Merge remote-tracking branches 'spi/fix/qup' and 'spi/fix/topcliff-pch' into spi...
[cascardo/linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /*
50  * Max of 20 segments per channel to conserve PaRAM slots
51  * Also note that MAX_NR_SG should be atleast the no.of periods
52  * that are required for ASoC, otherwise DMA prep calls will
53  * fail. Today davinci-pcm is the only user of this driver and
54  * requires atleast 17 slots, so we setup the default to 20.
55  */
56 #define MAX_NR_SG               20
57 #define EDMA_MAX_SLOTS          MAX_NR_SG
58 #define EDMA_DESCRIPTORS        16
59
60 struct edma_desc {
61         struct virt_dma_desc            vdesc;
62         struct list_head                node;
63         int                             cyclic;
64         int                             absync;
65         int                             pset_nr;
66         int                             processed;
67         struct edmacc_param             pset[0];
68 };
69
70 struct edma_cc;
71
72 struct edma_chan {
73         struct virt_dma_chan            vchan;
74         struct list_head                node;
75         struct edma_desc                *edesc;
76         struct edma_cc                  *ecc;
77         int                             ch_num;
78         bool                            alloced;
79         int                             slot[EDMA_MAX_SLOTS];
80         int                             missed;
81         struct dma_slave_config         cfg;
82 };
83
84 struct edma_cc {
85         int                             ctlr;
86         struct dma_device               dma_slave;
87         struct edma_chan                slave_chans[EDMA_CHANS];
88         int                             num_slave_chans;
89         int                             dummy_slot;
90 };
91
92 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
93 {
94         return container_of(d, struct edma_cc, dma_slave);
95 }
96
97 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
98 {
99         return container_of(c, struct edma_chan, vchan.chan);
100 }
101
102 static inline struct edma_desc
103 *to_edma_desc(struct dma_async_tx_descriptor *tx)
104 {
105         return container_of(tx, struct edma_desc, vdesc.tx);
106 }
107
108 static void edma_desc_free(struct virt_dma_desc *vdesc)
109 {
110         kfree(container_of(vdesc, struct edma_desc, vdesc));
111 }
112
113 /* Dispatch a queued descriptor to the controller (caller holds lock) */
114 static void edma_execute(struct edma_chan *echan)
115 {
116         struct virt_dma_desc *vdesc;
117         struct edma_desc *edesc;
118         struct device *dev = echan->vchan.chan.device->dev;
119         int i, j, left, nslots;
120
121         /* If either we processed all psets or we're still not started */
122         if (!echan->edesc ||
123             echan->edesc->pset_nr == echan->edesc->processed) {
124                 /* Get next vdesc */
125                 vdesc = vchan_next_desc(&echan->vchan);
126                 if (!vdesc) {
127                         echan->edesc = NULL;
128                         return;
129                 }
130                 list_del(&vdesc->node);
131                 echan->edesc = to_edma_desc(&vdesc->tx);
132         }
133
134         edesc = echan->edesc;
135
136         /* Find out how many left */
137         left = edesc->pset_nr - edesc->processed;
138         nslots = min(MAX_NR_SG, left);
139
140         /* Write descriptor PaRAM set(s) */
141         for (i = 0; i < nslots; i++) {
142                 j = i + edesc->processed;
143                 edma_write_slot(echan->slot[i], &edesc->pset[j]);
144                 dev_dbg(echan->vchan.chan.device->dev,
145                         "\n pset[%d]:\n"
146                         "  chnum\t%d\n"
147                         "  slot\t%d\n"
148                         "  opt\t%08x\n"
149                         "  src\t%08x\n"
150                         "  dst\t%08x\n"
151                         "  abcnt\t%08x\n"
152                         "  ccnt\t%08x\n"
153                         "  bidx\t%08x\n"
154                         "  cidx\t%08x\n"
155                         "  lkrld\t%08x\n",
156                         j, echan->ch_num, echan->slot[i],
157                         edesc->pset[j].opt,
158                         edesc->pset[j].src,
159                         edesc->pset[j].dst,
160                         edesc->pset[j].a_b_cnt,
161                         edesc->pset[j].ccnt,
162                         edesc->pset[j].src_dst_bidx,
163                         edesc->pset[j].src_dst_cidx,
164                         edesc->pset[j].link_bcntrld);
165                 /* Link to the previous slot if not the last set */
166                 if (i != (nslots - 1))
167                         edma_link(echan->slot[i], echan->slot[i+1]);
168         }
169
170         edesc->processed += nslots;
171
172         /*
