Merge remote-tracking branches 'regulator/fix/as3722', 'regulator/fix/ltc3589' and...
[cascardo/linux.git] / drivers / dma / fsldma.c
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...)                                     \
44         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)                                     \
46         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51  * Register Helpers
52  */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56         DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61         return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66         DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71         return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76         DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81         return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86         DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91         return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93
94 /*
95  * Descriptor Helpers
96  */
97
98 static void set_desc_cnt(struct fsldma_chan *chan,
99                                 struct fsl_dma_ld_hw *hw, u32 count)
100 {
101         hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103
104 static void set_desc_src(struct fsldma_chan *chan,
105                          struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107         u64 snoop_bits;
108
109         snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110                 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111         hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113
114 static void set_desc_dst(struct fsldma_chan *chan,
115                          struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117         u64 snoop_bits;
118
119         snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120                 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121         hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123
124 static void set_desc_next(struct fsldma_chan *chan,
125                           struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127         u64 snoop_bits;
128
129         snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130                 ? FSL_DMA_SNEN : 0;
131         hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136         u64 snoop_bits;
137
138         snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139                 ? FSL_DMA_SNEN : 0;
140
141         desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142                 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143                         | snoop_bits, 64);
144 }
145
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149
150 static void dma_init(struct fsldma_chan *chan)
151 {
152         /* Reset the channel */
153         set_mr(chan, 0);
154
155         switch (chan->feature & FSL_DMA_IP_MASK) {
156         case FSL_DMA_IP_85XX:
157                 /* Set the channel to below modes:
158                  * EIE - Error interrupt enable
159                  * EOLNIE - End of links interrupt enable
160                  * BWC - Bandwidth sharing among channels
161                  */
162                 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163                         | FSL_DMA_MR_EOLNIE);
164                 break;
165         case FSL_DMA_IP_83XX:
166                 /* Set the channel to below modes:
167                  * EOTIE - End-of-transfer interrupt enable
168                  * PRC_RM - PCI read multiple
169                  */
170                 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171                 break;
172         }
173 }
174
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177         u32 sr = get_sr(chan);
178         return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190         u32 mode;
191
192         mode = get_mr(chan);
193
194         if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195                 set_bcr(chan, 0);
196                 mode |= FSL_DMA_MR_EMP_EN;
197         } else {
198                 mode &= ~FSL_DMA_MR_EMP_EN;
199         }
200
201         if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202                 mode |= FSL_DMA_MR_EMS_EN;
203         } else {
204                 mode &= ~FSL_DMA_MR_EMS_EN;
205                 mode |= FSL_DMA_MR_CS;
206         }
207
208         set_mr(chan, mode);
209 }
210
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213         u32 mode;
214         int i;
215
216         /* read the mode register */
217         mode = get_mr(chan);
218
219         /*
220          * The 85xx controller supports channel abort, which will stop
221          * the current transfer. On 83xx, this bit is the transfer error
222          * mask bit, which should not be changed.
223          */
224         if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225                 mode |= FSL_DMA_MR_CA;
226                 set_mr(chan, mode);
227
228                 mode &= ~FSL_DMA_MR_CA;
229         }
230
231         /* stop the DMA controller */
232         mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233         set_mr(chan, mode);
234
235         /* wait for the DMA controller to become idle */
236         for (i = 0; i < 100; i++) {
237                 if (dma_is_idle(chan))
238                         return;
239
240                 udelay(10);
241         }
242
243         if (!dma_is_idle(chan))
244                 chan_err(chan, "DMA halt timeout!\n");
245 }
246
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260         u32 mode;
261
262         mode = get_mr(chan);
263
264         switch (size) {
265         case 0:
266                 mode &= ~FSL_DMA_MR_SAHE;
267                 break;
268         case 1:
269         case 2:
270         case 4:
271         case 8:
272                 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273                 break;
274         }
275
276         set_mr(chan, mode);
277 }
278
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292         u32 mode;
293
294         mode = get_mr(chan);
295
296         switch (size) {
297         case 0:
298                 mode &= ~FSL_DMA_MR_DAHE;
299                 break;
300         case 1:
301         case 2:
302         case 4:
303         case 8:
304                 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305                 break;
306         }
307
308         set_mr(chan, mode);
309 }
310
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325         u32 mode;
326
327         BUG_ON(size > 1024);
328
329         mode = get_mr(chan);
330         mode |= (__ilog2(size) << 24) & 0x0f000000;
331
332         set_mr(chan, mode);
333 }
334
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346         if (enable)
347                 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348         else
349                 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364         if (enable)
365                 chan->feature |= FSL_DMA_CHAN_START_EXT;
366         else
367                 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369
370 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
371 {
372         struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
373
374         if (list_empty(&chan->ld_pending))
375                 goto out_splice;
376
377         /*
378          * Add the hardware descriptor to the chain of hardware descriptors
379          * that already exists in memory.
