/regulator/consumer.h>
26 #include <linux/dmaengine.h>
27 #include <linux/bitops.h>
28
29 #include <crypto/internal/hash.h>
30 #include <crypto/sha.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/algapi.h>
33
34 #include <linux/platform_data/crypto-ux500.h>
35 #include <mach/hardware.h>
36
37 #include "hash_alg.h"
38
39 #define DEV_DBG_NAME "hashX hashX:"
40
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45 /**
46  * Pre-calculated empty message digests.
47  */
48 static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
49         0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
50         0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
51         0xaf, 0xd8, 0x07, 0x09
52 };
53
54 static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
55         0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
56         0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
57         0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
58         0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
59 };
60
61 /* HMAC-SHA1, no key */
62 static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
63         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
64         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
65         0x70, 0x69, 0x0e, 0x1d
66 };
67
68 /* HMAC-SHA256, no key */
69 static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
70         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
71         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
72         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
73         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
74 };
75
76 /**
77  * struct hash_driver_data - data specific to the driver.
78  *
79  * @device_list:        A list of registered devices to choose from.
80  * @device_allocation:  A semaphore initialized with number of devices.
81  */
82 struct hash_driver_data {
83         struct klist            device_list;
84         struct semaphore        device_allocation;
85 };
86
87 static struct hash_driver_data  driver_data;
88
89 /* Declaration of functions */
90 /**
91  * hash_messagepad - Pads a message and write the nblw bits.
92  * @device_data:        Structure for the hash device.
93  * @message:            Last word of a message
94  * @index_bytes:        The number of bytes in the last message
95  *
96  * This function manages the final part of the digest calculation, when less
97  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
98  *
99  */
100 static void hash_messagepad(struct hash_device_data *device_data,
101                 const u32 *message, u8 index_bytes);
102
103 /**
104  * release_hash_device - Releases a previously allocated hash device.
105  * @device_data:        Structure for the hash device.
106  *
107  */
108 static void release_hash_device(struct hash_device_data *device_data)
109 {
110         spin_lock(&device_data->ctx_lock);
111         device_data->current_ctx->device = NULL;
112         device_data->current_ctx = NULL;
113         spin_unlock(&device_data->ctx_lock);
114
115         /*
116          * The down_interruptible part for this semaphore is called in
117          * cryp_get_device_data.
118          */
119         up(&driver_data.device_allocation);
120 }
121
122 static void hash_dma_setup_channel(struct hash_device_data *device_data,
123                                 struct device *dev)
124 {
125         struct hash_platform_data *platform_data = dev->platform_data;
126         dma_cap_zero(device_data->dma.mask);
127         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
128
129         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
130         device_data->dma.chan_mem2hash =
131                 dma_request_channel(device_data->dma.mask,
132                                 platform_data->dma_filter,
133                                 device_data->dma.cfg_mem2hash);
134
135         init_completion(&device_data->dma.complete);
136 }
137
138 static void hash_dma_callback(void *data)
139 {
140         struct hash_ctx *ctx = (struct hash_ctx *) data;
141
142         complete(&ctx->device->dma.complete);
143 }
144
145 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
146                 int len, enum dma_data_direction direction)
147 {
148         struct dma_async_tx_descriptor *desc = NULL;
149         struct dma_chan *channel = NULL;
150         dma_cookie_t cookie;
151
152         if (direction != DMA_TO_DEVICE) {
153                 dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
154                                 __func__);
155                 return -EFAULT;
156         }
157
158         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
159
160         channel = ctx->device->dma.chan_mem2hash;
161         ctx->device->dma.sg = sg;
162         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
163                         ctx->device->dma.sg, ctx->device->dma.nents,
164                         direction);
165
166         if (!ctx->device->dma.sg_len) {
167                 dev_err(ctx->device->dev,
168                                 "[%s]: Could not map the sg list (TO_DEVICE)",
169                                 __func__);
170                 return -EFAULT;
171         }
172
173         dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
174                         "(TO_DEVICE)", __func__);
175         desc = channel->device->device_prep_slave_sg(channel,
176                         ctx->device->dma.sg, ctx->device->dma.sg_len,
177                         direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
178         if (!desc) {
179                 dev_err(ctx->device->dev,
180                         "[%s]: device_prep_slave_sg() failed!", __func__);
181                 return -EFAULT;
182         }
183
184         desc->callback = hash_dma_callback;
185         desc->callback_param = ctx;
186
187         cookie = desc->tx_submit(desc);
188         dma_async_issue_pending(channel);
189
190         return 0;
191 }
192
193 static void hash_dma_done(struct hash_ctx *ctx)
194 {
195         struct dma_chan *chan;
196
197         chan = ctx->device->dma.chan_mem2hash;
198         chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
199         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
200                         ctx->device->dma.sg_len, DMA_TO_DEVICE);
201
202 }
203
204 static int hash_dma_write(struct hash_ctx *ctx,
205                 struct scatterlist *sg, int len)
206 {
207         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
208         if (error) {
209                 dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
210                         "failed", __func__);
211                 return error;
212         }
213
214         return len;
215 }
216
217 /**
218  * get_empty_message_digest - Returns a pre-calculated digest for
219  * the empty message.
220  * @device_data:        Structure for the hash device.
221  * @zero_hash:          Buffer to return the empty message digest.
222  * @zero_hash_size:     Hash size of the empty message digest.
223  * @zero_digest:        True if zero_digest returned.
224  */
225 static int get_empty_message_digest(
226                 struct hash_device_data *device_data,
227                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
228 {
229         int ret = 0;
230         struct hash_ctx *ctx = device_data->current_ctx;
231         *zero_digest = false;
232
233         /**
234          * Caller responsible for ctx != NULL.
235          */
236
237         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
238                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
239                         memcpy(zero_hash, &zero_message_hash_sha1[0],
240                                         SHA1_DIGEST_SIZE);
241                         *zero_hash_size = SHA1_DIGEST_SIZE;
242                         *zero_digest = true;
243                 } else if (HASH_ALGO_SHA256 ==
244                                 ctx->config.algorithm) {
245                         memcpy(zero_hash, &zero_message_hash_sha256[0],
246                                         SHA256_DIGEST_SIZE);
247                         *zero_hash_size = SHA256_DIGEST_SIZE;
248                         *zero_digest = true;
249                 } else {
250                         dev_err(device_data->dev, "[%s] "
251                                         "Incorrect algorithm!"
252                                         , __func__);
253                         ret = -EINVAL;
254                         goto out;
255                 }
256         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
257                 if (!ctx->keylen) {
258                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
259                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
260                                                 SHA1_DIGEST_SIZE);
261                                 *zero_hash_size = SHA1_DIGEST_SIZE;
262                                 *zero_digest = true;
263                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
264                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
265                                                 SHA256_DIGEST_SIZE);
266                                 *zero_hash_size = SHA256_DIGEST_SIZE;
267                                 *zero_digest = true;
268                         } else {
269                                 dev_err(device_data->dev, "[%s] "
270                                                 "Incorrect algorithm!"
271                                                 , __func__);
272                                 ret = -EINVAL;
273                                 goto out;
274                         }
275                 } else {
276                         dev_dbg(device_data->dev, "[%s] Continue hash "
277                                         "calculation, since hmac key avalable",
278                                         __func__);
279                 }
280         }
281 out:
282
283         return ret;
284 }
285
286 /**
287  * hash_disable_power - Request to disable power and clock.
288  * @device_data:        Structure for the hash device.
