ARM: mvebu: update v7 defconfig with useful options
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         unsigned int                    num_bd;
258         unsigned int                    period_len;
259         struct sdma_buffer_descriptor   *bd;
260         dma_addr_t                      bd_phys;
261         unsigned int                    pc_from_device, pc_to_device;
262         unsigned long                   flags;
263         dma_addr_t                      per_address;
264         unsigned long                   event_mask[2];
265         unsigned long                   watermark_level;
266         u32                             shp_addr, per_addr;
267         struct dma_chan                 chan;
268         spinlock_t                      lock;
269         struct dma_async_tx_descriptor  desc;
270         enum dma_status                 status;
271         unsigned int                    chn_count;
272         unsigned int                    chn_real_count;
273         struct tasklet_struct           tasklet;
274         struct imx_dma_data             data;
275 };
276
277 #define IMX_DMA_SG_LOOP         BIT(0)
278
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic               "SDMA"
290  * @version_major       increased whenever layout of struct sdma_script_start_addrs
291  *                      changes.
292  * @version_minor       firmware minor version (for binary compatible changes)
293  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs    Number of script addresses in this image
295  * @ram_code_start      offset of SDMA ram image in this firmware image
296  * @ram_code_size       size of SDMA ram image
297  * @script_addrs        Stores the start address of the SDMA scripts
298  *                      (in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301         u32     magic;
302         u32     version_major;
303         u32     version_minor;
304         u32     script_addrs_start;
305         u32     num_script_addrs;
306         u32     ram_code_start;
307         u32     ram_code_size;
308 };
309
310 struct sdma_driver_data {
311         int chnenbl0;
312         int num_events;
313         struct sdma_script_start_addrs  *script_addrs;
314 };
315
316 struct sdma_engine {
317         struct device                   *dev;
318         struct device_dma_parameters    dma_parms;
319         struct sdma_channel             channel[MAX_DMA_CHANNELS];
320         struct sdma_channel_control     *channel_control;
321         void __iomem                    *regs;
322         struct sdma_context_data        *context;
323         dma_addr_t                      context_phys;
324         struct dma_device               dma_device;
325         struct clk                      *clk_ipg;
326         struct clk                      *clk_ahb;
327         spinlock_t                      channel_0_lock;
328         u32                             script_number;
329         struct sdma_script_start_addrs  *script_addrs;
330         const struct sdma_driver_data   *drvdata;
331 };
332
333 static struct sdma_driver_data sdma_imx31 = {
334         .chnenbl0 = SDMA_CHNENBL0_IMX31,
335         .num_events = 32,
336 };
337
338 static struct sdma_script_start_addrs sdma_script_imx25 = {
339         .ap_2_ap_addr = 729,
340         .uart_2_mcu_addr = 904,
341         .per_2_app_addr = 1255,
342         .mcu_2_app_addr = 834,
343         .uartsh_2_mcu_addr = 1120,
344         .per_2_shp_addr = 1329,
345         .mcu_2_shp_addr = 1048,
346         .ata_2_mcu_addr = 1560,
347         .mcu_2_ata_addr = 1479,
348         .app_2_per_addr = 1189,
349         .app_2_mcu_addr = 770,
350         .shp_2_per_addr = 1407,
351         .shp_2_mcu_addr = 979,
352 };
353
354 static struct sdma_driver_data sdma_imx25 = {
355         .chnenbl0 = SDMA_CHNENBL0_IMX35,
356         .num_events = 48,
357         .script_addrs = &sdma_script_imx25,
358 };
359
360 static struct sdma_driver_data sdma_imx35 = {
361         .chnenbl0 = SDMA_CHNENBL0_IMX35,
362         .num_events = 48,
363 };
364
365 static struct sdma_script_start_addrs sdma_script_imx51 = {
366         .ap_2_ap_addr = 642,
367         .uart_2_mcu_addr = 817,
368         .mcu_2_app_addr = 747,
369         .mcu_2_shp_addr = 961,
370         .ata_2_mcu_addr = 1473,
371         .mcu_2_ata_addr = 1392,
372         .app_2_per_addr = 1033,
373         .app_2_mcu_addr = 683,
374         .shp_2_per_addr = 1251,
375         .shp_2_mcu_addr = 892,
376 };
377
378 static struct sdma_driver_data sdma_imx51 = {
379         .chnenbl0 = SDMA_CHNENBL0_IMX35,
380         .num_events = 48,
381         .script_addrs = &sdma_script_imx51,
382 };
383
384 static struct sdma_script_start_addrs sdma_script_imx53 = {
385         .ap_2_ap_addr = 642,
386         .app_2_mcu_addr = 683,
387         .mcu_2_app_addr = 747,
388         .uart_2_mcu_addr = 817,
389         .shp_2_mcu_addr = 891,
390         .mcu_2_shp_addr = 960,
391         .uartsh_2_mcu_addr = 1032,
392         .spdif_2_mcu_addr = 1100,
393         .mcu_2_spdif_addr = 1134,
394         .firi_2_mcu_addr = 1193,
395         .mcu_2_firi_addr = 1290,
396 };
397
398 static struct sdma_driver_data sdma_imx53 = {
399         .chnenbl0 = SDMA_CHNENBL0_IMX35,
400         .num_events = 48,
401         .script_addrs = &sdma_script_imx53,
402 };
403
404 static struct sdma_script_start_addrs sdma_script_imx6q = {
405         .ap_2_ap_addr = 642,
406         .uart_2_mcu_addr = 817,
407         .mcu_2_app_addr = 747,
408         .per_2_per_addr = 6331,
409         .uartsh_2_mcu_addr = 1032,
410         .mcu_2_shp_addr = 960,
411         .app_2_mcu_addr = 683,
412         .shp_2_mcu_addr = 891,
413         .spdif_2_mcu_addr = 1100,
414         .mcu_2_spdif_addr = 1134,
415 };
416
417 static struct sdma_driver_data sdma_imx6q = {
418         .chnenbl0 = SDMA_CHNENBL0_IMX35,
419         .num_events = 48,
420         .script_addrs = &sdma_script_imx6q,
421 };
422
423 static struct platform_device_id sdma_devtypes[] = {
424         {
425                 .name = "imx25-sdma",
426                 .driver_data = (unsigned long)&sdma_imx25,
427         }, {