380          *
381          * This will un-set the EOL bit of the existing transaction, and the
382          * last link in this transaction will become the EOL descriptor.
383          */
384         set_desc_next(chan, &tail->hw, desc->async_tx.phys);
385
386         /*
387          * Add the software descriptor and all children to the list
388          * of pending transactions
389          */
390 out_splice:
391         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
392 }
393
394 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
395 {
396         struct fsldma_chan *chan = to_fsl_chan(tx->chan);
397         struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
398         struct fsl_desc_sw *child;
399         unsigned long flags;
400         dma_cookie_t cookie = -EINVAL;
401
402         spin_lock_irqsave(&chan->desc_lock, flags);
403
404         /*
405          * assign cookies to all of the software descriptors
406          * that make up this transaction
407          */
408         list_for_each_entry(child, &desc->tx_list, node) {
409                 cookie = dma_cookie_assign(&child->async_tx);
410         }
411
412         /* put this transaction onto the tail of the pending queue */
413         append_ld_queue(chan, desc);
414
415         spin_unlock_irqrestore(&chan->desc_lock, flags);
416
417         return cookie;
418 }
419
420 /**
421  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
422  * @chan : Freescale DMA channel
423  * @desc: descriptor to be freed
424  */
425 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
426                 struct fsl_desc_sw *desc)
427 {
428         list_del(&desc->node);
429         chan_dbg(chan, "LD %p free\n", desc);
430         dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
431 }
432
433 /**
434  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
435  * @chan : Freescale DMA channel
436  *
437  * Return - The descriptor allocated. NULL for failed.
438  */
439 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
440 {
441         struct fsl_desc_sw *desc;
442         dma_addr_t pdesc;
443
444         desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
445         if (!desc) {
446                 chan_dbg(chan, "out of memory for link descriptor\n");
447                 return NULL;
448         }
449
450         memset(desc, 0, sizeof(*desc));
451         INIT_LIST_HEAD(&desc->tx_list);
452         dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
453         desc->async_tx.tx_submit = fsl_dma_tx_submit;
454         desc->async_tx.phys = pdesc;
455
456         chan_dbg(chan, "LD %p allocated\n", desc);
457
458         return desc;
459 }
460
461 /**
462  * fsl_chan_xfer_ld_queue - transfer any pending transactions
463  * @chan : Freescale DMA channel
464  *
465  * HARDWARE STATE: idle
466  * LOCKING: must hold chan->desc_lock
467  */
468 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
469 {
470         struct fsl_desc_sw *desc;
471
472         /*
473          * If the list of pending descriptors is empty, then we
474          * don't need to do any work at all
475          */
476         if (list_empty(&chan->ld_pending)) {
477                 chan_dbg(chan, "no pending LDs\n");
478                 return;
479         }
480
481         /*
482          * The DMA controller is not idle, which means that the interrupt
483          * handler will start any queued transactions when it runs after
484          * this transaction finishes
485          */
486         if (!chan->idle) {
487                 chan_dbg(chan, "DMA controller still busy\n");
488                 return;
489         }
490
491         /*
492          * If there are some link descriptors which have not been
493          * transferred, we need to start the controller
494          */
495
496         /*
497          * Move all elements from the queue of pending transactions
498          * onto the list of running transactions
499          */
500         chan_dbg(chan, "idle, starting controller\n");
501         desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
502         list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
503
504         /*
505          * The 85xx DMA controller doesn't clear the channel start bit
506          * automatically at the end of a transfer. Therefore we must clear
507          * it in software before starting the transfer.
508          */
509         if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
510                 u32 mode;
511
512                 mode = get_mr(chan);
513                 mode &= ~FSL_DMA_MR_CS;
514                 set_mr(chan, mode);
515         }
516
517         /*
518          * Program the descriptor's address into the DMA controller,
519          * then start the DMA transaction
520          */
521         set_cdar(chan, desc->async_tx.phys);
522         get_cdar(chan);
523
524         dma_start(chan);
525         chan->idle = false;
526 }
527
528 /**
529  * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
530  * @chan: Freescale DMA channel
531  * @desc: descriptor to cleanup and free
532  *
533  * This function is used on a descriptor which has been executed by the DMA
534  * controller. It will run any callbacks, submit any dependencies, and then
535  * free the descriptor.