289  * @save_device_state:  If true, saves the current hw state.
290  *
291  * This function request for disabling power (regulator) and clock,
292  * and could also save current hw state.
293  */
294 static int hash_disable_power(
295                 struct hash_device_data *device_data,
296                 bool                    save_device_state)
297 {
298         int ret = 0;
299         struct device *dev = device_data->dev;
300
301         spin_lock(&device_data->power_state_lock);
302         if (!device_data->power_state)
303                 goto out;
304
305         if (save_device_state) {
306                 hash_save_state(device_data,
307                                 &device_data->state);
308                 device_data->restore_dev_state = true;
309         }
310
311         clk_disable(device_data->clk);
312         ret = regulator_disable(device_data->regulator);
313         if (ret)
314                 dev_err(dev, "[%s] regulator_disable() failed!", __func__);
315
316         device_data->power_state = false;
317
318 out:
319         spin_unlock(&device_data->power_state_lock);
320
321         return ret;
322 }
323
324 /**
325  * hash_enable_power - Request to enable power and clock.
326  * @device_data:                Structure for the hash device.
327  * @restore_device_state:       If true, restores a previous saved hw state.
328  *
329  * This function request for enabling power (regulator) and clock,
330  * and could also restore a previously saved hw state.
331  */
332 static int hash_enable_power(
333                 struct hash_device_data *device_data,
334                 bool                    restore_device_state)
335 {
336         int ret = 0;
337         struct device *dev = device_data->dev;
338
339         spin_lock(&device_data->power_state_lock);
340         if (!device_data->power_state) {
341                 ret = regulator_enable(device_data->regulator);
342                 if (ret) {
343                         dev_err(dev, "[%s]: regulator_enable() failed!",
344                                         __func__);
345                         goto out;
346                 }
347                 ret = clk_enable(device_data->clk);
348                 if (ret) {
349                         dev_err(dev, "[%s]: clk_enable() failed!",
350                                         __func__);
351                         ret = regulator_disable(
352                                         device_data->regulator);
353                         goto out;
354                 }
355                 device_data->power_state = true;
356         }
357
358         if (device_data->restore_dev_state) {
359                 if (restore_device_state) {
360                         device_data->restore_dev_state = false;
361                         hash_resume_state(device_data,
362                                 &device_data->state);
363                 }
364         }
365 out:
366         spin_unlock(&device_data->power_state_lock);
367
368         return ret;
369 }
370
371 /**
372  * hash_get_device_data - Checks for an available hash device and return it.
373  * @hash_ctx:           Structure for the hash context.
374  * @device_data:        Structure for the hash device.
375  *
376  * This function check for an available hash device and return it to
377  * the caller.
378  * Note! Caller need to release the device, calling up().
379  */
380 static int hash_get_device_data(struct hash_ctx *ctx,
381                                 struct hash_device_data **device_data)
382 {
383         int                     ret;
384         struct klist_iter       device_iterator;
385         struct klist_node       *device_node;
386         struct hash_device_data *local_device_data = NULL;
387
388         /* Wait until a device is available */
389         ret = down_interruptible(&driver_data.device_allocation);
390         if (ret)
391                 return ret;  /* Interrupted */
392
393         /* Select a device */
394         klist_iter_init(&driver_data.device_list, &device_iterator);
395         device_node = klist_next(&device_iterator);
396         while (device_node) {
397                 local_device_data = container_of(device_node,
398                                            struct hash_device_data, list_node);
399                 spin_lock(&local_device_data->ctx_lock);
400                 /* current_ctx allocates a device, NULL = unallocated */
401                 if (local_device_data->current_ctx) {
402                         device_node = klist_next(&device_iterator);
403                 } else {
404                         local_device_data->current_ctx = ctx;
405                         ctx->device = local_device_data;
406                         spin_unlock(&local_device_data->ctx_lock);
407                         break;
408                 }
409                 spin_unlock(&local_device_data->ctx_lock);
410         }
411         klist_iter_exit(&device_iterator);
412
413         if (!device_node) {
414                 /**
415                  * No free device found.
416                  * Since we allocated a device with down_interruptible, this
417                  * should not be able to happen.
418                  * Number of available devices, which are contained in
419                  * device_allocation, is therefore decremented by not doing
420                  * an up(device_allocation).
421                  */
422                 return -EBUSY;
423         }
424
425         *device_data = local_device_data;
426
427         return 0;
428 }
429
430 /**
431  * hash_hw_write_key - Writes the key to the hardware registries.
432  *
433  * @device_data:        Structure for the hash device.
434  * @key:                Key to be written.
435  * @keylen:             The lengt of the key.
436  *
437  * Note! This function DOES NOT write to the NBLW registry, even though
438  * specified in the the hw design spec. Either due to incorrect info in the
439  * spec or due to a bug in the hw.
440  */
441 static void hash_hw_write_key(struct hash_device_data *device_data,
442                 const u8 *key, unsigned int keylen)
443 {
444         u32 word = 0;
445         int nwords = 1;
446
447         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
448
449         while (keylen >= 4) {
450                 u32 *key_word = (u32 *)key;
451
452                 HASH_SET_DIN(key_word, nwords);
453                 keylen -= 4;
454                 key += 4;
455         }
456
457         /* Take care of the remaining bytes in the last word */
458         if (keylen) {
459                 word = 0;
460                 while (keylen) {
461                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
462                         keylen--;
463                 }
464
465                 HASH_SET_DIN(&word, nwords);
466         }
467
468         while (device_data->base->str & HASH_STR_DCAL_MASK)
469                 cpu_relax();
470
471         HASH_SET_DCAL;
472
473         while (device_data->base->str & HASH_STR_DCAL_MASK)
474                 cpu_relax();
475 }
476
477 /**
478  * init_hash_hw - Initialise the hash hardware for a new calculation.
479  * @device_data:        Structure for the hash device.
480  * @ctx:                The hash context.
481  *
482  * This function will enable the bits needed to clear and start a new
483  * calculation.
484  */
485 static int init_hash_hw(struct hash_device_data *device_data,
486                 struct hash_ctx *ctx)
487 {
488         int ret = 0;
489
490         ret = hash_setconfiguration(device_data, &ctx->config);
491         if (ret) {
492                 dev_err(device_data->dev, "[%s] hash_setconfiguration() "
493                                 "failed!", __func__);
494                 return ret;
495         }
496
497         hash_begin(device_data, ctx);
498
499         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
500                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
501
502         return ret;
503 }
504
505 /**
506  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
507  *
508  * @sg:         Scatterlist.
509  * @size:       Size in bytes.
510  * @aligned:    True if sg data aligned to work in DMA mode.
511  *
512  */
513 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
514 {
515         int nents = 0;
516         bool aligned_data = true;
517
518         while (size > 0 && sg) {
519                 nents++;
520                 size -= sg->length;
521
522                 /* hash_set_dma_transfer will align last nent */
523                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
524                         || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
525                                 size > 0))
526                         aligned_data = false;
527
528                 sg = sg_next(sg);
529         }
530
531         if (aligned)
532                 *aligned = aligned_data;
533
534         if (size != 0)
535                 return -EFAULT;
536
537         return nents;
538 }
539
540 /**
541  * hash_dma_valid_data - checks for dma valid sg data.
542  * @sg:         Scatterlist.
543  * @datasize:   Datasize in bytes.
544  *
545  * NOTE! This function checks for dma valid sg data, since dma
546  * only accept datasizes of even wordsize.