173          * If this is either the last set in a set of SG-list transactions
174          * then setup a link to the dummy slot, this results in all future
175          * events being absorbed and that's OK because we're done
176          */
177         if (edesc->processed == edesc->pset_nr) {
178                 if (edesc->cyclic)
179                         edma_link(echan->slot[nslots-1], echan->slot[1]);
180                 else
181                         edma_link(echan->slot[nslots-1],
182                                   echan->ecc->dummy_slot);
183         }
184
185         if (edesc->processed <= MAX_NR_SG) {
186                 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
187                 edma_start(echan->ch_num);
188         } else {
189                 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
190                         echan->ch_num, edesc->processed);
191                 edma_resume(echan->ch_num);
192         }
193
194         /*
195          * This happens due to setup times between intermediate transfers
196          * in long SG lists which have to be broken up into transfers of
197          * MAX_NR_SG
198          */
199         if (echan->missed) {
200                 dev_dbg(dev, "missed event in execute detected\n");
201                 edma_clean_channel(echan->ch_num);
202                 edma_stop(echan->ch_num);
203                 edma_start(echan->ch_num);
204                 edma_trigger_channel(echan->ch_num);
205                 echan->missed = 0;
206         }
207 }
208
209 static int edma_terminate_all(struct edma_chan *echan)
210 {
211         unsigned long flags;
212         LIST_HEAD(head);
213
214         spin_lock_irqsave(&echan->vchan.lock, flags);
215
216         /*
217          * Stop DMA activity: we assume the callback will not be called
218          * after edma_dma() returns (even if it does, it will see
219          * echan->edesc is NULL and exit.)
220          */
221         if (echan->edesc) {
222                 echan->edesc = NULL;
223                 edma_stop(echan->ch_num);
224         }
225
226         vchan_get_all_descriptors(&echan->vchan, &head);
227         spin_unlock_irqrestore(&echan->vchan.lock, flags);
228         vchan_dma_desc_free_list(&echan->vchan, &head);
229
230         return 0;
231 }
232
233 static int edma_slave_config(struct edma_chan *echan,
234         struct dma_slave_config *cfg)
235 {
236         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
237             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
238                 return -EINVAL;
239
240         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
241
242         return 0;
243 }
244
245 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
246                         unsigned long arg)
247 {
248         int ret = 0;
249         struct dma_slave_config *config;
250         struct edma_chan *echan = to_edma_chan(chan);
251
252         switch (cmd) {
253         case DMA_TERMINATE_ALL:
254                 edma_terminate_all(echan);
255                 break;
256         case DMA_SLAVE_CONFIG:
257                 config = (struct dma_slave_config *)arg;
258                 ret = edma_slave_config(echan, config);
259                 break;
260         default:
261                 ret = -ENOSYS;
262         }
263
264         return ret;
265 }
266
267 /*
268  * A PaRAM set configuration abstraction used by other modes
269  * @chan: Channel who's PaRAM set we're configuring
270  * @pset: PaRAM set to initialize and setup.
271  * @src_addr: Source address of the DMA
272  * @dst_addr: Destination address of the DMA
273  * @burst: In units of dev_width, how much to send
274  * @dev_width: How much is the dev_width
275  * @dma_length: Total length of the DMA transfer
276  * @direction: Direction of the transfer
277  */
278 static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset,
279         dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
280         enum dma_slave_buswidth dev_width, unsigned int dma_length,
281         enum dma_transfer_direction direction)
282 {
283         struct edma_chan *echan = to_edma_chan(chan);
284         struct device *dev = chan->device->dev;
285         int acnt, bcnt, ccnt, cidx;
286         int src_bidx, dst_bidx, src_cidx, dst_cidx;
287         int absync;
288
289         acnt = dev_width;
290         /*
291          * If the maxburst is equal to the fifo width, use
292          * A-synced transfers. This allows for large contiguous
293          * buffer transfers using only one PaRAM set.
294          */
295         if (burst == 1) {
296                 /*
297                  * For the A-sync case, bcnt and ccnt are the remainder
298                  * and quotient respectively of the division of:
299                  * (dma_length / acnt) by (SZ_64K -1). This is so
300                  * that in case bcnt over flows, we have ccnt to use.