536  */
537 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
538                                       struct fsl_desc_sw *desc)
539 {
540         struct dma_async_tx_descriptor *txd = &desc->async_tx;
541
542         /* Run the link descriptor callback function */
543         if (txd->callback) {
544                 chan_dbg(chan, "LD %p callback\n", desc);
545                 txd->callback(txd->callback_param);
546         }
547
548         /* Run any dependencies */
549         dma_run_dependencies(txd);
550
551         dma_descriptor_unmap(txd);
552         chan_dbg(chan, "LD %p free\n", desc);
553         dma_pool_free(chan->desc_pool, desc, txd->phys);
554 }
555
556 /**
557  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
558  * @chan : Freescale DMA channel
559  *
560  * This function will create a dma pool for descriptor allocation.
561  *
562  * Return - The number of descriptors allocated.
563  */
564 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
565 {
566         struct fsldma_chan *chan = to_fsl_chan(dchan);
567
568         /* Has this channel already been allocated? */
569         if (chan->desc_pool)
570                 return 1;
571
572         /*
573          * We need the descriptor to be aligned to 32bytes
574          * for meeting FSL DMA specification requirement.
575          */
576         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
577                                           sizeof(struct fsl_desc_sw),
578                                           __alignof__(struct fsl_desc_sw), 0);
579         if (!chan->desc_pool) {
580                 chan_err(chan, "unable to allocate descriptor pool\n");
581                 return -ENOMEM;
582         }
583
584         /* there is at least one descriptor free to be allocated */
585         return 1;
586 }
587
588 /**
589  * fsldma_free_desc_list - Free all descriptors in a queue
590  * @chan: Freescae DMA channel
591  * @list: the list to free
592  *
593  * LOCKING: must hold chan->desc_lock
594  */
595 static void fsldma_free_desc_list(struct fsldma_chan *chan,
596                                   struct list_head *list)
597 {
598         struct fsl_desc_sw *desc, *_desc;
599
600         list_for_each_entry_safe(desc, _desc, list, node)
601                 fsl_dma_free_descriptor(chan, desc);
602 }
603
604 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
605                                           struct list_head *list)
606 {
607         struct fsl_desc_sw *desc, *_desc;
608
609         list_for_each_entry_safe_reverse(desc, _desc, list, node)
610                 fsl_dma_free_descriptor(chan, desc);
611 }
612
613 /**
614  * fsl_dma_free_chan_resources - Free all resources of the channel.
615  * @chan : Freescale DMA channel
616  */
617 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
618 {
619         struct fsldma_chan *chan = to_fsl_chan(dchan);
620         unsigned long flags;
621
622         chan_dbg(chan, "free all channel resources\n");
623         spin_lock_irqsave(&chan->desc_lock, flags);
624         fsldma_free_desc_list(chan, &chan->ld_pending);
625         fsldma_free_desc_list(chan, &chan->ld_running);
626         spin_unlock_irqrestore(&chan->desc_lock, flags);
627
628         dma_pool_destroy(chan->desc_pool);
629         chan->desc_pool = NULL;
630 }
631
632 static struct dma_async_tx_descriptor *
633 fsl_dma_prep_memcpy(struct dma_chan *dchan,
634         dma_addr_t dma_dst, dma_addr_t dma_src,
635         size_t len, unsigned long flags)
636 {
637         struct fsldma_chan *chan;
638         struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
639         size_t copy;
640
641         if (!dchan)
642                 return NULL;
643
644         if (!len)
645                 return NULL;
646
647         chan = to_fsl_chan(dchan);
648
649         do {
650
651                 /* Allocate the link descriptor from DMA pool */
652                 new = fsl_dma_alloc_descriptor(chan);
653                 if (!new) {
654                         chan_err(chan, "%s\n", msg_ld_oom);
655                         goto fail;
656                 }
657
658                 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
659
660                 set_desc_cnt(chan, &new->hw, copy);
661                 set_desc_src(chan, &new->hw, dma_src);
662                 set_desc_dst(chan, &new->hw, dma_dst);
663
664                 if (!first)
665                         first = new;
666                 else
667                         set_desc_next(chan, &prev->hw, new->async_tx.phys);
668
669                 new->async_tx.cookie = 0;
670                 async_tx_ack(&new->async_tx);
671
672                 prev = new;
673                 len -= copy;
674                 dma_src += copy;
675                 dma_dst += copy;
676
677                 /* Insert the link descriptor to the LD ring */
678                 list_add_tail(&new->node, &first->tx_list);
679         } while (len);
680
681         new->async_tx.flags = flags; /* client is in control of this ack */