547  */
548 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
549 {
550         bool aligned;
551
552         /* Need to include at least one nent, else error */
553         if (hash_get_nents(sg, datasize, &aligned) < 1)
554                 return false;
555
556         return aligned;
557 }
558
559 /**
560  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
561  * @req: The hash request for the job.
562  *
563  * Initialize structures.
564  */
565 static int hash_init(struct ahash_request *req)
566 {
567         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
568         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
569         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
570
571         if (!ctx->key)
572                 ctx->keylen = 0;
573
574         memset(&req_ctx->state, 0, sizeof(struct hash_state));
575         req_ctx->updated = 0;
576         if (hash_mode == HASH_MODE_DMA) {
577                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
578                         req_ctx->dma_mode = false; /* Don't use DMA */
579
580                         pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
581                                         "to CPU mode for data size < %d",
582                                         __func__, HASH_DMA_ALIGN_SIZE);
583                 } else {
584                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
585                                         hash_dma_valid_data(req->src,
586                                                 req->nbytes)) {
587                                 req_ctx->dma_mode = true;
588                         } else {
589                                 req_ctx->dma_mode = false;
590                                 pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
591                                                 " CPU mode for datalength < %d"
592                                                 " or non-aligned data, except "
593                                                 "in last nent", __func__,
594                                                 HASH_DMA_PERFORMANCE_MIN_SIZE);
595                         }
596                 }
597         }
598         return 0;
599 }
600
601 /**
602  * hash_processblock - This function processes a single block of 512 bits (64
603  *                     bytes), word aligned, starting at message.
604  * @device_data:        Structure for the hash device.
605  * @message:            Block (512 bits) of message to be written to
606  *                      the HASH hardware.
607  *
608  */
609 static void hash_processblock(
610                 struct hash_device_data *device_data,
611                 const u32 *message, int length)
612 {
613         int len = length / HASH_BYTES_PER_WORD;
614         /*
615          * NBLW bits. Reset the number of bits in last word (NBLW).
616          */
617         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
618
619         /*
620          * Write message data to the HASH_DIN register.
621          */
622         HASH_SET_DIN(message, len);
623 }
624
625 /**
626  * hash_messagepad - Pads a message and write the nblw bits.
627  * @device_data:        Structure for the hash device.
628  * @message:            Last word of a message.
629  * @index_bytes:        The number of bytes in the last message.
630  *
631  * This function manages the final part of the digest calculation, when less
632  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
633  *
634  */
635 static void hash_messagepad(struct hash_device_data *device_data,
636                 const u32 *message, u8 index_bytes)
637 {
638         int nwords = 1;
639
640         /*
641          * Clear hash str register, only clear NBLW
642          * since DCAL will be reset by hardware.
643          */
644         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
645
646         /* Main loop */
647         while (index_bytes >= 4) {
648                 HASH_SET_DIN(message, nwords);
649                 index_bytes -= 4;
650                 message++;
651         }
652
653         if (index_bytes)
654                 HASH_SET_DIN(message, nwords);
655
656         while (device_data->base->str & HASH_STR_DCAL_MASK)
657                 cpu_relax();
658
659         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
660         HASH_SET_NBLW(index_bytes * 8);
661         dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
662                         readl_relaxed(&device_data->base->din),
663                         (int)(readl_relaxed(&device_data->base->str) &
664                                 HASH_STR_NBLW_MASK));
665         HASH_SET_DCAL;
666         dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
667                         __func__, readl_relaxed(&device_data->base->din),
668                         (int)(readl_relaxed(&device_data->base->str) &
669                                 HASH_STR_NBLW_MASK));
670
671         while (device_data->base->str & HASH_STR_DCAL_MASK)
672                 cpu_relax();
673 }
674
675 /**
676  * hash_incrementlength - Increments the length of the current message.
677  * @ctx: Hash context
678  * @incr: Length of message processed already
679  *
680  * Overflow cannot occur, because conditions for overflow are checked in
681  * hash_hw_update.
682  */
683 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
684 {
685         ctx->state.length.low_word += incr;
686
687         /* Check for wrap-around */
688         if (ctx->state.length.low_word < incr)
689                 ctx->state.length.high_word++;
690 }
691
692 /**
693  * hash_setconfiguration - Sets the required configuration for the hash
694  *                         hardware.
695  * @device_data:        Structure for the hash device.
696  * @config:             Pointer to a configuration structure.
697  */
698 int hash_setconfiguration(struct hash_device_data *device_data,
699                 struct hash_config *config)
700 {
701         int ret = 0;
702
703         if (config->algorithm != HASH_ALGO_SHA1 &&
704             config->algorithm != HASH_ALGO_SHA256)
705                 return -EPERM;
706
707         /*
708          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
709          * to be written to HASH_DIN is considered as 32 bits.
710          */
711         HASH_SET_DATA_FORMAT(config->data_format);
712
713         /*
714          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
715          */
716         switch (config->algorithm) {
717         case HASH_ALGO_SHA1:
718                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
719                 break;
720
721         case HASH_ALGO_SHA256:
722                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
723                 break;
724
725         default:
726                 dev_err(device_data->dev, "[%s] Incorrect algorithm.",
727                                 __func__);
728                 return -EPERM;
729         }
730
731         /*
732          * MODE bit. This bit selects between HASH or HMAC mode for the
733          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
734          */
735         if (HASH_OPER_MODE_HASH == config->oper_mode)
736                 HASH_CLEAR_BITS(&device_data->base->cr,
737                                 HASH_CR_MODE_MASK);
738         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
739                 HASH_SET_BITS(&device_data->base->cr,
740                                 HASH_CR_MODE_MASK);
741                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
742                         /* Truncate key to blocksize */
743                         dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
744                         HASH_SET_BITS(&device_data->base->cr,
745                                         HASH_CR_LKEY_MASK);
746                 } else {
747                         dev_dbg(device_data->dev, "[%s] LKEY cleared",
748                                         __func__);
749                         HASH_CLEAR_BITS(&device_data->base->cr,
750                                         HASH_CR_LKEY_MASK);
751                 }
752         } else {        /* Wrong hash mode */
753                 ret = -EPERM;
754                 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
755                                 __func__);
756         }
757         return ret;
758 }
759
760 /**
761  * hash_begin - This routine resets some globals and initializes the hash
762  *              hardware.
763  * @device_data:        Structure for the hash device.
764  * @ctx:                Hash context.
765  */
766 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
767 {
768         /* HW and SW initializations */
769         /* Note: there is no need to initialize buffer and digest members */
770
771         while (device_data->base->str & HASH_STR_DCAL_MASK)
772                 cpu_relax();
773
774         /*
775          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
776          * prepare the initialize the HASH accelerator to compute the message
777          * digest of a new message.
778          */
779         HASH_INITIALIZE;
780
781         /*
782          * NBLW bits. Reset the number of bits in last word (NBLW).