428                 .name = "imx31-sdma",
429                 .driver_data = (unsigned long)&sdma_imx31,
430         }, {
431                 .name = "imx35-sdma",
432                 .driver_data = (unsigned long)&sdma_imx35,
433         }, {
434                 .name = "imx51-sdma",
435                 .driver_data = (unsigned long)&sdma_imx51,
436         }, {
437                 .name = "imx53-sdma",
438                 .driver_data = (unsigned long)&sdma_imx53,
439         }, {
440                 .name = "imx6q-sdma",
441                 .driver_data = (unsigned long)&sdma_imx6q,
442         }, {
443                 /* sentinel */
444         }
445 };
446 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
447
448 static const struct of_device_id sdma_dt_ids[] = {
449         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
450         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
451         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
452         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
453         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
454         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
455         { /* sentinel */ }
456 };
457 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
458
459 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
460 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
461 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
462 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
463
464 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
465 {
466         u32 chnenbl0 = sdma->drvdata->chnenbl0;
467         return chnenbl0 + event * 4;
468 }
469
470 static int sdma_config_ownership(struct sdma_channel *sdmac,
471                 bool event_override, bool mcu_override, bool dsp_override)
472 {
473         struct sdma_engine *sdma = sdmac->sdma;
474         int channel = sdmac->channel;
475         unsigned long evt, mcu, dsp;
476
477         if (event_override && mcu_override && dsp_override)
478                 return -EINVAL;
479
480         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
481         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
482         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
483
484         if (dsp_override)
485                 __clear_bit(channel, &dsp);
486         else
487                 __set_bit(channel, &dsp);
488
489         if (event_override)
490                 __clear_bit(channel, &evt);
491         else
492                 __set_bit(channel, &evt);
493
494         if (mcu_override)
495                 __clear_bit(channel, &mcu);
496         else
497                 __set_bit(channel, &mcu);
498
499         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
500         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
501         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
502
503         return 0;
504 }
505
506 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
507 {
508         writel(BIT(channel), sdma->regs + SDMA_H_START);
509 }
510
511 /*
512  * sdma_run_channel0 - run a channel and wait till it's done
513  */
514 static int sdma_run_channel0(struct sdma_engine *sdma)
515 {
516         int ret;
517         unsigned long timeout = 500;
518
519         sdma_enable_channel(sdma, 0);
520
521         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
522                 if (timeout-- <= 0)
523                         break;
524                 udelay(1);
525         }
526
527         if (ret) {
528                 /* Clear the interrupt status */
529                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
530         } else {
531                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
532         }
533
534         return ret ? 0 : -ETIMEDOUT;
535 }
536
537 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
538                 u32 address)
539 {
540         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
541         void *buf_virt;
542         dma_addr_t buf_phys;
543         int ret;
544         unsigned long flags;
545
546         buf_virt = dma_alloc_coherent(NULL,
547                         size,
548                         &buf_phys, GFP_KERNEL);
549         if (!buf_virt) {
550                 return -ENOMEM;
551         }
552
553         spin_lock_irqsave(&sdma->channel_0_lock, flags);
554
555         bd0->mode.command = C0_SETPM;
556         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
557         bd0->mode.count = size / 2;
558         bd0->buffer_addr = buf_phys;
559         bd0->ext_buffer_addr = address;
560
561         memcpy(buf_virt, buf, size);
562
563         ret = sdma_run_channel0(sdma);
564
565         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
566
567         dma_free_coherent(NULL, size, buf_virt, buf_phys);
568
569         return ret;
570 }
571
572 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
573 {
574         struct sdma_engine *sdma = sdmac->sdma;
575         int channel = sdmac->channel;
576         unsigned long val;
577         u32 chnenbl = chnenbl_ofs(sdma, event);
578
579         val = readl_relaxed(sdma->regs + chnenbl);
580         __set_bit(channel, &val);
581         writel_relaxed(val, sdma->regs + chnenbl);
582 }
583
584 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
585 {
586         struct sdma_engine *sdma = sdmac->sdma;
587         int channel = sdmac->channel;
588         u32 chnenbl = chnenbl_ofs(sdma, event);
589         unsigned long val;
590
591         val = readl_relaxed(sdma->regs + chnenbl);
592         __clear_bit(channel, &val);
593         writel_relaxed(val, sdma->regs + chnenbl);
594 }
595
596 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
597 {
598         if (sdmac->desc.callback)
599                 sdmac->desc.callback(sdmac->desc.callback_param);
600 }
601
602 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
603 {
604         struct sdma_buffer_descriptor *bd;
605
606         /*
607          * loop mode. Iterate over descriptors, re-setup them and
608          * call callback function.