682         new->async_tx.cookie = -EBUSY;
683
684         /* Set End-of-link to the last link descriptor of new list */
685         set_ld_eol(chan, new);
686
687         return &first->async_tx;
688
689 fail:
690         if (!first)
691                 return NULL;
692
693         fsldma_free_desc_list_reverse(chan, &first->tx_list);
694         return NULL;
695 }
696
697 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
698         struct scatterlist *dst_sg, unsigned int dst_nents,
699         struct scatterlist *src_sg, unsigned int src_nents,
700         unsigned long flags)
701 {
702         struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
703         struct fsldma_chan *chan = to_fsl_chan(dchan);
704         size_t dst_avail, src_avail;
705         dma_addr_t dst, src;
706         size_t len;
707
708         /* basic sanity checks */
709         if (dst_nents == 0 || src_nents == 0)
710                 return NULL;
711
712         if (dst_sg == NULL || src_sg == NULL)
713                 return NULL;
714
715         /*
716          * TODO: should we check that both scatterlists have the same
717          * TODO: number of bytes in total? Is that really an error?
718          */
719
720         /* get prepared for the loop */
721         dst_avail = sg_dma_len(dst_sg);
722         src_avail = sg_dma_len(src_sg);
723
724         /* run until we are out of scatterlist entries */
725         while (true) {
726
727                 /* create the largest transaction possible */
728                 len = min_t(size_t, src_avail, dst_avail);
729                 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
730                 if (len == 0)
731                         goto fetch;
732
733                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
734                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
735
736                 /* allocate and populate the descriptor */
737                 new = fsl_dma_alloc_descriptor(chan);
738                 if (!new) {
739                         chan_err(chan, "%s\n", msg_ld_oom);
740                         goto fail;
741                 }
742
743                 set_desc_cnt(chan, &new->hw, len);
744                 set_desc_src(chan, &new->hw, src);
745                 set_desc_dst(chan, &new->hw, dst);
746
747                 if (!first)
748                         first = new;
749                 else
750                         set_desc_next(chan, &prev->hw, new->async_tx.phys);
751
752                 new->async_tx.cookie = 0;
753                 async_tx_ack(&new->async_tx);
754                 prev = new;
755
756                 /* Insert the link descriptor to the LD ring */
757                 list_add_tail(&new->node, &first->tx_list);
758
759                 /* update metadata */
760                 dst_avail -= len;
761                 src_avail -= len;
762
763 fetch:
764                 /* fetch the next dst scatterlist entry */
765                 if (dst_avail == 0) {
766
767                         /* no more entries: we're done */
768                         if (dst_nents == 0)
769                                 break;
770
771                         /* fetch the next entry: if there are no more: done */
772                         dst_sg = sg_next(dst_sg);
773                         if (dst_sg == NULL)
774                                 break;
775
776                         dst_nents--;
777                         dst_avail = sg_dma_len(dst_sg);
778                 }
779
780                 /* fetch the next src scatterlist entry */
781                 if (src_avail == 0) {
782
783                         /* no more entries: we're done */
784                         if (src_nents == 0)
785                                 break;
786
787                         /* fetch the next entry: if there are no more: done */
788                         src_sg = sg_next(src_sg);
789                         if (src_sg == NULL)
790                                 break;
791
792                         src_nents--;
793                         src_avail = sg_dma_len(src_sg);
794                 }
795         }
796
797         new->async_tx.flags = flags; /* client is in control of this ack */
798         new->async_tx.cookie = -EBUSY;
799
800         /* Set End-of-link to the last link descriptor of new list */
801         set_ld_eol(chan, new);
802
803         return &first->async_tx;
804
805 fail:
806         if (!first)
807                 return NULL;
808
809         fsldma_free_desc_list_reverse(chan, &first->tx_list);
810         return NULL;
811 }
812
813 /**
814  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
815  * @chan: DMA channel
816  * @sgl: scatterlist to transfer to/from
817  * @sg_len: number of entries in @scatterlist
818  * @direction: DMA direction
819  * @flags: DMAEngine flags
820  * @context: transaction context (ignored)
821  *
822  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
823  * DMA_SLAVE API, this gets the device-specific information from the
824  * chan->private variable.