301                  * Note: In A-sync tranfer only, bcntrld is used, but it
302                  * only applies for sg_dma_len(sg) >= SZ_64K.
303                  * In this case, the best way adopted is- bccnt for the
304                  * first frame will be the remainder below. Then for
305                  * every successive frame, bcnt will be SZ_64K-1. This
306                  * is assured as bcntrld = 0xffff in end of function.
307                  */
308                 absync = false;
309                 ccnt = dma_length / acnt / (SZ_64K - 1);
310                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
311                 /*
312                  * If bcnt is non-zero, we have a remainder and hence an
313                  * extra frame to transfer, so increment ccnt.
314                  */
315                 if (bcnt)
316                         ccnt++;
317                 else
318                         bcnt = SZ_64K - 1;
319                 cidx = acnt;
320         } else {
321                 /*
322                  * If maxburst is greater than the fifo address_width,
323                  * use AB-synced transfers where A count is the fifo
324                  * address_width and B count is the maxburst. In this
325                  * case, we are limited to transfers of C count frames
326                  * of (address_width * maxburst) where C count is limited
327                  * to SZ_64K-1. This places an upper bound on the length
328                  * of an SG segment that can be handled.
329                  */
330                 absync = true;
331                 bcnt = burst;
332                 ccnt = dma_length / (acnt * bcnt);
333                 if (ccnt > (SZ_64K - 1)) {
334                         dev_err(dev, "Exceeded max SG segment size\n");
335                         return -EINVAL;
336                 }
337                 cidx = acnt * bcnt;
338         }
339
340         if (direction == DMA_MEM_TO_DEV) {
341                 src_bidx = acnt;
342                 src_cidx = cidx;
343                 dst_bidx = 0;
344                 dst_cidx = 0;
345         } else if (direction == DMA_DEV_TO_MEM)  {
346                 src_bidx = 0;
347                 src_cidx = 0;
348                 dst_bidx = acnt;
349                 dst_cidx = cidx;
350         } else {
351                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
352                 return -EINVAL;
353         }
354
355         pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
356         /* Configure A or AB synchronized transfers */
357         if (absync)
358                 pset->opt |= SYNCDIM;
359
360         pset->src = src_addr;
361         pset->dst = dst_addr;
362
363         pset->src_dst_bidx = (dst_bidx << 16) | src_bidx;
364         pset->src_dst_cidx = (dst_cidx << 16) | src_cidx;
365
366         pset->a_b_cnt = bcnt << 16 | acnt;
367         pset->ccnt = ccnt;
368         /*
369          * Only time when (bcntrld) auto reload is required is for
370          * A-sync case, and in this case, a requirement of reload value
371          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
372          * and then later will be populated by edma_execute.
373          */
374         pset->link_bcntrld = 0xffffffff;
375         return absync;
376 }
377
378 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
379         struct dma_chan *chan, struct scatterlist *sgl,
380         unsigned int sg_len, enum dma_transfer_direction direction,
381         unsigned long tx_flags, void *context)
382 {
383         struct edma_chan *echan = to_edma_chan(chan);
384         struct device *dev = chan->device->dev;
385         struct edma_desc *edesc;
386         dma_addr_t src_addr = 0, dst_addr = 0;
387         enum dma_slave_buswidth dev_width;
388         u32 burst;
389         struct scatterlist *sg;
390         int i, nslots, ret;
391
392         if (unlikely(!echan || !sgl || !sg_len))
393                 return NULL;
394
395         if (direction == DMA_DEV_TO_MEM) {
396                 src_addr = echan->cfg.src_addr;
397                 dev_width = echan->cfg.src_addr_width;
398                 burst = echan->cfg.src_maxburst;
399         } else if (direction == DMA_MEM_TO_DEV) {
400                 dst_addr = echan->cfg.dst_addr;
401                 dev_width = echan->cfg.dst_addr_width;
402                 burst = echan->cfg.dst_maxburst;
403         } else {
404                 dev_err(dev, "%s: bad direction?\n", __func__);
405                 return NULL;
406         }
407