783          */
784         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
785 }
786
787 int hash_process_data(
788                 struct hash_device_data *device_data,
789                 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
790                 int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
791 {
792         int ret = 0;
793         u32 count;
794
795         do {
796                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
797                         for (count = 0; count < msg_length; count++) {
798                                 buffer[*index + count] =
799                                         *(data_buffer + count);
800                         }
801                         *index += msg_length;
802                         msg_length = 0;
803                 } else {
804                         if (req_ctx->updated) {
805
806                                 ret = hash_resume_state(device_data,
807                                                 &device_data->state);
808                                 memmove(req_ctx->state.buffer,
809                                                 device_data->state.buffer,
810                                                 HASH_BLOCK_SIZE / sizeof(u32));
811                                 if (ret) {
812                                         dev_err(device_data->dev, "[%s] "
813                                                         "hash_resume_state()"
814                                                         " failed!", __func__);
815                                         goto out;
816                                 }
817                         } else {
818                                 ret = init_hash_hw(device_data, ctx);
819                                 if (ret) {
820                                         dev_err(device_data->dev, "[%s] "
821                                                         "init_hash_hw()"
822                                                         " failed!", __func__);
823                                         goto out;
824                                 }
825                                 req_ctx->updated = 1;
826                         }
827                         /*
828                          * If 'data_buffer' is four byte aligned and
829                          * local buffer does not have any data, we can
830                          * write data directly from 'data_buffer' to
831                          * HW peripheral, otherwise we first copy data
832                          * to a local buffer
833                          */
834                         if ((0 == (((u32)data_buffer) % 4))
835                                         && (0 == *index))
836                                 hash_processblock(device_data,
837                                                 (const u32 *)
838                                                 data_buffer, HASH_BLOCK_SIZE);
839                         else {
840                                 for (count = 0; count <
841                                                 (u32)(HASH_BLOCK_SIZE -
842                                                         *index);
843                                                 count++) {
844                                         buffer[*index + count] =
845                                                 *(data_buffer + count);
846                                 }
847                                 hash_processblock(device_data,
848                                                 (const u32 *)buffer,
849                                                 HASH_BLOCK_SIZE);
850                         }
851                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
852                         data_buffer += (HASH_BLOCK_SIZE - *index);
853
854                         msg_length -= (HASH_BLOCK_SIZE - *index);
855                         *index = 0;
856
857                         ret = hash_save_state(device_data,
858                                         &device_data->state);
859
860                         memmove(device_data->state.buffer,
861                                         req_ctx->state.buffer,
862                                         HASH_BLOCK_SIZE / sizeof(u32));
863                         if (ret) {
864                                 dev_err(device_data->dev, "[%s] "
865                                                 "hash_save_state()"
866                                                 " failed!", __func__);
867                                 goto out;
868                         }
869                 }
870         } while (msg_length != 0);
871 out:
872
873         return ret;
874 }
875
876 /**
877  * hash_dma_final - The hash dma final function for SHA1/SHA256.
878  * @req:        The hash request for the job.
879  */
880 static int hash_dma_final(struct ahash_request *req)
881 {
882         int ret = 0;
883         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
884         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
885         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
886         struct hash_device_data *device_data;
887         u8 digest[SHA256_DIGEST_SIZE];
888         int bytes_written = 0;
889
890         ret = hash_get_device_data(ctx, &device_data);
891         if (ret)
892                 return ret;
893
894         dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
895
896         if (req_ctx->updated) {
897                 ret = hash_resume_state(device_data, &device_data->state);
898
899                 if (ret) {
900                         dev_err(device_data->dev, "[%s] hash_resume_state() "
901                                         "failed!", __func__);
902                         goto out;
903                 }
904
905         }
906
907         if (!req_ctx->updated) {
908                 ret = hash_setconfiguration(device_data, &ctx->config);
909                 if (ret) {
910                         dev_err(device_data->dev, "[%s] "
911                                         "hash_setconfiguration() failed!",
912                                         __func__);
913                         goto out;
914                 }
915
916                 /* Enable DMA input */
917                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
918                         HASH_CLEAR_BITS(&device_data->base->cr,
919                                         HASH_CR_DMAE_MASK);
920                 } else {
921                         HASH_SET_BITS(&device_data->base->cr,
922                                         HASH_CR_DMAE_MASK);
923                         HASH_SET_BITS(&device_data->base->cr,
924                                         HASH_CR_PRIVN_MASK);
925                 }
926
927                 HASH_INITIALIZE;
928
929                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
930                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
931
932                 /* Number of bits in last word = (nbytes * 8) % 32 */
933                 HASH_SET_NBLW((req->nbytes * 8) % 32);
934                 req_ctx->updated = 1;
935         }
936
937         /* Store the nents in the dma struct. */
938         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
939         if (!ctx->device->dma.nents) {
940                 dev_err(device_data->dev, "[%s] "
941                                 "ctx->device->dma.nents = 0", __func__);
942                 goto out;
943         }
944
945         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
946         if (bytes_written != req->nbytes) {
947                 dev_err(device_data->dev, "[%s] "
948                                 "hash_dma_write() failed!", __func__);
949                 goto out;
950         }
951
952         wait_for_completion(&ctx->device->dma.complete);
953         hash_dma_done(ctx);
954
955         while (device_data->base->str & HASH_STR_DCAL_MASK)
956                 cpu_relax();
957
958         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
959                 unsigned int keylen = ctx->keylen;
960                 u8 *key = ctx->key;
961
962                 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
963                                 ctx->keylen);
964                 hash_hw_write_key(device_data, key, keylen);
965         }
966
967         hash_get_digest(device_data, digest, ctx->config.algorithm);
968         memcpy(req->result, digest, ctx->digestsize);
969
970 out:
971         release_hash_device(device_data);
972
973         /**
974          * Allocated in setkey, and only used in HMAC.
975          */
976         kfree(ctx->key);
977
978         return ret;
979 }
980
981 /**
982  * hash_hw_final - The final hash calculation function
983  * @req:        The hash request for the job.
984  */
985 int hash_hw_final(struct ahash_request *req)
986 {
987         int ret = 0;
988         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
989         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
990         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
991         struct hash_device_data *device_data;
992         u8 digest[SHA256_DIGEST_SIZE];
993
994         ret = hash_get_device_data(ctx, &device_data);
995         if (ret)
996                 return ret;
997
998         dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
999
1000         if (req_ctx->updated) {
1001                 ret = hash_resume_state(device_data, &device_data->state);
1002
1003                 if (ret) {
1004                         dev_err(device_data->dev, "[%s] hash_resume_state() "
1005                                         "failed!", __func__);
1006                         goto out;
1007                 }
1008         } else if (req->nbytes == 0 && ctx->keylen == 0) {
1009                 u8 zero_hash[SHA256_DIGEST_SIZE];
1010                 u32 zero_hash_size = 0;
1011                 bool zero_digest = false;
1012                 /**
1013                  * Use a pre-calculated empty message digest
1014                  * (workaround since hw return zeroes, hw bug!?)
1015                  */
1016                 ret = get_empty_message_digest(device_data, &zero_hash[0],
1017                                 &zero_hash_size, &zero_digest);
1018                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
1019                                 zero_digest) {
1020                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
1021                         goto out;
1022                 } else if (!ret && !zero_digest) {
1023                         dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
1024                                         "key, continue...", __func__);
1025                 } else {
1026                         dev_err(device_data->dev, "[%s] ret=%d, or wrong "
1027                                         "digest size? %s", __func__, ret,
1028                                         (zero_hash_size == ctx->digestsize) ?