825  */
826 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
827         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
828         enum dma_transfer_direction direction, unsigned long flags,
829         void *context)
830 {
831         /*
832          * This operation is not supported on the Freescale DMA controller
833          *
834          * However, we need to provide the function pointer to allow the
835          * device_control() method to work.
836          */
837         return NULL;
838 }
839
840 static int fsl_dma_device_control(struct dma_chan *dchan,
841                                   enum dma_ctrl_cmd cmd, unsigned long arg)
842 {
843         struct dma_slave_config *config;
844         struct fsldma_chan *chan;
845         unsigned long flags;
846         int size;
847
848         if (!dchan)
849                 return -EINVAL;
850
851         chan = to_fsl_chan(dchan);
852
853         switch (cmd) {
854         case DMA_TERMINATE_ALL:
855                 spin_lock_irqsave(&chan->desc_lock, flags);
856
857                 /* Halt the DMA engine */
858                 dma_halt(chan);
859
860                 /* Remove and free all of the descriptors in the LD queue */
861                 fsldma_free_desc_list(chan, &chan->ld_pending);
862                 fsldma_free_desc_list(chan, &chan->ld_running);
863                 chan->idle = true;
864
865                 spin_unlock_irqrestore(&chan->desc_lock, flags);
866                 return 0;
867
868         case DMA_SLAVE_CONFIG:
869                 config = (struct dma_slave_config *)arg;
870
871                 /* make sure the channel supports setting burst size */
872                 if (!chan->set_request_count)
873                         return -ENXIO;
874
875                 /* we set the controller burst size depending on direction */
876                 if (config->direction == DMA_MEM_TO_DEV)
877                         size = config->dst_addr_width * config->dst_maxburst;
878                 else
879                         size = config->src_addr_width * config->src_maxburst;
880
881                 chan->set_request_count(chan, size);
882                 return 0;
883
884         case FSLDMA_EXTERNAL_START:
885
886                 /* make sure the channel supports external start */
887                 if (!chan->toggle_ext_start)
888                         return -ENXIO;
889
890                 chan->toggle_ext_start(chan, arg);
891                 return 0;
892
893         default:
894                 return -ENXIO;
895         }
896
897         return 0;
898 }
899
900 /**
901  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
902  * @chan : Freescale DMA channel
903  */
904 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
905 {
906         struct fsldma_chan *chan = to_fsl_chan(dchan);
907         unsigned long flags;
908
909         spin_lock_irqsave(&chan->desc_lock, flags);
910         fsl_chan_xfer_ld_queue(chan);
911         spin_unlock_irqrestore(&chan->desc_lock, flags);
912 }
913
914 /**
915  * fsl_tx_status - Determine the DMA status
916  * @chan : Freescale DMA channel
917  */
918 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
919                                         dma_cookie_t cookie,
920                                         struct dma_tx_state *txstate)
921 {
922         return dma_cookie_status(dchan, cookie, txstate);
923 }
924
925 /*----------------------------------------------------------------------------*/
926 /* Interrupt Handling                                                         */
927 /*----------------------------------------------------------------------------*/
928
929 static irqreturn_t fsldma_chan_irq(int irq, void *data)
930 {
931         struct fsldma_chan *chan = data;
932         u32 stat;
933
934         /* save and clear the status register */
935         stat = get_sr(chan);
936         set_sr(chan, stat);
937         chan_dbg(chan, "irq: stat = 0x%x\n", stat);
938
939         /* check that this was really our device */
940         stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
941         if (!stat)
942                 return IRQ_NONE;
943
944         if (stat & FSL_DMA_SR_TE)
945                 chan_err(chan, "Transfer Error!\n");
946
947         /*
948          * Programming Error
949          * The DMA_INTERRUPT async_tx is a NULL transfer, which will
950          * trigger a PE interrupt.
951          */
952         if (stat & FSL_DMA_SR_PE) {
953                 chan_dbg(chan, "irq: Programming Error INT\n");
954                 stat &= ~FSL_DMA_SR_PE;
955                 if (get_bcr(chan) != 0)
956                         chan_err(chan, "Programming Error!\n");
957         }
958
959         /*
960          * For MPC8349, EOCDI event need to update cookie
961          * and start the next transfer if it exist.
962          */
963         if (stat & FSL_DMA_SR_EOCDI) {
964                 chan_dbg(chan, "irq: End-of-Chain link INT\n");
965                 stat &= ~FSL_DMA_SR_EOCDI;
966         }
967
968         /*
969          * If it current transfer is the end-of-transfer,
970          * we should clear the Channel Start bit for
971          * prepare next transfer.