408         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
409                 dev_err(dev, "Undefined slave buswidth\n");
410                 return NULL;
411         }
412
413         edesc = kzalloc(sizeof(*edesc) + sg_len *
414                 sizeof(edesc->pset[0]), GFP_ATOMIC);
415         if (!edesc) {
416                 dev_dbg(dev, "Failed to allocate a descriptor\n");
417                 return NULL;
418         }
419
420         edesc->pset_nr = sg_len;
421
422         /* Allocate a PaRAM slot, if needed */
423         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
424
425         for (i = 0; i < nslots; i++) {
426                 if (echan->slot[i] < 0) {
427                         echan->slot[i] =
428                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
429                                                 EDMA_SLOT_ANY);
430                         if (echan->slot[i] < 0) {
431                                 kfree(edesc);
432                                 dev_err(dev, "Failed to allocate slot\n");
433                                 return NULL;
434                         }
435                 }
436         }
437
438         /* Configure PaRAM sets for each SG */
439         for_each_sg(sgl, sg, sg_len, i) {
440                 /* Get address for each SG */
441                 if (direction == DMA_DEV_TO_MEM)
442                         dst_addr = sg_dma_address(sg);
443                 else
444                         src_addr = sg_dma_address(sg);
445
446                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
447                                        dst_addr, burst, dev_width,
448                                        sg_dma_len(sg), direction);
449                 if (ret < 0) {
450                         kfree(edesc);
451                         return NULL;
452                 }
453
454                 edesc->absync = ret;
455
456                 /* If this is the last in a current SG set of transactions,
457                    enable interrupts so that next set is processed */
458                 if (!((i+1) % MAX_NR_SG))
459                         edesc->pset[i].opt |= TCINTEN;
460
461                 /* If this is the last set, enable completion interrupt flag */
462                 if (i == sg_len - 1)
463                         edesc->pset[i].opt |= TCINTEN;
464         }
465
466         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
467 }
468
469 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
470         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
471         size_t period_len, enum dma_transfer_direction direction,
472         unsigned long tx_flags, void *context)
473 {
474         struct edma_chan *echan = to_edma_chan(chan);
475         struct device *dev = chan->device->dev;
476         struct edma_desc *edesc;
477         dma_addr_t src_addr, dst_addr;
478         enum dma_slave_buswidth dev_width;
479         u32 burst;
480         int i, ret, nslots;
481
482         if (unlikely(!echan || !buf_len || !period_len))
483                 return NULL;
484
485         if (direction == DMA_DEV_TO_MEM) {
486                 src_addr = echan->cfg.src_addr;
487                 dst_addr = buf_addr;
488                 dev_width = echan->cfg.src_addr_width;
489                 burst = echan->cfg.src_maxburst;
490         } else if (direction == DMA_MEM_TO_DEV) {
491                 src_addr = buf_addr;
492                 dst_addr = echan->cfg.dst_addr;
493                 dev_width = echan->cfg.dst_addr_width;
494                 burst = echan->cfg.dst_maxburst;
495         } else {
496                 dev_err(dev, "%s: bad direction?\n", __func__);
497                 return NULL;
498         }
499
500         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
501                 dev_err(dev, "Undefined slave buswidth\n");
502                 return NULL;
503         }
504
505         if (unlikely(buf_len % period_len)) {
506                 dev_err(dev, "Period should be multiple of Buffer length\n");
507                 return NULL;
508         }
509
510         nslots = (buf_len / period_len) + 1;
511
512         /*
513          * Cyclic DMA users such as audio cannot tolerate delays introduced
514          * by cases where the number of periods is more than the maximum
515          * number of SGs the EDMA driver can handle at a time. For DMA types
516          * such as Slave SGs, such delays are tolerable and synchronized,
517          * but the synchronization is difficult to achieve with Cyclic and
518          * cannot be guaranteed, so we error out early.