609          */
610         while (1) {
611                 bd = &sdmac->bd[sdmac->buf_tail];
612
613                 if (bd->mode.status & BD_DONE)
614                         break;
615
616                 if (bd->mode.status & BD_RROR)
617                         sdmac->status = DMA_ERROR;
618
619                 bd->mode.status |= BD_DONE;
620                 sdmac->buf_tail++;
621                 sdmac->buf_tail %= sdmac->num_bd;
622         }
623 }
624
625 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
626 {
627         struct sdma_buffer_descriptor *bd;
628         int i, error = 0;
629
630         sdmac->chn_real_count = 0;
631         /*
632          * non loop mode. Iterate over all descriptors, collect
633          * errors and call callback function
634          */
635         for (i = 0; i < sdmac->num_bd; i++) {
636                 bd = &sdmac->bd[i];
637
638                  if (bd->mode.status & (BD_DONE | BD_RROR))
639                         error = -EIO;
640                  sdmac->chn_real_count += bd->mode.count;
641         }
642
643         if (error)
644                 sdmac->status = DMA_ERROR;
645         else
646                 sdmac->status = DMA_COMPLETE;
647
648         dma_cookie_complete(&sdmac->desc);
649         if (sdmac->desc.callback)
650                 sdmac->desc.callback(sdmac->desc.callback_param);
651 }
652
653 static void sdma_tasklet(unsigned long data)
654 {
655         struct sdma_channel *sdmac = (struct sdma_channel *) data;
656
657         if (sdmac->flags & IMX_DMA_SG_LOOP)
658                 sdma_handle_channel_loop(sdmac);
659         else
660                 mxc_sdma_handle_channel_normal(sdmac);
661 }
662
663 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
664 {
665         struct sdma_engine *sdma = dev_id;
666         unsigned long stat;
667
668         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
669         /* not interested in channel 0 interrupts */
670         stat &= ~1;
671         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
672
673         while (stat) {
674                 int channel = fls(stat) - 1;
675                 struct sdma_channel *sdmac = &sdma->channel[channel];
676
677                 if (sdmac->flags & IMX_DMA_SG_LOOP)
678                         sdma_update_channel_loop(sdmac);
679
680                 tasklet_schedule(&sdmac->tasklet);
681
682                 __clear_bit(channel, &stat);
683         }
684
685         return IRQ_HANDLED;
686 }
687
688 /*
689  * sets the pc of SDMA script according to the peripheral type
690  */
691 static void sdma_get_pc(struct sdma_channel *sdmac,
692                 enum sdma_peripheral_type peripheral_type)
693 {
694         struct sdma_engine *sdma = sdmac->sdma;
695         int per_2_emi = 0, emi_2_per = 0;
696         /*
697          * These are needed once we start to support transfers between
698          * two peripherals or memory-to-memory transfers
699          */
700         int per_2_per = 0, emi_2_emi = 0;
701
702         sdmac->pc_from_device = 0;
703         sdmac->pc_to_device = 0;
704
705         switch (peripheral_type) {
706         case IMX_DMATYPE_MEMORY:
707                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
708                 break;
709         case IMX_DMATYPE_DSP:
710                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
711                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
712                 break;
713         case IMX_DMATYPE_FIRI:
714                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
715                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
716                 break;
717         case IMX_DMATYPE_UART:
718                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
719                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
720                 break;
721         case IMX_DMATYPE_UART_SP:
722                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
723                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
724                 break;
725         case IMX_DMATYPE_ATA:
726                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
727                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
728                 break;
729         case IMX_DMATYPE_CSPI:
730         case IMX_DMATYPE_EXT:
731         case IMX_DMATYPE_SSI:
732                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
733                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
734                 break;
735         case IMX_DMATYPE_SSI_DUAL:
736                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
737                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
738                 break;
739         case IMX_DMATYPE_SSI_SP:
740         case IMX_DMATYPE_MMC:
741         case IMX_DMATYPE_SDHC:
742         case IMX_DMATYPE_CSPI_SP:
743         case IMX_DMATYPE_ESAI:
744         case IMX_DMATYPE_MSHC_SP:
745                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
746                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
747                 break;
748         case IMX_DMATYPE_ASRC:
749                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
750                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
751                 per_2_per = sdma->script_addrs->per_2_per_addr;
752                 break;
753         case IMX_DMATYPE_ASRC_SP:
754                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
755                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
756                 per_2_per = sdma->script_addrs->per_2_per_addr;
757                 break;
758         case IMX_DMATYPE_MSHC:
759                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
760                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
761                 break;
762         case IMX_DMATYPE_CCM:
763                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
764                 break;
765         case IMX_DMATYPE_SPDIF:
766                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
767                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
768                 break;
769         case IMX_DMATYPE_IPU_MEMORY:
770                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
771                 break;
772         default:
773                 break;
774         }
775