1029                                         "true" : "false");
1030                         /* Return error */
1031                         goto out;
1032                 }
1033         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1034                 dev_err(device_data->dev, "[%s] Empty message with "
1035                                 "keylength > 0, NOT supported.", __func__);
1036                 goto out;
1037         }
1038
1039         if (!req_ctx->updated) {
1040                 ret = init_hash_hw(device_data, ctx);
1041                 if (ret) {
1042                         dev_err(device_data->dev, "[%s] init_hash_hw() "
1043                                         "failed!", __func__);
1044                         goto out;
1045                 }
1046         }
1047
1048         if (req_ctx->state.index) {
1049                 hash_messagepad(device_data, req_ctx->state.buffer,
1050                                 req_ctx->state.index);
1051         } else {
1052                 HASH_SET_DCAL;
1053                 while (device_data->base->str & HASH_STR_DCAL_MASK)
1054                         cpu_relax();
1055         }
1056
1057         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1058                 unsigned int keylen = ctx->keylen;
1059                 u8 *key = ctx->key;
1060
1061                 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
1062                                 ctx->keylen);
1063                 hash_hw_write_key(device_data, key, keylen);
1064         }
1065
1066         hash_get_digest(device_data, digest, ctx->config.algorithm);
1067         memcpy(req->result, digest, ctx->digestsize);
1068
1069 out:
1070         release_hash_device(device_data);
1071
1072         /**
1073          * Allocated in setkey, and only used in HMAC.
1074          */
1075         kfree(ctx->key);
1076
1077         return ret;
1078 }
1079
1080 /**
1081  * hash_hw_update - Updates current HASH computation hashing another part of
1082  *                  the message.
1083  * @req:        Byte array containing the message to be hashed (caller
1084  *              allocated).
1085  */
1086 int hash_hw_update(struct ahash_request *req)
1087 {
1088         int ret = 0;
1089         u8 index = 0;
1090         u8 *buffer;
1091         struct hash_device_data *device_data;
1092         u8 *data_buffer;
1093         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1094         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1095         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1096         struct crypto_hash_walk walk;
1097         int msg_length = crypto_hash_walk_first(req, &walk);
1098
1099         /* Empty message ("") is correct indata */
1100         if (msg_length == 0)
1101                 return ret;
1102
1103         index = req_ctx->state.index;
1104         buffer = (u8 *)req_ctx->state.buffer;
1105
1106         /* Check if ctx->state.length + msg_length
1107            overflows */
1108         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1109                         HASH_HIGH_WORD_MAX_VAL ==
1110                         req_ctx->state.length.high_word) {
1111                 pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
1112                                 __func__);
1113                 return -EPERM;
1114         }
1115
1116         ret = hash_get_device_data(ctx, &device_data);
1117         if (ret)
1118                 return ret;
1119
1120         /* Main loop */
1121         while (0 != msg_length) {
1122                 data_buffer = walk.data;
1123                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1124                                 data_buffer, buffer, &index);
1125
1126                 if (ret) {
1127                         dev_err(device_data->dev, "[%s] hash_internal_hw_"
1128                                         "update() failed!", __func__);
1129                         goto out;
1130                 }
1131
1132                 msg_length = crypto_hash_walk_done(&walk, 0);
1133         }
1134
1135         req_ctx->state.index = index;
1136         dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
1137                         __func__, req_ctx->state.index,
1138                         req_ctx->state.bit_index);
1139
1140 out:
1141         release_hash_device(device_data);
1142
1143         return ret;
1144 }
1145
1146 /**
1147  * hash_resume_state - Function that resumes the state of an calculation.
1148  * @device_data:        Pointer to the device structure.
1149  * @device_state:       The state to be restored in the hash hardware
1150  */
1151 int hash_resume_state(struct hash_device_data *device_data,
1152                 const struct hash_state *device_state)
1153 {
1154         u32 temp_cr;
1155         s32 count;
1156         int hash_mode = HASH_OPER_MODE_HASH;
1157
1158         if (NULL == device_state) {
1159                 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1160                                 __func__);
1161                 return -EPERM;
1162         }
1163
1164         /* Check correctness of index and length members */
1165         if (device_state->index > HASH_BLOCK_SIZE
1166             || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1167                 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1168                                 __func__);
1169                 return -EPERM;
1170         }
1171
1172         /*
1173          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1174          * prepare the initialize the HASH accelerator to compute the message
1175          * digest of a new message.
1176          */
1177         HASH_INITIALIZE;
1178
1179         temp_cr = device_state->temp_cr;
1180         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1181
1182         if (device_data->base->cr & HASH_CR_MODE_MASK)
1183                 hash_mode = HASH_OPER_MODE_HMAC;
1184         else
1185                 hash_mode = HASH_OPER_MODE_HASH;
1186
1187         for (count = 0; count < HASH_CSR_COUNT; count++) {
1188                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1189                         break;
1190
1191                 writel_relaxed(device_state->csr[count],
1192                                 &device_data->base->csrx[count]);
1193         }
1194
1195         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1196         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1197
1198         writel_relaxed(device_state->str_reg, &device_data->base->str);
1199         writel_relaxed(temp_cr, &device_data->base->cr);
1200
1201         return 0;
1202 }
1203
1204 /**
1205  * hash_save_state - Function that saves the state of hardware.
1206  * @device_data:        Pointer to the device structure.
1207  * @device_state:       The strucure where the hardware state should be saved.
1208  */
1209 int hash_save_state(struct hash_device_data *device_data,
1210                 struct hash_state *device_state)
1211 {
1212         u32 temp_cr;
1213         u32 count;
1214         int hash_mode = HASH_OPER_MODE_HASH;
1215
1216         if (NULL == device_state) {
1217                 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1218                                 __func__);
1219                 return -ENOTSUPP;
1220         }
1221
1222         /* Write dummy value to force digest intermediate calculation. This
1223          * actually makes sure that there isn't any ongoing calculation in the
1224          * hardware.
1225          */
1226         while (device_data->base->str & HASH_STR_DCAL_MASK)
1227                 cpu_relax();
1228
1229         temp_cr = readl_relaxed(&device_data->base->cr);
1230
1231         device_state->str_reg = readl_relaxed(&device_data->base->str);
1232
1233         device_state->din_reg = readl_relaxed(&device_data->base->din);
1234
1235         if (device_data->base->cr & HASH_CR_MODE_MASK)
1236                 hash_mode = HASH_OPER_MODE_HMAC;
1237         else
1238                 hash_mode = HASH_OPER_MODE_HASH;
1239
1240         for (count = 0; count < HASH_CSR_COUNT; count++) {
1241                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1242                         break;
1243
1244                 device_state->csr[count] =
1245                         readl_relaxed(&device_data->base->csrx[count]);
1246         }
1247
1248         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1249         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1250
1251         device_state->temp_cr = temp_cr;
1252
1253         return 0;
1254 }
1255
1256 /**
1257  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1258  * @device_data:
1259  *
1260  */
1261 int hash_check_hw(struct hash_device_data *device_data)
1262 {
1263         /* Checking Peripheral Ids  */
1264         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
1265                 && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
1266                 && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
1267                 && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
1268                 && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
1269                 && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
1270                 && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
1271                 && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
1272            ) {
1273                 return 0;
1274         }
1275
1276         dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
1277                         __func__);
1278         return -ENOTSUPP;
1279 }
1280
1281 /**
1282  * hash_get_digest - Gets the digest.
1283  * @device_data:        Pointer to the device structure.
1284  * @digest:             User allocated byte array for the calculated digest.
1285  * @algorithm:          The algorithm in use.