519          */
520         if (nslots > MAX_NR_SG)
521                 return NULL;
522
523         edesc = kzalloc(sizeof(*edesc) + nslots *
524                 sizeof(edesc->pset[0]), GFP_ATOMIC);
525         if (!edesc) {
526                 dev_dbg(dev, "Failed to allocate a descriptor\n");
527                 return NULL;
528         }
529
530         edesc->cyclic = 1;
531         edesc->pset_nr = nslots;
532
533         dev_dbg(dev, "%s: nslots=%d\n", __func__, nslots);
534         dev_dbg(dev, "%s: period_len=%d\n", __func__, period_len);
535         dev_dbg(dev, "%s: buf_len=%d\n", __func__, buf_len);
536
537         for (i = 0; i < nslots; i++) {
538                 /* Allocate a PaRAM slot, if needed */
539                 if (echan->slot[i] < 0) {
540                         echan->slot[i] =
541                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
542                                                 EDMA_SLOT_ANY);
543                         if (echan->slot[i] < 0) {
544                                 kfree(edesc);
545                                 dev_err(dev, "Failed to allocate slot\n");
546                                 return NULL;
547                         }
548                 }
549
550                 if (i == nslots - 1) {
551                         memcpy(&edesc->pset[i], &edesc->pset[0],
552                                sizeof(edesc->pset[0]));
553                         break;
554                 }
555
556                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
557                                        dst_addr, burst, dev_width, period_len,
558                                        direction);
559                 if (ret < 0) {
560                         kfree(edesc);
561                         return NULL;
562                 }
563
564                 if (direction == DMA_DEV_TO_MEM)
565                         dst_addr += period_len;
566                 else
567                         src_addr += period_len;
568
569                 dev_dbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
570                 dev_dbg(dev,
571                         "\n pset[%d]:\n"
572                         "  chnum\t%d\n"
573                         "  slot\t%d\n"
574                         "  opt\t%08x\n"
575                         "  src\t%08x\n"
576                         "  dst\t%08x\n"
577                         "  abcnt\t%08x\n"
578                         "  ccnt\t%08x\n"
579                         "  bidx\t%08x\n"
580                         "  cidx\t%08x\n"
581                         "  lkrld\t%08x\n",
582                         i, echan->ch_num, echan->slot[i],
583                         edesc->pset[i].opt,
584                         edesc->pset[i].src,
585                         edesc->pset[i].dst,
586                         edesc->pset[i].a_b_cnt,
587                         edesc->pset[i].ccnt,
588                         edesc->pset[i].src_dst_bidx,
589                         edesc->pset[i].src_dst_cidx,
590                         edesc->pset[i].link_bcntrld);
591
592                 edesc->absync = ret;
593
594                 /*
595                  * Enable interrupts for every period because callback
596                  * has to be called for every period.
597                  */
598                 edesc->pset[i].opt |= TCINTEN;
599         }
600
601         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
602 }
603
604 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
605 {
606         struct edma_chan *echan = data;
607         struct device *dev = echan->vchan.chan.device->dev;
608         struct edma_desc *edesc;
609         unsigned long flags;
610         struct edmacc_param p;
611
612         edesc = echan->edesc;
613
614         /* Pause the channel for non-cyclic */
615         if (!edesc || (edesc && !edesc->cyclic))
616                 edma_pause(echan->ch_num);
617
618         switch (ch_status) {
619         case EDMA_DMA_COMPLETE:
620                 spin_lock_irqsave(&echan->vchan.lock, flags);
621
622                 if (edesc) {
623                         if (edesc->cyclic) {
624                                 vchan_cyclic_callback(&edesc->vdesc);
625                         } else if (edesc->processed == edesc->pset_nr) {
626                                 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
627                                 edma_stop(echan->ch_num);
628                                 vchan_cookie_complete(&edesc->vdesc);
629                                 edma_execute(echan);
630                         } else {
631                                 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
632                                 edma_execute(echan);
633                         }
634                 }
635
636                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
637
638                 break;
639         case EDMA_DMA_CC_ERROR:
640                 spin_lock_irqsave(&echan->vchan.lock, flags);
641
642                 edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
643
644                 /*
645                  * Issue later based on missed flag which will be sure
646                  * to happen as:
647                  * (1) we finished transmitting an intermediate slot and
648                  *     edma_execute is coming up.
649                  * (2) or we finished current transfer and issue will
650                  *     call edma_execute.
651                  *
652                  * Important note: issuing can be dangerous here and
653                  * lead to some nasty recursion when we are in a NULL
654                  * slot. So we avoid doing so and set the missed flag.
655                  */
656                 if (p.a_b_cnt == 0 && p.ccnt == 0) {
657                         dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
658                         echan->missed = 1;
659                 } else {
660                         /*
661                          * The slot is already programmed but the event got
662                          * missed, so its safe to issue it here.