776         sdmac->pc_from_device = per_2_emi;
777         sdmac->pc_to_device = emi_2_per;
778 }
779
780 static int sdma_load_context(struct sdma_channel *sdmac)
781 {
782         struct sdma_engine *sdma = sdmac->sdma;
783         int channel = sdmac->channel;
784         int load_address;
785         struct sdma_context_data *context = sdma->context;
786         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
787         int ret;
788         unsigned long flags;
789
790         if (sdmac->direction == DMA_DEV_TO_MEM) {
791                 load_address = sdmac->pc_from_device;
792         } else {
793                 load_address = sdmac->pc_to_device;
794         }
795
796         if (load_address < 0)
797                 return load_address;
798
799         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
800         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
801         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
802         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
803         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
804         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
805
806         spin_lock_irqsave(&sdma->channel_0_lock, flags);
807
808         memset(context, 0, sizeof(*context));
809         context->channel_state.pc = load_address;
810
811         /* Send by context the event mask,base address for peripheral
812          * and watermark level
813          */
814         context->gReg[0] = sdmac->event_mask[1];
815         context->gReg[1] = sdmac->event_mask[0];
816         context->gReg[2] = sdmac->per_addr;
817         context->gReg[6] = sdmac->shp_addr;
818         context->gReg[7] = sdmac->watermark_level;
819
820         bd0->mode.command = C0_SETDM;
821         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
822         bd0->mode.count = sizeof(*context) / 4;
823         bd0->buffer_addr = sdma->context_phys;
824         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
825         ret = sdma_run_channel0(sdma);
826
827         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
828
829         return ret;
830 }
831
832 static void sdma_disable_channel(struct sdma_channel *sdmac)
833 {
834         struct sdma_engine *sdma = sdmac->sdma;
835         int channel = sdmac->channel;
836
837         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
838         sdmac->status = DMA_ERROR;
839 }
840
841 static int sdma_config_channel(struct sdma_channel *sdmac)
842 {
843         int ret;
844
845         sdma_disable_channel(sdmac);
846
847         sdmac->event_mask[0] = 0;
848         sdmac->event_mask[1] = 0;
849         sdmac->shp_addr = 0;
850         sdmac->per_addr = 0;
851
852         if (sdmac->event_id0) {
853                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
854                         return -EINVAL;
855                 sdma_event_enable(sdmac, sdmac->event_id0);
856         }
857
858         switch (sdmac->peripheral_type) {
859         case IMX_DMATYPE_DSP:
860                 sdma_config_ownership(sdmac, false, true, true);
861                 break;
862         case IMX_DMATYPE_MEMORY:
863                 sdma_config_ownership(sdmac, false, true, false);
864                 break;
865         default:
866                 sdma_config_ownership(sdmac, true, true, false);
867                 break;
868         }
869
870         sdma_get_pc(sdmac, sdmac->peripheral_type);
871
872         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
873                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
874                 /* Handle multiple event channels differently */
875                 if (sdmac->event_id1) {
876                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
877                         if (sdmac->event_id1 > 31)
878                                 __set_bit(31, &sdmac->watermark_level);
879                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
880                         if (sdmac->event_id0 > 31)
881                                 __set_bit(30, &sdmac->watermark_level);
882                 } else {
883                         __set_bit(sdmac->event_id0, sdmac->event_mask);
884                 }
885                 /* Watermark Level */
886                 sdmac->watermark_level |= sdmac->watermark_level;
887                 /* Address */
888                 sdmac->shp_addr = sdmac->per_address;
889         } else {
890                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
891         }
892
893         ret = sdma_load_context(sdmac);
894
895         return ret;
896 }
897
898 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
899                 unsigned int priority)
900 {
901         struct sdma_engine *sdma = sdmac->sdma;
902         int channel = sdmac->channel;
903
904         if (priority < MXC_SDMA_MIN_PRIORITY
905             || priority > MXC_SDMA_MAX_PRIORITY) {
906                 return -EINVAL;
907         }
908
909         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
910
911         return 0;
912 }
913
914 static int sdma_request_channel(struct sdma_channel *sdmac)
915 {
916         struct sdma_engine *sdma = sdmac->sdma;
917         int channel = sdmac->channel;
918         int ret = -EBUSY;
919
920         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
921                                         GFP_KERNEL);
922         if (!sdmac->bd) {
923                 ret = -ENOMEM;
924                 goto out;
925         }
926
927         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
928         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
929
930         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
931         return 0;
932 out:
933
934         return ret;
935 }
936
937 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
938 {
939         return container_of(chan, struct sdma_channel, chan);
940 }
941
942 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
943 {
944         unsigned long flags;
945         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
946         dma_cookie_t cookie;
947
948         spin_lock_irqsave(&sdmac->lock, flags);
949
950         cookie = dma_cookie_assign(tx);
951
952         spin_unlock_irqrestore(&sdmac->lock, flags);
953
954         return cookie;
955 }
956
957 static int sdma_alloc_chan_resources(struct dma_chan *chan)
958 {
959         struct sdma_channel *sdmac = to_sdma_chan(chan);