1286  */
1287 void hash_get_digest(struct hash_device_data *device_data,
1288                 u8 *digest, int algorithm)
1289 {
1290         u32 temp_hx_val, count;
1291         int loop_ctr;
1292
1293         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1294                 dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
1295                                 __func__, algorithm);
1296                 return;
1297         }
1298
1299         if (algorithm == HASH_ALGO_SHA1)
1300                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1301         else
1302                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1303
1304         dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
1305                         __func__, (u32) digest);
1306
1307         /* Copy result into digest array */
1308         for (count = 0; count < loop_ctr; count++) {
1309                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1310                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1311                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1312                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1313                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1314         }
1315 }
1316
1317 /**
1318  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1319  * @req: The hash request for the job.
1320  */
1321 static int ahash_update(struct ahash_request *req)
1322 {
1323         int ret = 0;
1324         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325
1326         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1327                 ret = hash_hw_update(req);
1328         /* Skip update for DMA, all data will be passed to DMA in final */
1329
1330         if (ret) {
1331                 pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
1332                                 __func__);
1333         }
1334
1335         return ret;
1336 }
1337
1338 /**
1339  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1340  * @req:        The hash request for the job.
1341  */
1342 static int ahash_final(struct ahash_request *req)
1343 {
1344         int ret = 0;
1345         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1346
1347         pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
1348
1349         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1350                 ret = hash_dma_final(req);
1351         else
1352                 ret = hash_hw_final(req);
1353
1354         if (ret) {
1355                 pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
1356                                 __func__);
1357         }
1358
1359         return ret;
1360 }
1361
1362 static int hash_setkey(struct crypto_ahash *tfm,
1363                 const u8 *key, unsigned int keylen, int alg)
1364 {
1365         int ret = 0;
1366         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1367
1368         /**
1369          * Freed in final.
1370          */
1371         ctx->key = kmalloc(keylen, GFP_KERNEL);
1372         if (!ctx->key) {
1373                 pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
1374                        "for %d\n", __func__, alg);
1375                 return -ENOMEM;
1376         }
1377
1378         memcpy(ctx->key, key, keylen);
1379         ctx->keylen = keylen;
1380
1381         return ret;
1382 }
1383
1384 static int ahash_sha1_init(struct ahash_request *req)
1385 {
1386         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1387         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1388
1389         ctx->config.data_format = HASH_DATA_8_BITS;
1390         ctx->config.algorithm = HASH_ALGO_SHA1;
1391         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1392         ctx->digestsize = SHA1_DIGEST_SIZE;
1393
1394         return hash_init(req);
1395 }
1396
1397 static int ahash_sha256_init(struct ahash_request *req)
1398 {
1399         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1400         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1401
1402         ctx->config.data_format = HASH_DATA_8_BITS;
1403         ctx->config.algorithm = HASH_ALGO_SHA256;
1404         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1405         ctx->digestsize = SHA256_DIGEST_SIZE;
1406
1407         return hash_init(req);
1408 }
1409
1410 static int ahash_sha1_digest(struct ahash_request *req)
1411 {
1412         int ret2, ret1;
1413
1414         ret1 = ahash_sha1_init(req);
1415         if (ret1)
1416                 goto out;
1417
1418         ret1 = ahash_update(req);
1419         ret2 = ahash_final(req);
1420
1421 out:
1422         return ret1 ? ret1 : ret2;
1423 }
1424
1425 static int ahash_sha256_digest(struct ahash_request *req)
1426 {
1427         int ret2, ret1;
1428
1429         ret1 = ahash_sha256_init(req);
1430         if (ret1)
1431                 goto out;
1432
1433         ret1 = ahash_update(req);
1434         ret2 = ahash_final(req);
1435
1436 out:
1437         return ret1 ? ret1 : ret2;
1438 }
1439
1440 static int hmac_sha1_init(struct ahash_request *req)
1441 {
1442         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1443         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1444
1445         ctx->config.data_format = HASH_DATA_8_BITS;
1446         ctx->config.algorithm   = HASH_ALGO_SHA1;
1447         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1448         ctx->digestsize         = SHA1_DIGEST_SIZE;
1449
1450         return hash_init(req);
1451 }
1452
1453 static int hmac_sha256_init(struct ahash_request *req)
1454 {
1455         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1456         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1457
1458         ctx->config.data_format = HASH_DATA_8_BITS;
1459         ctx->config.algorithm   = HASH_ALGO_SHA256;
1460         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1461         ctx->digestsize         = SHA256_DIGEST_SIZE;
1462
1463         return hash_init(req);
1464 }
1465
1466 static int hmac_sha1_digest(struct ahash_request *req)
1467 {
1468         int ret2, ret1;
1469
1470         ret1 = hmac_sha1_init(req);
1471         if (ret1)
1472                 goto out;
1473
1474         ret1 = ahash_update(req);
1475         ret2 = ahash_final(req);
1476
1477 out:
1478         return ret1 ? ret1 : ret2;
1479 }
1480
1481 static int hmac_sha256_digest(struct ahash_request *req)
1482 {
1483         int ret2, ret1;
1484
1485         ret1 = hmac_sha256_init(req);
1486         if (ret1)
1487                 goto out;
1488
1489         ret1 = ahash_update(req);
1490         ret2 = ahash_final(req);
1491
1492 out:
1493         return ret1 ? ret1 : ret2;
1494 }
1495
1496 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1497                 const u8 *key, unsigned int keylen)
1498 {
1499         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1500 }
1501
1502 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1503                 const u8 *key, unsigned int keylen)
1504 {
1505         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1506 }
1507
1508 struct hash_algo_template {
1509         struct hash_config conf;
1510         struct ahash_alg hash;
1511 };
1512
1513 static int hash_cra_init(struct crypto_tfm *tfm)
1514 {
1515         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1516         struct crypto_alg *alg = tfm->__crt_alg;
1517         struct hash_algo_template *hash_alg;
1518
1519         hash_alg = container_of(__crypto_ahash_alg(alg),
1520                         struct hash_algo_template,
1521                         hash);
1522
1523         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1524                         sizeof(struct hash_req_ctx));
1525
1526         ctx->config.data_format = HASH_DATA_8_BITS;
1527         ctx->config.algorithm = hash_alg->conf.algorithm;
1528         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1529
1530         ctx->digestsize = hash_alg->hash.halg.digestsize;
1531
1532         return 0;
1533 }
1534
1535 static struct hash_algo_template hash_algs[] = {
1536         {
1537                         .conf.algorithm = HASH_ALGO_SHA1,
1538                         .conf.oper_mode = HASH_OPER_MODE_HASH,
1539                         .hash = {
1540                                 .init = hash_init,
1541                                 .update = ahash_update,
1542                                 .final = ahash_final,
1543                                 .digest = ahash_sha1_digest,
1544                                 .halg.digestsize = SHA1_DIGEST_SIZE,
1545                                 .halg.statesize = sizeof(struct hash_ctx),
1546                                 .halg.base = {
1547                                         .cra_name = "sha1",
1548                                         .cra_driver_name = "sha1-ux500",
1549                                         .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1550                                                         CRYPTO_ALG_ASYNC,
1551                                         .cra_blocksize = SHA1_BLOCK_SIZE,
1552                                         .cra_ctxsize = sizeof(struct hash_ctx),
1553                                         .cra_init = hash_cra_init,
1554                                         .cra_module = THIS_MODULE,
1555                         }
1556                 }
1557         },
1558         {
1559                         .conf.algorithm         = HASH_ALGO_SHA256,
1560                         .conf.oper_mode         = HASH_OPER_MODE_HASH,
1561                         .hash = {
1562                                 .init = hash_init,