663                          */
664                         dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
665                         edma_clean_channel(echan->ch_num);
666                         edma_stop(echan->ch_num);
667                         edma_start(echan->ch_num);
668                         edma_trigger_channel(echan->ch_num);
669                 }
670
671                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
672
673                 break;
674         default:
675                 break;
676         }
677 }
678
679 /* Alloc channel resources */
680 static int edma_alloc_chan_resources(struct dma_chan *chan)
681 {
682         struct edma_chan *echan = to_edma_chan(chan);
683         struct device *dev = chan->device->dev;
684         int ret;
685         int a_ch_num;
686         LIST_HEAD(descs);
687
688         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
689                                         chan, EVENTQ_DEFAULT);
690
691         if (a_ch_num < 0) {
692                 ret = -ENODEV;
693                 goto err_no_chan;
694         }
695
696         if (a_ch_num != echan->ch_num) {
697                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
698                         EDMA_CTLR(echan->ch_num),
699                         EDMA_CHAN_SLOT(echan->ch_num));
700                 ret = -ENODEV;
701                 goto err_wrong_chan;
702         }
703
704         echan->alloced = true;
705         echan->slot[0] = echan->ch_num;
706
707         dev_dbg(dev, "allocated channel for %u:%u\n",
708                 EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
709
710         return 0;
711
712 err_wrong_chan:
713         edma_free_channel(a_ch_num);
714 err_no_chan:
715         return ret;
716 }
717
718 /* Free channel resources */
719 static void edma_free_chan_resources(struct dma_chan *chan)
720 {
721         struct edma_chan *echan = to_edma_chan(chan);
722         struct device *dev = chan->device->dev;
723         int i;
724
725         /* Terminate transfers */
726         edma_stop(echan->ch_num);
727
728         vchan_free_chan_resources(&echan->vchan);
729
730         /* Free EDMA PaRAM slots */
731         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
732                 if (echan->slot[i] >= 0) {
733                         edma_free_slot(echan->slot[i]);
734                         echan->slot[i] = -1;
735                 }
736         }
737
738         /* Free EDMA channel */
739         if (echan->alloced) {
740                 edma_free_channel(echan->ch_num);
741                 echan->alloced = false;
742         }
743
744         dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
745 }
746
747 /* Send pending descriptor to hardware */
748 static void edma_issue_pending(struct dma_chan *chan)
749 {
750         struct edma_chan *echan = to_edma_chan(chan);
751         unsigned long flags;
752
753         spin_lock_irqsave(&echan->vchan.lock, flags);
754         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
755                 edma_execute(echan);
756         spin_unlock_irqrestore(&echan->vchan.lock, flags);
757 }
758
759 static size_t edma_desc_size(struct edma_desc *edesc)
760 {
761         int i;
762         size_t size;
763
764         if (edesc->absync)
765                 for (size = i = 0; i < edesc->pset_nr; i++)
766                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
767                                 (edesc->pset[i].a_b_cnt >> 16) *
768                                  edesc->pset[i].ccnt;
769         else
770                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
771                         (edesc->pset[0].a_b_cnt >> 16) +
772                         (edesc->pset[0].a_b_cnt & 0xffff) *
773                         (SZ_64K - 1) * edesc->pset[0].ccnt;
774
775         return size;
776 }
777
778 /* Check request completion status */
779 static enum dma_status edma_tx_status(struct dma_chan *chan,
780                                       dma_cookie_t cookie,
781                                       struct dma_tx_state *txstate)
782 {
783         struct edma_chan *echan = to_edma_chan(chan);
784         struct virt_dma_desc *vdesc;
785         enum dma_status ret;
786         unsigned long flags;
787
788         ret = dma_cookie_status(chan, cookie, txstate);
789         if (ret == DMA_COMPLETE || !txstate)
790                 return ret;
791
792         spin_lock_irqsave(&echan->vchan.lock, flags);
793         vdesc = vchan_find_desc(&echan->vchan, cookie);
794         if (vdesc) {
795                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
796         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
797                 struct edma_desc *edesc = echan->edesc;
798                 txstate->residue = edma_desc_size(edesc);
799         }
800         spin_unlock_irqrestore(&echan->vchan.lock, flags);
801
802         return ret;
803 }
804
805 static void __init edma_chan_init(struct edma_cc *ecc,
806                                   struct dma_device *dma,
807                                   struct edma_chan *echans)
808 {
809         int i, j;