960         struct imx_dma_data *data = chan->private;
961         int prio, ret;
962
963         if (!data)
964                 return -EINVAL;
965
966         switch (data->priority) {
967         case DMA_PRIO_HIGH:
968                 prio = 3;
969                 break;
970         case DMA_PRIO_MEDIUM:
971                 prio = 2;
972                 break;
973         case DMA_PRIO_LOW:
974         default:
975                 prio = 1;
976                 break;
977         }
978
979         sdmac->peripheral_type = data->peripheral_type;
980         sdmac->event_id0 = data->dma_request;
981
982         clk_enable(sdmac->sdma->clk_ipg);
983         clk_enable(sdmac->sdma->clk_ahb);
984
985         ret = sdma_request_channel(sdmac);
986         if (ret)
987                 return ret;
988
989         ret = sdma_set_channel_priority(sdmac, prio);
990         if (ret)
991                 return ret;
992
993         dma_async_tx_descriptor_init(&sdmac->desc, chan);
994         sdmac->desc.tx_submit = sdma_tx_submit;
995         /* txd.flags will be overwritten in prep funcs */
996         sdmac->desc.flags = DMA_CTRL_ACK;
997
998         return 0;
999 }
1000
1001 static void sdma_free_chan_resources(struct dma_chan *chan)
1002 {
1003         struct sdma_channel *sdmac = to_sdma_chan(chan);
1004         struct sdma_engine *sdma = sdmac->sdma;
1005
1006         sdma_disable_channel(sdmac);
1007
1008         if (sdmac->event_id0)
1009                 sdma_event_disable(sdmac, sdmac->event_id0);
1010         if (sdmac->event_id1)
1011                 sdma_event_disable(sdmac, sdmac->event_id1);
1012
1013         sdmac->event_id0 = 0;
1014         sdmac->event_id1 = 0;
1015
1016         sdma_set_channel_priority(sdmac, 0);
1017
1018         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1019
1020         clk_disable(sdma->clk_ipg);
1021         clk_disable(sdma->clk_ahb);
1022 }
1023
1024 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1025                 struct dma_chan *chan, struct scatterlist *sgl,
1026                 unsigned int sg_len, enum dma_transfer_direction direction,
1027                 unsigned long flags, void *context)
1028 {
1029         struct sdma_channel *sdmac = to_sdma_chan(chan);
1030         struct sdma_engine *sdma = sdmac->sdma;
1031         int ret, i, count;
1032         int channel = sdmac->channel;
1033         struct scatterlist *sg;
1034
1035         if (sdmac->status == DMA_IN_PROGRESS)
1036                 return NULL;
1037         sdmac->status = DMA_IN_PROGRESS;
1038
1039         sdmac->flags = 0;
1040
1041         sdmac->buf_tail = 0;
1042
1043         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1044                         sg_len, channel);
1045
1046         sdmac->direction = direction;
1047         ret = sdma_load_context(sdmac);
1048         if (ret)
1049                 goto err_out;
1050
1051         if (sg_len > NUM_BD) {
1052                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1053                                 channel, sg_len, NUM_BD);
1054                 ret = -EINVAL;
1055                 goto err_out;
1056         }
1057
1058         sdmac->chn_count = 0;
1059         for_each_sg(sgl, sg, sg_len, i) {
1060                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1061                 int param;
1062
1063                 bd->buffer_addr = sg->dma_address;
1064
1065                 count = sg_dma_len(sg);
1066
1067                 if (count > 0xffff) {
1068                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1069                                         channel, count, 0xffff);
1070                         ret = -EINVAL;
1071                         goto err_out;
1072                 }
1073
1074                 bd->mode.count = count;
1075                 sdmac->chn_count += count;
1076
1077                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1078                         ret =  -EINVAL;
1079                         goto err_out;
1080                 }
1081
1082                 switch (sdmac->word_size) {
1083                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1084                         bd->mode.command = 0;
1085                         if (count & 3 || sg->dma_address & 3)
1086                                 return NULL;
1087                         break;
1088                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1089                         bd->mode.command = 2;
1090                         if (count & 1 || sg->dma_address & 1)
1091                                 return NULL;
1092                         break;
1093                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1094                         bd->mode.command = 1;
1095                         break;
1096                 default:
1097                         return NULL;
1098                 }
1099
1100                 param = BD_DONE | BD_EXTD | BD_CONT;
1101
1102                 if (i + 1 == sg_len) {
1103                         param |= BD_INTR;
1104                         param |= BD_LAST;
1105                         param &= ~BD_CONT;
1106                 }
1107
1108                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1109                                 i, count, (u64)sg->dma_address,
1110                                 param & BD_WRAP ? "wrap" : "",
1111                                 param & BD_INTR ? " intr" : "");
1112
1113                 bd->mode.status = param;
1114         }
1115
1116         sdmac->num_bd = sg_len;
1117         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1118
1119         return &sdmac->desc;
1120 err_out:
1121         sdmac->status = DMA_ERROR;
1122         return NULL;
1123 }
1124
1125 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1126                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1127                 size_t period_len, enum dma_transfer_direction direction,
1128                 unsigned long flags)
1129 {
1130         struct sdma_channel *sdmac = to_sdma_chan(chan);
1131         struct sdma_engine *sdma = sdmac->sdma;
1132         int num_periods = buf_len / period_len;
1133         int channel = sdmac->channel;
1134         int ret, i = 0, buf = 0;
1135
1136         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1137
1138         if (sdmac->status == DMA_IN_PROGRESS)
1139                 return NULL;
1140
1141         sdmac->status = DMA_IN_PROGRESS;
1142
1143         sdmac->buf_tail = 0;