972          */
973         if (stat & FSL_DMA_SR_EOLNI) {
974                 chan_dbg(chan, "irq: End-of-link INT\n");
975                 stat &= ~FSL_DMA_SR_EOLNI;
976         }
977
978         /* check that the DMA controller is really idle */
979         if (!dma_is_idle(chan))
980                 chan_err(chan, "irq: controller not idle!\n");
981
982         /* check that we handled all of the bits */
983         if (stat)
984                 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
985
986         /*
987          * Schedule the tasklet to handle all cleanup of the current
988          * transaction. It will start a new transaction if there is
989          * one pending.
990          */
991         tasklet_schedule(&chan->tasklet);
992         chan_dbg(chan, "irq: Exit\n");
993         return IRQ_HANDLED;
994 }
995
996 static void dma_do_tasklet(unsigned long data)
997 {
998         struct fsldma_chan *chan = (struct fsldma_chan *)data;
999         struct fsl_desc_sw *desc, *_desc;
1000         LIST_HEAD(ld_cleanup);
1001         unsigned long flags;
1002
1003         chan_dbg(chan, "tasklet entry\n");
1004
1005         spin_lock_irqsave(&chan->desc_lock, flags);
1006
1007         /* update the cookie if we have some descriptors to cleanup */
1008         if (!list_empty(&chan->ld_running)) {
1009                 dma_cookie_t cookie;
1010
1011                 desc = to_fsl_desc(chan->ld_running.prev);
1012                 cookie = desc->async_tx.cookie;
1013                 dma_cookie_complete(&desc->async_tx);
1014
1015                 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1016         }
1017
1018         /*
1019          * move the descriptors to a temporary list so we can drop the lock
1020          * during the entire cleanup operation
1021          */
1022         list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1023
1024         /* the hardware is now idle and ready for more */
1025         chan->idle = true;
1026
1027         /*
1028          * Start any pending transactions automatically
1029          *
1030          * In the ideal case, we keep the DMA controller busy while we go
1031          * ahead and free the descriptors below.
1032          */
1033         fsl_chan_xfer_ld_queue(chan);
1034         spin_unlock_irqrestore(&chan->desc_lock, flags);
1035
1036         /* Run the callback for each descriptor, in order */
1037         list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1038
1039                 /* Remove from the list of transactions */
1040                 list_del(&desc->node);
1041
1042                 /* Run all cleanup for this descriptor */
1043                 fsldma_cleanup_descriptor(chan, desc);
1044         }
1045
1046         chan_dbg(chan, "tasklet exit\n");
1047 }
1048
1049 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1050 {
1051         struct fsldma_device *fdev = data;
1052         struct fsldma_chan *chan;
1053         unsigned int handled = 0;
1054         u32 gsr, mask;
1055         int i;
1056
1057         gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1058                                                    : in_le32(fdev->regs);
1059         mask = 0xff000000;
1060         dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1061
1062         for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1063                 chan = fdev->chan[i];
1064                 if (!chan)
1065                         continue;
1066
1067                 if (gsr & mask) {
1068                         dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1069                         fsldma_chan_irq(irq, chan);
1070                         handled++;
1071                 }
1072
1073                 gsr &= ~mask;
1074                 mask >>= 8;
1075         }
1076
1077         return IRQ_RETVAL(handled);
1078 }
1079
1080 static void fsldma_free_irqs(struct fsldma_device *fdev)
1081 {
1082         struct fsldma_chan *chan;
1083         int i;
1084
1085         if (fdev->irq != NO_IRQ) {
1086                 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1087                 free_irq(fdev->irq, fdev);
1088                 return;
1089         }
1090
1091         for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1092                 chan = fdev->chan[i];
1093                 if (chan && chan->irq != NO_IRQ) {
1094                         chan_dbg(chan, "free per-channel IRQ\n");
1095                         free_irq(chan->irq, chan);
1096                 }
1097         }
1098 }
1099
1100 static int fsldma_request_irqs(struct fsldma_device *fdev)
1101 {
1102         struct fsldma_chan *chan;
1103         int ret;
1104         int i;
1105
1106         /* if we have a per-controller IRQ, use that */
1107         if (fdev->irq != NO_IRQ) {
1108                 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1109                 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1110                                   "fsldma-controller", fdev);
1111                 return ret;
1112         }
1113
1114         /* no per-controller IRQ, use the per-channel IRQs */
1115         for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1116                 chan = fdev->chan[i];
1117                 if (!chan)