810
811         for (i = 0; i < EDMA_CHANS; i++) {
812                 struct edma_chan *echan = &echans[i];
813                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
814                 echan->ecc = ecc;
815                 echan->vchan.desc_free = edma_desc_free;
816
817                 vchan_init(&echan->vchan, dma);
818
819                 INIT_LIST_HEAD(&echan->node);
820                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
821                         echan->slot[j] = -1;
822         }
823 }
824
825 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
826                           struct device *dev)
827 {
828         dma->device_prep_slave_sg = edma_prep_slave_sg;
829         dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
830         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
831         dma->device_free_chan_resources = edma_free_chan_resources;
832         dma->device_issue_pending = edma_issue_pending;
833         dma->device_tx_status = edma_tx_status;
834         dma->device_control = edma_control;
835         dma->dev = dev;
836
837         INIT_LIST_HEAD(&dma->channels);
838 }
839
840 static int edma_probe(struct platform_device *pdev)
841 {
842         struct edma_cc *ecc;
843         int ret;
844
845         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
846         if (ret)
847                 return ret;
848
849         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
850         if (!ecc) {
851                 dev_err(&pdev->dev, "Can't allocate controller\n");
852                 return -ENOMEM;
853         }
854
855         ecc->ctlr = pdev->id;
856         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
857         if (ecc->dummy_slot < 0) {
858                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
859                 return -EIO;
860         }
861
862         dma_cap_zero(ecc->dma_slave.cap_mask);
863         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
864
865         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
866
867         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
868
869         ret = dma_async_device_register(&ecc->dma_slave);
870         if (ret)
871                 goto err_reg1;
872
873         platform_set_drvdata(pdev, ecc);
874
875         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
876
877         return 0;
878
879 err_reg1:
880         edma_free_slot(ecc->dummy_slot);
881         return ret;
882 }
883
884 static int edma_remove(struct platform_device *pdev)
885 {
886         struct device *dev = &pdev->dev;
887         struct edma_cc *ecc = dev_get_drvdata(dev);
888
889         dma_async_device_unregister(&ecc->dma_slave);
890         edma_free_slot(ecc->dummy_slot);
891
892         return 0;
893 }
894
895 static struct platform_driver edma_driver = {
896         .probe          = edma_probe,
897         .remove         = edma_remove,
898         .driver = {
899                 .name = "edma-dma-engine",
900                 .owner = THIS_MODULE,
901         },
902 };
903
904 bool edma_filter_fn(struct dma_chan *chan, void *param)
905 {
906         if (chan->device->dev->driver == &edma_driver.driver) {
907                 struct edma_chan *echan = to_edma_chan(chan);
908                 unsigned ch_req = *(unsigned *)param;
909                 return ch_req == echan->ch_num;
910         }
911         return false;
912 }
913 EXPORT_SYMBOL(edma_filter_fn);
914
915 static struct platform_device *pdev0, *pdev1;
916
917 static const struct platform_device_info edma_dev_info0 = {
918         .name = "edma-dma-engine",
919         .id = 0,
920         .dma_mask = DMA_BIT_MASK(32),
921 };
922
923 static const struct platform_device_info edma_dev_info1 = {
924         .name = "edma-dma-engine",
925         .id = 1,
926         .dma_mask = DMA_BIT_MASK(32),
927 };
928
929 static int edma_init(void)
930 {
931         int ret = platform_driver_register(&edma_driver);
932
933         if (ret == 0) {
934                 pdev0 = platform_device_register_full(&edma_dev_info0);
935                 if (IS_ERR(pdev0)) {
936                         platform_driver_unregister(&edma_driver);
937                         ret = PTR_ERR(pdev0);
938                         goto out;
939                 }
940         }
941
942         if (EDMA_CTLRS == 2) {
943                 pdev1 = platform_device_register_full(&edma_dev_info1);
944                 if (IS_ERR(pdev1)) {
945                         platform_driver_unregister(&edma_driver);
946                         platform_device_unregister(pdev0);
947                         ret = PTR_ERR(pdev1);
948                 }
949         }
950
951 out:
952         return ret;
953 }
954 subsys_initcall(edma_init);
955
956 static void __exit edma_exit(void)
957 {
958         platform_device_unregister(pdev0);
959         if (pdev1)
960                 platform_device_unregister(pdev1);
961         platform_driver_unregister(&edma_driver);
962 }
963 module_exit(edma_exit);
964
965 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
966 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
967 MODULE_LICENSE("GPL v2");