1144         sdmac->period_len = period_len;
1145
1146         sdmac->flags |= IMX_DMA_SG_LOOP;
1147         sdmac->direction = direction;
1148         ret = sdma_load_context(sdmac);
1149         if (ret)
1150                 goto err_out;
1151
1152         if (num_periods > NUM_BD) {
1153                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1154                                 channel, num_periods, NUM_BD);
1155                 goto err_out;
1156         }
1157
1158         if (period_len > 0xffff) {
1159                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1160                                 channel, period_len, 0xffff);
1161                 goto err_out;
1162         }
1163
1164         while (buf < buf_len) {
1165                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1166                 int param;
1167
1168                 bd->buffer_addr = dma_addr;
1169
1170                 bd->mode.count = period_len;
1171
1172                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1173                         goto err_out;
1174                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1175                         bd->mode.command = 0;
1176                 else
1177                         bd->mode.command = sdmac->word_size;
1178
1179                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1180                 if (i + 1 == num_periods)
1181                         param |= BD_WRAP;
1182
1183                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1184                                 i, period_len, (u64)dma_addr,
1185                                 param & BD_WRAP ? "wrap" : "",
1186                                 param & BD_INTR ? " intr" : "");
1187
1188                 bd->mode.status = param;
1189
1190                 dma_addr += period_len;
1191                 buf += period_len;
1192
1193                 i++;
1194         }
1195
1196         sdmac->num_bd = num_periods;
1197         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1198
1199         return &sdmac->desc;
1200 err_out:
1201         sdmac->status = DMA_ERROR;
1202         return NULL;
1203 }
1204
1205 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1206                 unsigned long arg)
1207 {
1208         struct sdma_channel *sdmac = to_sdma_chan(chan);
1209         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1210
1211         switch (cmd) {
1212         case DMA_TERMINATE_ALL:
1213                 sdma_disable_channel(sdmac);
1214                 return 0;
1215         case DMA_SLAVE_CONFIG:
1216                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1217                         sdmac->per_address = dmaengine_cfg->src_addr;
1218                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1219                                                 dmaengine_cfg->src_addr_width;
1220                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1221                 } else {
1222                         sdmac->per_address = dmaengine_cfg->dst_addr;
1223                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1224                                                 dmaengine_cfg->dst_addr_width;
1225                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1226                 }
1227                 sdmac->direction = dmaengine_cfg->direction;
1228                 return sdma_config_channel(sdmac);
1229         default:
1230                 return -ENOSYS;
1231         }
1232
1233         return -EINVAL;
1234 }
1235
1236 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1237                                       dma_cookie_t cookie,
1238                                       struct dma_tx_state *txstate)
1239 {
1240         struct sdma_channel *sdmac = to_sdma_chan(chan);
1241         u32 residue;
1242
1243         if (sdmac->flags & IMX_DMA_SG_LOOP)
1244                 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1245         else
1246                 residue = sdmac->chn_count - sdmac->chn_real_count;
1247
1248         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1249                          residue);
1250
1251         return sdmac->status;
1252 }
1253
1254 static void sdma_issue_pending(struct dma_chan *chan)
1255 {
1256         struct sdma_channel *sdmac = to_sdma_chan(chan);
1257         struct sdma_engine *sdma = sdmac->sdma;
1258
1259         if (sdmac->status == DMA_IN_PROGRESS)
1260                 sdma_enable_channel(sdma, sdmac->channel);
1261 }
1262
1263 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1264 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1265
1266 static void sdma_add_scripts(struct sdma_engine *sdma,
1267                 const struct sdma_script_start_addrs *addr)
1268 {
1269         s32 *addr_arr = (u32 *)addr;
1270         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1271         int i;
1272
1273         /* use the default firmware in ROM if missing external firmware */
1274         if (!sdma->script_number)
1275                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1276
1277         for (i = 0; i < sdma->script_number; i++)
1278                 if (addr_arr[i] > 0)
1279                         saddr_arr[i] = addr_arr[i];
1280 }
1281
1282 static void sdma_load_firmware(const struct firmware *fw, void *context)
1283 {
1284         struct sdma_engine *sdma = context;
1285         const struct sdma_firmware_header *header;
1286         const struct sdma_script_start_addrs *addr;
1287         unsigned short *ram_code;
1288
1289         if (!fw) {
1290                 dev_err(sdma->dev, "firmware not found\n");
1291                 return;
1292         }
1293
1294         if (fw->size < sizeof(*header))
1295                 goto err_firmware;
1296
1297         header = (struct sdma_firmware_header *)fw->data;
1298
1299         if (header->magic != SDMA_FIRMWARE_MAGIC)
1300                 goto err_firmware;
1301         if (header->ram_code_start + header->ram_code_size > fw->size)
1302                 goto err_firmware;
1303         switch (header->version_major) {
1304                 case 1:
1305                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1306                         break;
1307                 case 2:
1308                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1309                         break;
1310                 default:
1311                         dev_err(sdma->dev, "unknown firmware version\n");
1312                         goto err_firmware;
1313         }
1314
1315         addr = (void *)header + header->script_addrs_start;
1316         ram_code = (void *)header + header->ram_code_start;
1317
1318         clk_enable(sdma->clk_ipg);
1319         clk_enable(sdma->clk_ahb);
1320         /* download the RAM image for SDMA */
1321         sdma_load_script(sdma, ram_code,
1322                         header->ram_code_size,
1323                         addr->ram_code_start_addr);
1324         clk_disable(sdma->clk_ipg);
1325         clk_disable(sdma->clk_ahb);
1326
1327         sdma_add_scripts(sdma, addr);
1328
1329         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1330                         header->version_major,
1331                         header->version_minor);
1332
1333 err_firmware:
1334         release_firmware(fw);
1335 }
1336
1337 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1338                 const char *fw_name)
1339 {
1340         int ret;
1341
1342         ret = request_firmware_nowait(THIS_MODULE,
1343                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1344                         GFP_KERNEL, sdma, sdma_load_firmware);
1345
1346         return ret;
1347 }
1348
1349 static int __init sdma_init(struct sdma_engine *sdma)
1350 {
1351         int i, ret;
1352         dma_addr_t ccb_phys;
1353
1354         clk_enable(sdma->clk_ipg);
1355         clk_enable(sdma->clk_ahb);
1356
1357         /* Be sure SDMA has not started yet */
1358         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1359
1360         sdma->channel_control = dma_alloc_coherent(NULL,
1361                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1362                         sizeof(struct sdma_context_data),
1363                         &ccb_phys, GFP_KERNEL);
1364
1365         if (!sdma->channel_control) {
1366                 ret = -ENOMEM;
1367                 goto err_dma_alloc;
1368         }
1369
1370         sdma->context = (void *)sdma->channel_control +
1371                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1372         sdma->context_phys = ccb_phys +
1373                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1374
1375         /* Zero-out the CCB structures array just allocated */
1376         memset(sdma->channel_control, 0,
1377                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1378
1379         /* disable all channels */
1380         for (i = 0; i < sdma->drvdata->num_events; i++)
1381                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1382
1383         /* All channels have priority 0 */
1384         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1385                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1386
1387         ret = sdma_request_channel(&sdma->channel[0]);
1388         if (ret)
1389                 goto err_dma_alloc;
1390
1391         sdma_config_ownership(&sdma->channel[0], false, true, false);
1392
1393         /* Set Command Channel (Channel Zero) */
1394         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1395
1396         /* Set bits of CONFIG register but with static context switching */
1397         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1398         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1399
1400         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1401
1402         /* Set bits of CONFIG register with given context switching mode */
1403         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1404
1405         /* Initializes channel's priorities */
1406         sdma_set_channel_priority(&sdma->channel[0], 7);
1407
1408         clk_disable(sdma->clk_ipg);
1409         clk_disable(sdma->clk_ahb);
1410
1411         return 0;
1412
1413 err_dma_alloc:
1414         clk_disable(sdma->clk_ipg);
1415         clk_disable(sdma->clk_ahb);
1416         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1417         return ret;
1418 }
1419
1420 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1421 {
1422         struct sdma_channel *sdmac = to_sdma_chan(chan);
1423         struct imx_dma_data *data = fn_param;
1424
1425         if (!imx_dma_is_general_purpose(chan))
1426                 return false;
1427
1428         sdmac->data = *data;
1429         chan->private = &sdmac->data;
1430
1431         return true;
1432 }
1433
1434 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1435                                    struct of_dma *ofdma)
1436 {
1437         struct sdma_engine *sdma = ofdma->of_dma_data;
1438         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1439         struct imx_dma_data data;
1440
1441         if (dma_spec->args_count != 3)
1442                 return NULL;
1443
1444         data.dma_request = dma_spec->args[0];
1445         data.peripheral_type = dma_spec->args[1];
1446         data.priority = dma_spec->args[2];
1447
1448         return dma_request_channel(mask, sdma_filter_fn, &data);
1449 }
1450
1451 static int __init sdma_probe(struct platform_device *pdev)
1452 {
1453         const struct of_device_id *of_id =
1454                         of_match_device(sdma_dt_ids, &pdev->dev);
1455         struct device_node *np = pdev->dev.of_node;
1456         const char *fw_name;
1457         int ret;
1458         int irq;
1459         struct resource *iores;
1460         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1461         int i;
1462         struct sdma_engine *sdma;
1463         s32 *saddr_arr;
1464         const struct sdma_driver_data *drvdata = NULL;
1465
1466         if (of_id)
1467                 drvdata = of_id->data;
1468         else if (pdev->id_entry)
1469                 drvdata = (void *)pdev->id_entry->driver_data;
1470
1471         if (!drvdata) {
1472                 dev_err(&pdev->dev, "unable to find driver data\n");
1473                 return -EINVAL;
1474         }
1475
1476         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1477         if (ret)
1478                 return ret;
1479
1480         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1481         if (!sdma)
1482                 return -ENOMEM;
1483
1484         spin_lock_init(&sdma->channel_0_lock);
1485
1486         sdma->dev = &pdev->dev;
1487         sdma->drvdata = drvdata;
1488
1489         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1490         irq = platform_get_irq(pdev, 0);
1491         if (!iores || irq < 0) {