1563                                 .update = ahash_update,
1564                                 .final = ahash_final,
1565                                 .digest = ahash_sha256_digest,
1566                                 .halg.digestsize = SHA256_DIGEST_SIZE,
1567                                 .halg.statesize = sizeof(struct hash_ctx),
1568                                 .halg.base = {
1569                                         .cra_name = "sha256",
1570                                         .cra_driver_name = "sha256-ux500",
1571                                         .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1572                                                         CRYPTO_ALG_ASYNC,
1573                                         .cra_blocksize = SHA256_BLOCK_SIZE,
1574                                         .cra_ctxsize = sizeof(struct hash_ctx),
1575                                         .cra_type = &crypto_ahash_type,
1576                                         .cra_init = hash_cra_init,
1577                                         .cra_module = THIS_MODULE,
1578                                 }
1579                         }
1580
1581         },
1582         {
1583                         .conf.algorithm         = HASH_ALGO_SHA1,
1584                         .conf.oper_mode         = HASH_OPER_MODE_HMAC,
1585                         .hash = {
1586                                 .init = hash_init,
1587                                 .update = ahash_update,
1588                                 .final = ahash_final,
1589                                 .digest = hmac_sha1_digest,
1590                                 .setkey = hmac_sha1_setkey,
1591                                 .halg.digestsize = SHA1_DIGEST_SIZE,
1592                                 .halg.statesize = sizeof(struct hash_ctx),
1593                                 .halg.base = {
1594                                         .cra_name = "hmac(sha1)",
1595                                         .cra_driver_name = "hmac-sha1-ux500",
1596                                         .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1597                                                         CRYPTO_ALG_ASYNC,
1598                                         .cra_blocksize = SHA1_BLOCK_SIZE,
1599                                         .cra_ctxsize = sizeof(struct hash_ctx),
1600                                         .cra_type = &crypto_ahash_type,
1601                                         .cra_init = hash_cra_init,
1602                                         .cra_module = THIS_MODULE,
1603                                 }
1604                         }
1605         },
1606         {
1607                         .conf.algorithm         = HASH_ALGO_SHA256,
1608                         .conf.oper_mode         = HASH_OPER_MODE_HMAC,
1609                         .hash = {
1610                                 .init = hash_init,
1611                                 .update = ahash_update,
1612                                 .final = ahash_final,
1613                                 .digest = hmac_sha256_digest,
1614                                 .setkey = hmac_sha256_setkey,
1615                                 .halg.digestsize = SHA256_DIGEST_SIZE,
1616                                 .halg.statesize = sizeof(struct hash_ctx),
1617                                 .halg.base = {
1618                                         .cra_name = "hmac(sha256)",
1619                                         .cra_driver_name = "hmac-sha256-ux500",
1620                                         .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1621                                                         CRYPTO_ALG_ASYNC,
1622                                         .cra_blocksize = SHA256_BLOCK_SIZE,
1623                                         .cra_ctxsize = sizeof(struct hash_ctx),
1624                                         .cra_type = &crypto_ahash_type,
1625                                         .cra_init = hash_cra_init,
1626                                         .cra_module = THIS_MODULE,
1627                                 }
1628                         }
1629         }
1630 };
1631
1632 /**
1633  * hash_algs_register_all -
1634  */
1635 static int ahash_algs_register_all(struct hash_device_data *device_data)
1636 {
1637         int ret;
1638         int i;
1639         int count;
1640
1641         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1642                 ret = crypto_register_ahash(&hash_algs[i].hash);
1643                 if (ret) {
1644                         count = i;
1645                         dev_err(device_data->dev, "[%s] alg registration failed",
1646                                 hash_algs[i].hash.halg.base.cra_driver_name);
1647                         goto unreg;
1648                 }
1649         }
1650         return 0;
1651 unreg:
1652         for (i = 0; i < count; i++)
1653                 crypto_unregister_ahash(&hash_algs[i].hash);
1654         return ret;
1655 }
1656
1657 /**
1658  * hash_algs_unregister_all -
1659  */
1660 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1661 {
1662         int i;
1663
1664         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1665                 crypto_unregister_ahash(&hash_algs[i].hash);
1666 }
1667
1668 /**
1669  * ux500_hash_probe - Function that probes the hash hardware.
1670  * @pdev: The platform device.
1671  */
1672 static int ux500_hash_probe(struct platform_device *pdev)
1673 {
1674         int                     ret = 0;
1675         struct resource         *res = NULL;
1676         struct hash_device_data *device_data;
1677         struct device           *dev = &pdev->dev;
1678
1679         device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
1680         if (!device_data) {
1681                 dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
1682                 ret = -ENOMEM;
1683                 goto out;
1684         }
1685
1686         device_data->dev = dev;
1687         device_data->current_ctx = NULL;
1688
1689         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1690         if (!res) {
1691                 dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
1692                 ret = -ENODEV;
1693                 goto out_kfree;
1694         }
1695
1696         res = request_mem_region(res->start, resource_size(res), pdev->name);
1697         if (res == NULL) {
1698                 dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
1699                 ret = -EBUSY;
1700                 goto out_kfree;
1701         }
1702
1703         device_data->base = ioremap(res->start, resource_size(res));
1704         if (!device_data->base) {
1705                 dev_err(dev, "[%s] ioremap() failed!",
1706                                 __func__);
1707                 ret = -ENOMEM;
1708                 goto out_free_mem;
1709         }
1710         spin_lock_init(&device_data->ctx_lock);
1711         spin_lock_init(&device_data->power_state_lock);
1712
1713         /* Enable power for HASH1 hardware block */
1714         device_data->regulator = regulator_get(dev, "v-ape");
1715         if (IS_ERR(device_data->regulator)) {
1716                 dev_err(dev, "[%s] regulator_get() failed!", __func__);
1717                 ret = PTR_ERR(device_data->regulator);
1718                 device_data->regulator = NULL;
1719                 goto out_unmap;
1720         }
1721
1722         /* Enable the clock for HASH1 hardware block */
1723         device_data->clk = clk_get(dev, NULL);
1724         if (IS_ERR(device_data->clk)) {
1725                 dev_err(dev, "[%s] clk_get() failed!", __func__);
1726                 ret = PTR_ERR(device_data->clk);
1727                 goto out_regulator;
1728         }
1729
1730         /* Enable device power (and clock) */
1731         ret = hash_enable_power(device_data, false);
1732         if (ret) {
1733                 dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1734                 goto out_clk;
1735         }
1736
1737         ret = hash_check_hw(device_data);
1738         if (ret) {
1739                 dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
1740                 goto out_power;
1741         }
1742
1743         if (hash_mode == HASH_MODE_DMA)
1744                 hash_dma_setup_channel(device_data, dev);
1745
1746         platform_set_drvdata(pdev, device_data);
1747
1748         /* Put the new device into the device list... */
1749         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1750         /* ... and signal that a new device is available. */
1751         up(&driver_data.device_allocation);
1752
1753         ret = ahash_algs_register_all(device_data);
1754         if (ret) {
1755                 dev_err(dev, "[%s] ahash_algs_register_all() "
1756                                 "failed!", __func__);
1757                 goto out_power;
1758         }
1759
1760         dev_info(dev, "[%s] successfully probed\n", __func__);
1761         return 0;
1762
1763 out_power:
1764         hash_disable_power(device_data, false);
1765
1766 out_clk:
1767         clk_put(device_data->clk);
1768
1769 out_regulator:
1770         regulator_put(device_data->regulator);
1771
1772 out_unmap:
1773         iounmap(device_data->base);
1774
1775 out_free_mem:
1776         release_mem_region(res->start, resource_size(res));
1777
1778 out_kfree:
1779         kfree(device_data);
1780 out:
1781         return ret;
1782 }
1783
1784 /**
1785  * ux500_hash_remove - Function that removes the hash device from the platform.