1118                         continue;
1119
1120                 if (chan->irq == NO_IRQ) {
1121                         chan_err(chan, "interrupts property missing in device tree\n");
1122                         ret = -ENODEV;
1123                         goto out_unwind;
1124                 }
1125
1126                 chan_dbg(chan, "request per-channel IRQ\n");
1127                 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1128                                   "fsldma-chan", chan);
1129                 if (ret) {
1130                         chan_err(chan, "unable to request per-channel IRQ\n");
1131                         goto out_unwind;
1132                 }
1133         }
1134
1135         return 0;
1136
1137 out_unwind:
1138         for (/* none */; i >= 0; i--) {
1139                 chan = fdev->chan[i];
1140                 if (!chan)
1141                         continue;
1142
1143                 if (chan->irq == NO_IRQ)
1144                         continue;
1145
1146                 free_irq(chan->irq, chan);
1147         }
1148
1149         return ret;
1150 }
1151
1152 /*----------------------------------------------------------------------------*/
1153 /* OpenFirmware Subsystem                                                     */
1154 /*----------------------------------------------------------------------------*/
1155
1156 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1157         struct device_node *node, u32 feature, const char *compatible)
1158 {
1159         struct fsldma_chan *chan;
1160         struct resource res;
1161         int err;
1162
1163         /* alloc channel */
1164         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1165         if (!chan) {
1166                 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1167                 err = -ENOMEM;
1168                 goto out_return;
1169         }
1170
1171         /* ioremap registers for use */
1172         chan->regs = of_iomap(node, 0);
1173         if (!chan->regs) {
1174                 dev_err(fdev->dev, "unable to ioremap registers\n");
1175                 err = -ENOMEM;
1176                 goto out_free_chan;
1177         }
1178
1179         err = of_address_to_resource(node, 0, &res);
1180         if (err) {
1181                 dev_err(fdev->dev, "unable to find 'reg' property\n");
1182                 goto out_iounmap_regs;
1183         }
1184
1185         chan->feature = feature;
1186         if (!fdev->feature)
1187                 fdev->feature = chan->feature;
1188
1189         /*
1190          * If the DMA device's feature is different than the feature
1191          * of its channels, report the bug
1192          */
1193         WARN_ON(fdev->feature != chan->feature);
1194
1195         chan->dev = fdev->dev;
1196         chan->id = (res.start & 0xfff) < 0x300 ?
1197                    ((res.start - 0x100) & 0xfff) >> 7 :
1198                    ((res.start - 0x200) & 0xfff) >> 7;
1199         if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1200                 dev_err(fdev->dev, "too many channels for device\n");
1201                 err = -EINVAL;
1202                 goto out_iounmap_regs;
1203         }
1204
1205         fdev->chan[chan->id] = chan;
1206         tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1207         snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1208
1209         /* Initialize the channel */
1210         dma_init(chan);
1211
1212         /* Clear cdar registers */
1213         set_cdar(chan, 0);
1214
1215         switch (chan->feature & FSL_DMA_IP_MASK) {
1216         case FSL_DMA_IP_85XX:
1217                 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1218         case FSL_DMA_IP_83XX:
1219                 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1220                 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1221                 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1222                 chan->set_request_count = fsl_chan_set_request_count;
1223         }
1224
1225         spin_lock_init(&chan->desc_lock);
1226         INIT_LIST_HEAD(&chan->ld_pending);
1227         INIT_LIST_HEAD(&chan->ld_running);
1228         chan->idle = true;
1229
1230         chan->common.device = &fdev->common;
1231         dma_cookie_init(&chan->common);
1232
1233         /* find the IRQ line, if it exists in the device tree */
1234         chan->irq = irq_of_parse_and_map(node, 0);
1235
1236         /* Add the channel to DMA device channel list */
1237         list_add_tail(&chan->common.device_node, &fdev->common.channels);
1238         fdev->common.chancnt++;
1239
1240         dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1241                  chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1242
1243         return 0;
1244
1245 out_iounmap_regs:
1246         iounmap(chan->regs);
1247 out_free_chan:
1248         kfree(chan);
1249 out_return:
1250         return err;
1251 }
1252
1253 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1254 {
1255         irq_dispose_mapping(chan->irq);
1256         list_del(&chan->common.device_node);
1257         iounmap(chan->regs);
1258         kfree(chan);
1259 }
1260
1261 static int fsldma_of_probe(struct platform_device *op)
1262 {