1492                 ret = -EINVAL;
1493                 goto err_irq;
1494         }
1495
1496         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1497                 ret = -EBUSY;
1498                 goto err_request_region;
1499         }
1500
1501         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1502         if (IS_ERR(sdma->clk_ipg)) {
1503                 ret = PTR_ERR(sdma->clk_ipg);
1504                 goto err_clk;
1505         }
1506
1507         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1508         if (IS_ERR(sdma->clk_ahb)) {
1509                 ret = PTR_ERR(sdma->clk_ahb);
1510                 goto err_clk;
1511         }
1512
1513         clk_prepare(sdma->clk_ipg);
1514         clk_prepare(sdma->clk_ahb);
1515
1516         sdma->regs = ioremap(iores->start, resource_size(iores));
1517         if (!sdma->regs) {
1518                 ret = -ENOMEM;
1519                 goto err_ioremap;
1520         }
1521
1522         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1523         if (ret)
1524                 goto err_request_irq;
1525
1526         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1527         if (!sdma->script_addrs) {
1528                 ret = -ENOMEM;
1529                 goto err_alloc;
1530         }
1531
1532         /* initially no scripts available */
1533         saddr_arr = (s32 *)sdma->script_addrs;
1534         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1535                 saddr_arr[i] = -EINVAL;
1536
1537         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1538         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1539
1540         INIT_LIST_HEAD(&sdma->dma_device.channels);
1541         /* Initialize channel parameters */
1542         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1543                 struct sdma_channel *sdmac = &sdma->channel[i];
1544
1545                 sdmac->sdma = sdma;
1546                 spin_lock_init(&sdmac->lock);
1547
1548                 sdmac->chan.device = &sdma->dma_device;
1549                 dma_cookie_init(&sdmac->chan);
1550                 sdmac->channel = i;
1551
1552                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1553                              (unsigned long) sdmac);
1554                 /*
1555                  * Add the channel to the DMAC list. Do not add channel 0 though
1556                  * because we need it internally in the SDMA driver. This also means
1557                  * that channel 0 in dmaengine counting matches sdma channel 1.
1558                  */
1559                 if (i)
1560                         list_add_tail(&sdmac->chan.device_node,
1561                                         &sdma->dma_device.channels);
1562         }
1563
1564         ret = sdma_init(sdma);
1565         if (ret)
1566                 goto err_init;
1567
1568         if (sdma->drvdata->script_addrs)
1569                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1570         if (pdata && pdata->script_addrs)
1571                 sdma_add_scripts(sdma, pdata->script_addrs);
1572
1573         if (pdata) {
1574                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1575                 if (ret)
1576                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1577         } else {
1578                 /*
1579                  * Because that device tree does not encode ROM script address,
1580                  * the RAM script in firmware is mandatory for device tree
1581                  * probe, otherwise it fails.
1582                  */
1583                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1584                                               &fw_name);
1585                 if (ret)
1586                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1587                 else {
1588                         ret = sdma_get_firmware(sdma, fw_name);
1589                         if (ret)
1590                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1591                 }
1592         }
1593
1594         sdma->dma_device.dev = &pdev->dev;
1595
1596         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1597         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1598         sdma->dma_device.device_tx_status = sdma_tx_status;
1599         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1600         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1601         sdma->dma_device.device_control = sdma_control;
1602         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1603         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1604         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1605
1606         ret = dma_async_device_register(&sdma->dma_device);
1607         if (ret) {
1608                 dev_err(&pdev->dev, "unable to register\n");
1609                 goto err_init;
1610         }
1611
1612         if (np) {
1613                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1614                 if (ret) {
1615                         dev_err(&pdev->dev, "failed to register controller\n");
1616                         goto err_register;
1617                 }
1618         }
1619
1620         dev_info(sdma->dev, "initialized\n");
1621
1622         return 0;
1623
1624 err_register:
1625         dma_async_device_unregister(&sdma->dma_device);
1626 err_init:
1627         kfree(sdma->script_addrs);
1628 err_alloc:
1629         free_irq(irq, sdma);
1630 err_request_irq:
1631         iounmap(sdma->regs);
1632 err_ioremap:
1633 err_clk:
1634         release_mem_region(iores->start, resource_size(iores));
1635 err_request_region:
1636 err_irq:
1637         kfree(sdma);
1638         return ret;
1639 }
1640
1641 static int sdma_remove(struct platform_device *pdev)
1642 {
1643         return -EBUSY;
1644 }
1645
1646 static struct platform_driver sdma_driver = {
1647         .driver         = {
1648                 .name   = "imx-sdma",
1649                 .of_match_table = sdma_dt_ids,
1650         },
1651         .id_table       = sdma_devtypes,
1652         .remove         = sdma_remove,
1653 };
1654
1655 static int __init sdma_module_init(void)
1656 {
1657         return platform_driver_probe(&sdma_driver, sdma_probe);
1658 }
1659 module_init(sdma_module_init);
1660
1661 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1662 MODULE_DESCRIPTION("i.MX SDMA driver");
1663 MODULE_LICENSE("GPL");