1786  * @pdev: The platform device.
1787  */
1788 static int ux500_hash_remove(struct platform_device *pdev)
1789 {
1790         struct resource         *res;
1791         struct hash_device_data *device_data;
1792         struct device           *dev = &pdev->dev;
1793
1794         device_data = platform_get_drvdata(pdev);
1795         if (!device_data) {
1796                 dev_err(dev, "[%s]: platform_get_drvdata() failed!",
1797                         __func__);
1798                 return -ENOMEM;
1799         }
1800
1801         /* Try to decrease the number of available devices. */
1802         if (down_trylock(&driver_data.device_allocation))
1803                 return -EBUSY;
1804
1805         /* Check that the device is free */
1806         spin_lock(&device_data->ctx_lock);
1807         /* current_ctx allocates a device, NULL = unallocated */
1808         if (device_data->current_ctx) {
1809                 /* The device is busy */
1810                 spin_unlock(&device_data->ctx_lock);
1811                 /* Return the device to the pool. */
1812                 up(&driver_data.device_allocation);
1813                 return -EBUSY;
1814         }
1815
1816         spin_unlock(&device_data->ctx_lock);
1817
1818         /* Remove the device from the list */
1819         if (klist_node_attached(&device_data->list_node))
1820                 klist_remove(&device_data->list_node);
1821
1822         /* If this was the last device, remove the services */
1823         if (list_empty(&driver_data.device_list.k_list))
1824                 ahash_algs_unregister_all(device_data);
1825
1826         if (hash_disable_power(device_data, false))
1827                 dev_err(dev, "[%s]: hash_disable_power() failed",
1828                         __func__);
1829
1830         clk_put(device_data->clk);
1831         regulator_put(device_data->regulator);
1832
1833         iounmap(device_data->base);
1834
1835         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1836         if (res)
1837                 release_mem_region(res->start, resource_size(res));
1838
1839         kfree(device_data);
1840
1841         return 0;
1842 }
1843
1844 /**
1845  * ux500_hash_shutdown - Function that shutdown the hash device.
1846  * @pdev: The platform device
1847  */
1848 static void ux500_hash_shutdown(struct platform_device *pdev)
1849 {
1850         struct resource *res = NULL;
1851         struct hash_device_data *device_data;
1852
1853         device_data = platform_get_drvdata(pdev);
1854         if (!device_data) {
1855                 dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1856                                 __func__);
1857                 return;
1858         }
1859
1860         /* Check that the device is free */
1861         spin_lock(&device_data->ctx_lock);
1862         /* current_ctx allocates a device, NULL = unallocated */
1863         if (!device_data->current_ctx) {
1864                 if (down_trylock(&driver_data.device_allocation))
1865                         dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1866                                 "Shutting down anyway...", __func__);
1867                 /**
1868                  * (Allocate the device)
1869                  * Need to set this to non-null (dummy) value,
1870                  * to avoid usage if context switching.
1871                  */
1872                 device_data->current_ctx++;
1873         }
1874         spin_unlock(&device_data->ctx_lock);
1875
1876         /* Remove the device from the list */
1877         if (klist_node_attached(&device_data->list_node))
1878                 klist_remove(&device_data->list_node);
1879
1880         /* If this was the last device, remove the services */
1881         if (list_empty(&driver_data.device_list.k_list))
1882                 ahash_algs_unregister_all(device_data);
1883
1884         iounmap(device_data->base);
1885
1886         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1887         if (res)
1888                 release_mem_region(res->start, resource_size(res));
1889
1890         if (hash_disable_power(device_data, false))
1891                 dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
1892                                 __func__);
1893 }
1894
1895 /**
1896  * ux500_hash_suspend - Function that suspends the hash device.
1897  * @dev:        Device to suspend.
1898  */
1899 static int ux500_hash_suspend(struct device *dev)
1900 {
1901         int ret;
1902         struct hash_device_data *device_data;
1903         struct hash_ctx *temp_ctx = NULL;
1904
1905         device_data = dev_get_drvdata(dev);
1906         if (!device_data) {
1907                 dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
1908                 return -ENOMEM;
1909         }
1910
1911         spin_lock(&device_data->ctx_lock);
1912         if (!device_data->current_ctx)
1913                 device_data->current_ctx++;
1914         spin_unlock(&device_data->ctx_lock);
1915
1916         if (device_data->current_ctx == ++temp_ctx) {
1917                 if (down_interruptible(&driver_data.device_allocation))
1918                         dev_dbg(dev, "[%s]: down_interruptible() failed",
1919                                 __func__);
1920                 ret = hash_disable_power(device_data, false);
1921
1922         } else
1923                 ret = hash_disable_power(device_data, true);
1924
1925         if (ret)
1926                 dev_err(dev, "[%s]: hash_disable_power()", __func__);
1927
1928         return ret;
1929 }
1930
1931 /**
1932  * ux500_hash_resume - Function that resume the hash device.
1933  * @dev:        Device to resume.
1934  */
1935 static int ux500_hash_resume(struct device *dev)
1936 {
1937         int ret = 0;
1938         struct hash_device_data *device_data;
1939         struct hash_ctx *temp_ctx = NULL;
1940
1941         device_data = dev_get_drvdata(dev);
1942         if (!device_data) {
1943                 dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
1944                 return -ENOMEM;
1945         }
1946
1947         spin_lock(&device_data->ctx_lock);
1948         if (device_data->current_ctx == ++temp_ctx)
1949                 device_data->current_ctx = NULL;
1950         spin_unlock(&device_data->ctx_lock);
1951
1952         if (!device_data->current_ctx)
1953                 up(&driver_data.device_allocation);
1954         else
1955                 ret = hash_enable_power(device_data, true);
1956
1957         if (ret)
1958                 dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1959
1960         return ret;
1961 }
1962
1963 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1964
1965 static struct platform_driver hash_driver = {
1966         .probe  = ux500_hash_probe,
1967         .remove = ux500_hash_remove,
1968         .shutdown = ux500_hash_shutdown,
1969         .driver = {
1970                 .owner = THIS_MODULE,
1971                 .name  = "hash1",
1972                 .pm    = &ux500_hash_pm,
1973         }
1974 };
1975
1976 /**
1977  * ux500_hash_mod_init - The kernel module init function.
1978  */
1979 static int __init ux500_hash_mod_init(void)
1980 {
1981         klist_init(&driver_data.device_list, NULL, NULL);
1982         /* Initialize the semaphore to 0 devices (locked state) */
1983         sema_init(&driver_data.device_allocation, 0);
1984
1985         return platform_driver_register(&hash_driver);
1986 }
1987
1988 /**
1989  * ux500_hash_mod_fini - The kernel module exit function.
1990  */
1991 static void __exit ux500_hash_mod_fini(void)
1992 {
1993         platform_driver_unregister(&hash_driver);
1994 }
1995
1996 module_init(ux500_hash_mod_init);
1997 module_exit(ux500_hash_mod_fini);
1998
1999 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
2000 MODULE_LICENSE("GPL");
2001
2002 MODULE_ALIAS("sha1-all");
2003 MODULE_ALIAS("sha256-all");
2004 MODULE_ALIAS("hmac-sha1-all");
2005 MODULE_ALIAS("hmac-sha256-all");