1263         struct fsldma_device *fdev;
1264         struct device_node *child;
1265         int err;
1266
1267         fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1268         if (!fdev) {
1269                 dev_err(&op->dev, "No enough memory for 'priv'\n");
1270                 err = -ENOMEM;
1271                 goto out_return;
1272         }
1273
1274         fdev->dev = &op->dev;
1275         INIT_LIST_HEAD(&fdev->common.channels);
1276
1277         /* ioremap the registers for use */
1278         fdev->regs = of_iomap(op->dev.of_node, 0);
1279         if (!fdev->regs) {
1280                 dev_err(&op->dev, "unable to ioremap registers\n");
1281                 err = -ENOMEM;
1282                 goto out_free_fdev;
1283         }
1284
1285         /* map the channel IRQ if it exists, but don't hookup the handler yet */
1286         fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1287
1288         dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1289         dma_cap_set(DMA_SG, fdev->common.cap_mask);
1290         dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1291         fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1292         fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1293         fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1294         fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1295         fdev->common.device_tx_status = fsl_tx_status;
1296         fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1297         fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1298         fdev->common.device_control = fsl_dma_device_control;
1299         fdev->common.dev = &op->dev;
1300
1301         dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1302
1303         platform_set_drvdata(op, fdev);
1304
1305         /*
1306          * We cannot use of_platform_bus_probe() because there is no
1307          * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1308          * channel object.
1309          */
1310         for_each_child_of_node(op->dev.of_node, child) {
1311                 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1312                         fsl_dma_chan_probe(fdev, child,
1313                                 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1314                                 "fsl,eloplus-dma-channel");
1315                 }
1316
1317                 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1318                         fsl_dma_chan_probe(fdev, child,
1319                                 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1320                                 "fsl,elo-dma-channel");
1321                 }
1322         }
1323
1324         /*
1325          * Hookup the IRQ handler(s)
1326          *
1327          * If we have a per-controller interrupt, we prefer that to the
1328          * per-channel interrupts to reduce the number of shared interrupt
1329          * handlers on the same IRQ line
1330          */
1331         err = fsldma_request_irqs(fdev);
1332         if (err) {
1333                 dev_err(fdev->dev, "unable to request IRQs\n");
1334                 goto out_free_fdev;
1335         }
1336
1337         dma_async_device_register(&fdev->common);
1338         return 0;
1339
1340 out_free_fdev:
1341         irq_dispose_mapping(fdev->irq);
1342         kfree(fdev);
1343 out_return:
1344         return err;
1345 }
1346
1347 static int fsldma_of_remove(struct platform_device *op)
1348 {
1349         struct fsldma_device *fdev;
1350         unsigned int i;
1351
1352         fdev = platform_get_drvdata(op);
1353         dma_async_device_unregister(&fdev->common);
1354
1355         fsldma_free_irqs(fdev);
1356
1357         for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1358                 if (fdev->chan[i])
1359                         fsl_dma_chan_remove(fdev->chan[i]);
1360         }
1361
1362         iounmap(fdev->regs);
1363         kfree(fdev);
1364
1365         return 0;
1366 }
1367
1368 static const struct of_device_id fsldma_of_ids[] = {
1369         { .compatible = "fsl,elo3-dma", },
1370         { .compatible = "fsl,eloplus-dma", },
1371         { .compatible = "fsl,elo-dma", },
1372         {}
1373 };
1374
1375 static struct platform_driver fsldma_of_driver = {
1376         .driver = {
1377                 .name = "fsl-elo-dma",
1378                 .owner = THIS_MODULE,
1379                 .of_match_table = fsldma_of_ids,
1380         },
1381         .probe = fsldma_of_probe,
1382         .remove = fsldma_of_remove,
1383 };
1384
1385 /*----------------------------------------------------------------------------*/
1386 /* Module Init / Exit                                                         */
1387 /*----------------------------------------------------------------------------*/
1388
1389 static __init int fsldma_init(void)
1390 {
1391         pr_info("Freescale Elo series DMA driver\n");
1392         return platform_driver_register(&fsldma_of_driver);
1393 }
1394
1395 static void __exit fsldma_exit(void)
1396 {
1397         platform_driver_unregister(&fsldma_of_driver);
1398 }
1399
1400 subsys_initcall(fsldma_init);
1401 module_exit(fsldma_exit);
1402
1403 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1404 MODULE_LICENSE("GPL");